
1

Rule Induction

Rule Induction
 Given: Set of positive and negative examples of

some concept
 Example: (x1, x2, … , xn, y)
 y: concept (Boolean)
 x1, x2, … , xn: attributes (assume Boolean)

 Goal: Induce a set of rules that cover all positive
examples and no negative ones
 Rule: xa ^ xb ^ … ⇒ y (xa: Literal, i.e., xi or its negation)
 Same as Horn clause: Body ⇒ Head
 Rule r covers example x iff x satisfies body of r

 Eval(r): Accuracy, info gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat
 for each literal x
 rx ← r with x added to body
 Eval(rx)
 body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ← Ø
S ← examples
repeat
 learn a single rule r
 R ← R U { r }
 S ← S − positive examples covered by r
until S = Ø
return R

2

First-Order Rule Induction (a.k.a.
Inductive Logic Programming)
 y and xi are now predicates with arguments

E.g.: y is Ancestor(x,y), xi is Parent(x,y)
 Literals to add are predicates or their negations
 Literal to add must include at least one variable

already appearing in rule
 Adding a literal changes # groundings of rule

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y)
 Eval(r) must take this into account

E.g.: Multiply by # positive groundings of rule
 still covered after adding literal

MLN Structure Learning
 Generalizes feature induction in Markov nets
 Any inductive logic programming approach can be

used, but . . .
 Goal is to induce any clauses, not just Horn
 Evaluation function should be likelihood
 Requires learning weights for each candidate
 Turns out not to be bottleneck
 Bottleneck is counting clause groundings
 Solution: Subsampling

MLN Structure Learning

 Initial state: Unit clauses or hand-coded KB
 Operators: Add/remove literal, flip sign
 Evaluation function:

Pseudo-likelihood + Structure prior
 Search: Beam search, shortest-first search

