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Rule Induction

Rule Induction
 Given: Set of positive and negative examples of

some concept
 Example: (x1, x2, … , xn, y)
 y: concept (Boolean)
 x1, x2, … , xn: attributes (assume Boolean)

 Goal: Induce a set of rules that cover all positive
examples and no negative ones
 Rule:  xa ^ xb ^ … ⇒ y   (xa: Literal, i.e., xi or its negation)
 Same as Horn clause:  Body ⇒ Head
 Rule r covers example x iff x satisfies body of r

 Eval(r): Accuracy, info gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat
    for each literal x
        rx ← r with x added to body
        Eval(rx)
        body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ← Ø
S ← examples
repeat
    learn a single rule r
     R ← R U { r }
    S ← S − positive examples covered by r
until S = Ø
return R
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First-Order Rule Induction (a.k.a.
Inductive Logic Programming)
 y and xi are now predicates with arguments

E.g.: y is Ancestor(x,y), xi is Parent(x,y)
 Literals to add are predicates or their negations
 Literal to add must include at least one variable

already appearing in rule
 Adding a literal changes # groundings of rule

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y)
 Eval(r) must take this into account

E.g.: Multiply by # positive groundings of rule
         still covered after adding literal

MLN Structure Learning
 Generalizes feature induction in Markov nets
 Any inductive logic programming approach can be

used, but . . .
 Goal is to induce any clauses, not just Horn
 Evaluation function should be likelihood
 Requires learning weights for each candidate
 Turns out not to be bottleneck
 Bottleneck is counting clause groundings
 Solution: Subsampling

MLN Structure Learning

 Initial state: Unit clauses or hand-coded KB
 Operators: Add/remove literal, flip sign
 Evaluation function:

Pseudo-likelihood + Structure prior
 Search: Beam search, shortest-first search


