Question 1

(8 4+ 4 bonus points)

Recall that the heuristic function in best-first search is f(n) = g(n) + h(n),
where g(n) is the exact cost of getting to the current node n, and h(n) is the
estimated minimum cost of getting from n to a goal state.

a (4 points) Suppose we run a greedy search algorithm with h(n) = —g(n).
What sort of search will the greedy search emulate?

The best nodes (those with the lowest scores), will be those with
the longest paths, so this emulates depth first search. A com-
mon mistake was to confuse greedy search with best first, or A*.
Greedy search uses f(n) = h(n). Since in this case h(n) = —g(n),
the deeper a node is in the tree, the better it’s f-cost will be.

A common mistake was to use f(n) = g(n) + h(n), which is the
formula for best-first, but not greedy search. In this case, f(n)
becomes 0, so the search is effectively random (actually, it de-
pends on the details of the queueing function.)

b (4 points) Prove that if the heuristic function h obeys the triangle inequal-
ity, then the f-cost along any path in the search tree is nondecreasing.
(The triangle inequality says that the sum of the costs from A to B and
B to C must not be less than the cost from A to C' directly.)

Think of the triangle inequality as meaning that the direct route
from A to C is faster than the indirect route through B.

Nondecreasing f-cost along a path means that f of a successor
is always at least as large as that of the node:

f(n) < f(n)ifn' € S(n)
Substituting f(n) = g(n) + h(n) we get:
g(n) + h(n) < g(n') + h(n')ifn’ € S(n)

Our goal is to show that this is implied by the triangle inequality.
The triangle inequality applied to a heuristic h(n) says that

h(n) < k(n,n’) + h(n’)

for any nodes n, n’, where k(n,n’) is the cost of the shortest path
from n to n/. Adding ¢g(n) to both sides we get
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g9(n) +h(n) < g(n) + k(n,n’) + h(n')

But if n’ is a successor of n, then g(n) + k(n,n’) is equal to g(n').
So

g(n) + h(n) < g(n') + h(n")

¢ (BONUS 4 points) Sometimes there is no good evaluation function for a
problem, but there is a good comparison method: a way to tell if one node
is better than another, without assigning numerical values to either. Show
that this is enough to do a best-first search. What properties of best-first
search do we give up if we only have a comparison method?

Assuming the comparison function is a total ordering, we can
still do best-first search by sorting the queue using the compar-
ison function. However, since we don’t have information about
how much better a given node is than another, we can’t combine
the results of the comparison function with other information
(such as a g(n) function), so we can’t do A*. We also give up the
optimality guarantees that come with A* search. (We can be do
no better than greedy search.) Also like greedy search, we loose
completeness.
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Question 2
(8 4+ 4 bonus points)

Consider the following map coloring problem:

(074

C1

C5

Co

Figure 1: Assign each region one of the three colors (Red, Green or Blue) so
that no two adjacent regions have the same colors.

a (8 points) In class, we studied two heuristics for CSPs, least-constraining-
value and most-constrained-variable. Solve the graph coloring problem
above using these two heuristics and forward checking. (Show work on
back)

b (BONUS 4 points) Describe an additional heuristic that would be useful
in solving this problem.

If there is a tie for most-constrained-variable, as in the first
choice, use the most-constraining-variable, that is, the variable
whose assignment will add the most new constraints. For exam-
ple, using this heuristic it makes sense to select C4 first, since
it limits the choices for all other variables except C6. Several
people suggested using MOMS, this was OK, if you discuss con-
verting the problem to SAT.
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C4 = Red | Red | Green | Blue C5 = Green | Red | Green | Blue
C1 X C1 X
C2 X C2 X
C3 X C3 X X
C4 V C4 vV X
C5 X C5 X v
C6 C6 X

C3 = Blue | Red | Green | Blue C2 = Green | Red | Green | Blue
C1 X C1 X X
C2 X X C2 X vV X
C3 X X vV C3 X X Vv
C4 Vv X X C4 v/ X X
C5 X Vv X C5 X v X
C6 X X C6 X X

C1 = Blue | Red | Green | Blue C6 = Red | Red | Green | Blue
C1 X X v C1 X X vV
C2 X Vv X C2 X vV X
C3 X X vV C3 X X Vv
C4 Vv X X C4 v/ X X
C5 X vV X C5 X vV X
C6 X X C6 v/ X X

Table 1: CSP solution
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Question 3
(6 points)

Let us consider the problem of search in a three-player game. (You can assume
no alliances are allowed.) We will call the players 0, 1, and 2 for convenience.
Assume you have an evaluation function that returns a list of three values,
indicating (say) the likelihood of winning for players 0, 1 and 2, respectively.
Complete the following game tree by filling in the backed-up values for all re-
maining nodes including the root.

to move:

0 123
/\
1 @23 (-152)
2 123 612 (-152) (54 5)
SN N N N
0 (123 (421 612 (7 4-1) (5-1-1) (-152) (77-1) (54 5)

Figure 2: The first three ply of a game tree with three players (0, 1, and 2).

The important thing to understand is that each player will act so as
to maximize their score from the choices presented to them, and the
the score vectors are moved up the tree as units (no mixing) because
they represent the value to each player of a particular game.
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Question 4
(4 points)

Given the following, can you prove that the unicorn is mythical? How about
magical? Horned?

If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either im-
mortal or a mammal, then it is horned. The unicorn is magical if it
is horned.

First a proof by counterexample that you can’t prove that the uni-
corn is mythical:

It is consistent with the above sentences for the unicorn to be a non-
mythical, magical, mortal, horned mammal.

Now for the tedious version, let us define the following propositions:

MYTHICAL: The unicorn is mythical.

MORTAL: The unicorn is mortal (Which means that ~-MORTAL
translates as “The unicorn is immortal.”)

MAMMAL: The unicorn is a mammal.

HORNED: The unicorn is horned.

MAGICAL: The unicorn is magical.

We can now translate the statements above as:

MYTHICAL — -MORTAL

-MYTHICAL - MORTALNMAMMAL

(-MORTALV MAMMAL) —- HORNED

HORNED — MAGICAL

First, we’ll look at the last two questions, which are easy. Since ei-
ther MYTHICAL or -MYTHICAL must be true, either -MORT AL or
MORTALANMAMM AL must be true, which means that (-MORTALV
MAMMAL) is true. By the third premise, this means that HORNED
is true, and by the fourth premise, M AGICAL is also true. So we can
prove MAGICAL and HORNED.

To prove MYTHICAL, we would have to to show that MORTAL A
MAMM AL is false. We could show this by denying either conjunct. If
we wanted to show MORT AL was false, we’d need to prove MYTHICAL
and use premise 1, but that would involve a circularity. If we try to
deny MAMM AL, the only way to do it would be to deny HORNED.
The only rule which could achieve that is the last, and we would have
to show "M AGICAL. Since there is no way to show that, this also
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fails. This exhausts the possibilities for proving MYTHICAL, so it is
unprovable from this set of sentences.
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Question 5
(6 points)

Consider a world in which there are only four propositions, A, B, C, and D.
How many models are there for the following sentences?

a (2 points) AA B

4 - A and B must be true, but C' and D are unconstrained

HH S S
HH =R
SRR
SRS R

Table 2: Models for AN B

b (2 points) AV B

12 - There are three ways to satisfy AV B and for each one, four
models corresponding to all possible truth values for C' and D.

c (2 points) ANBAC

2 - One where D is true and one where D is false.
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Question 6
(10 + 2 bonus points)
Here are two sentences in the language of first-order logic:

(A) VzIy(z > y)
(B) Iyvz(x > y)

a (2 point) Assume that the variables range over all natural numbers 0, 1,2, ...,

and that the “>” predicate means “greater than or equal to.” Under this
interpretation, translate the these sentences into English.

The first sentence translates as “For every natural number, there
is some (other) natural number that it is greater than or equal
to.” The second, as “There is a specific natural number that is
less than than or equal to every natural number.”

b (1 point) Is (A) true under this interpretation?

Yes - for any natural number, you can pick itself as the “other”
number.

¢ (1 points) Is (B) true under this interpretation?

Yes - The number 0 has this property.

d (2 points) Does (A) logically entail (B)?

No, (A) does not logically entail (B). (Counterexample: Con-
sider the integers, A is true, but B is not.)

e (2 points) Does (B) logically entail (A)?
Yes, (B) logically entails (A)

f (2 points) Try to prove that (A) follows from (B) using resolution. Do
this even if you think that (B) does not logically entail (A); continue until
the proof breaks down and you cannot proceed (if it does break down).
Show the unifying substitution for each resolution step. If the proof fails,
explain exactly where, how and why it breaks down.

We set the knowledge base to the negation of (A) and (B). Again,
we convert both sentences to canonical form (which requires

introducing a Skolem constant for (A) and a Skolem function
for (B)):

(~A): ~(F1 > y)

B):z>Fy

Resolving these clauses we use the substitution: {z/Fy,y/F»}.
This gives us:

o0,
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—|(F1 Z Fg) and F1 Z F2

Which does resolve, giving us False and proving that (B) entails
(A)
g (BONUS 2 points) Now try to prove that (B) follows from (A).

We set the knowledge base to (A) and the negation of (B). First
we convert both sentences to canonical form (which requires in-
troducing Skolem functions):

(A): z > Fi(2)

(-B): “Fy(y) >y

Now we try to derive a contradiction. There are only two clauses,
so we try to unify them. The obvious unification would be:
{2/ F>(y), y/Fi(x)}, but this is equivalent to {z/Fa(y), y/Fi(Fa(y))},
which fails because an expression containing y is being substi-
tuted for y. The resolution fails, and there are no other clauses
or unifications to try, so the proof fails.
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Question 7

(15 + 5 bonus points)

Two astronomers, in different parts of the world, make measurements M; and
Ms of the number of stars N in some small region of the sky, using their tele-
scopes. Normally, there is a small possibility of error by up to one star. Each
telescope can also (with a slightly smaller probability) be badly out of focus
(events Fy and Fy), in which case, the scientist will undercount by three or
more stars. Consider the three networks shown below.

OENOBENOIONO @gij

0] (i) (iii)

Figure 3: Three possible networks for the telescope problem.

a (5 points) Which of these belief networks correctly (but not necessarily
efficiently) represent the above information?

Althrough (i) in some sense depicts the “flow of information”
during calculation, it is clearly incorrect as a network, since
it says that given the measurements M; and M;, the number
of stars is independent of the focus. (ii) correctly represents
the causal structure: each measurement is influenced by the
actual number of stars and the focus, and the two telescopes
are independent of each other. (iii) shows a correct but more
complicated network — the one obtained by ordering the nodes
My, M5, N, Fy, F>. If you order M, before M; you would get the
same network except with the arrow from M; to M, reversed.

Many people confused the notion of correctly representing the
causal relationship with correctly representing the conditional
independence relation.

b (5 points) Which is the best network?

(ii) requires fewer parameters and is therefore better than (iii).
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(Many people wrote that (ii) is better because it is “more causally
accurate.” While this is true, it’s only part of the picture.

¢ (b points) Give a reasonable conditional probability table for the values
of P(M;|N). (For simplicity, consider only the possible values 1, 2, and 3
in this part.)

To compute P(M;|N), we will need to condition on F; (that is,
consider both possible cases for F), weighted by their probabili-
ties.)

P(M1|N) =P(M;|N, F1)P(F1|N) + P(M;|N,—F1)P(=F1|N)

P(M1|N) =P(M;|N, F1)P(F1) + P(M;|N,—F1)P(—F)

Let f be the probability that the telescope is out of focus. The
problem states that this will cause an “undercount of three or
more starts.” For N=3 or less stars, we assume this means the
count will be 0 if the telescope is out of focus. If it is in focus,
then we will assume there is a probability of ¢ of counting one
too few, and ¢ of counting one too many. The rest of the time
(1 —2e¢), the count will be accurate. Then the table is as follows:

N=1 N =2 N=3
My =0 f+e(l—1F) f !
My=1|(1-2)(1—f) e(l1—f) 0.0

M; =2 e(l1—f) (1—2e)(1—f) e(1—f)
M, =3 0.0 e(l—f) (1—2e)(1—f)
M, =4 0.0 0.0 e(1—f)

Table 3: Conditional probabilities of M;|N

Notice that each column has to add up to 1. Reasonable values
for e and f might be 0.05 and 0.02.

(BONUS 5 points) Suppose M; =1 and M, = 3. What are the possible

numbers of stars?

Consider all the possible values of the focus and off-by-one vari-
ables, and the implications each has on the resulting possible
values of N.

— If neither F); nor F, are true, then the only possible value
for N is 2 (astronomer 1 undercounts by 1 and astronomer
2 overcounts by 1).

— If F} is true and F) is false, then the only possible value
for N is 4 (astronomer 1 undercounts by 3, astronomer 2
undercounts by 1).
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— If I3 if false, and I3 is true, then there is no consistent value
for N, so this can’t be the case.

— Finally, if both F; and F, are true, then the possible values
are N > 6, with astronomer 2 undercounting by ¢ > 3 and
astronomer 1 undercounting by ¢ + 2.
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Question 8

(10 + 3 bonus points)

Let the instance space be X = {0,1}*, the training set be D = {(< 0,0,0,0 >,1)},
and the hypothesis space H be the set of conjunctions over X.

Notation: Let z; be the ith attribute, and —x denote “not z”.

a (4 points) Compute the cardinality of the version space of H over D,
VSu,pl-

VS| = 2* = 16 (VS = the set of conjunctions with all negated
literals

b (3 points) Derive the S and G frontiers using the candidate elimination
algorithm.
S = {—x1 A a2 A 23 A 2y} (singleton set), G = {True} (the null
conjunction)

¢ (3 points) Suppose you see the additional example (< 1,1,1,1 >,0). De-
rive the new S and G frontiers.
S = {—x1 A—x2 A 13 AN —g}, G = {—x1, 29, —x3, "y}

d (BONUS 3 points) Suppose you see one more example, (< 0,1,1,1>,1).
Derive the new S and G frontiers.

S ={-m}, G={-m}
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Question 9
(4 points)

Suppose a training set is made up of 16 examples of class A, 8 examples of class
B, 32 examples of class C, and 8 examples of class D. When growing a decision
tree from this training set, what is the maximum information gain that any
attribute can have?

Consider a single attribute z that is perfectly correlated with the
class. Ie. 2 =1=C=A4, xr=2=C=B,2=3=C =CC, and
r =4 =C = D. In this case, the entropy after splitting on this at-
tribute will be 0 (all subsets are pure.) So the maximum information
gain is the entropy of the training set - 0.

The entropy of the training set is:

16 16 8 8 32 32 8 8
H(D) = ——log,(—)— — log,(—) — — Y — —log,(—
( ) 64 Og2(64) 64 Og2(64) 64 Og2(64) 64 Og2(64)
e N
T4 8 2 8
B 4+3+4+3
T8 8 8 8
14
= — =175
]
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Question 10
(5 points)

Consider the following Bayesian network, in which variables A, B and C are
Boolean:

Suppose you want to learn the parameters for this network using the training
set {<0,1,1>,<1,0,0>,<1,1,1 >,<1,?,0 >}, where examples are in the
form < A, B,C >, and “?” indicates a missing value. Show the sequence of
filled-in values and parameters produced by the EM algorithm, assuming the
parameters are initialized by ignoring missing values. (Hint: EM converges very
quickly on this problem.)

Initialization:
P(A)=0.75
P(B|A)=05,P(B|—A) =1
P(C|B)=1,P(C|-B)=0

First iteration:
E step:

P(A,B.-C)
P(A,—C)
P(A)P(B|A)P(—C|B)
P(A)YP(B|A)P(—C|B) + P(A)P(-B|A)P(—C| - B)
(0.75-0.5 - 0)
(0+0.75-0.5-1)
= 0

P(?=1)

P(B|A,—C) =

So ? = 0 with probability 1. Compute conditional probabilities with
this substitution.

M step:

P(A) =0.75

P(B|A)=0.333...,P(B|—A)=1

P(C|B)=1,P(C|-B)=0

Second iteration:
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E step:

P(A, B, —C)
P(A,—0C)
P(A)P(BJA)P(—C|B)

P(?=1) P(B|A,—C) =

P(A)P(B[A)P(—C|B) + P(A)P(—BJA)P(—C| — B)
(0.75-0.333...-0)
(0+0.75-0.666...- 1)
=0

M step: Same result as first iteration (converged).

17
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Question 11
(3 points)

Let H be the set of hypotheses of the form =z = zg V x = x1, where zg, 27 € X
(i.e., zg and z; are arbitrary elements of the instance space). What is the VC
dimension of H?

VC-dim(H) = 2, because:

e A set of cardinality 2 can be shattered by H. Let this set be
{y1,y2}. All we have to do is pick y; and y; so that y; # ya.

Dichotomy  Realizable by making

yl-, y2- xl 1= yl, x2 1=yl1, x1 = y2, x2 1= y2,
yl-,y2+ xl!=yl,x2=1y2

yl+,y2- x1l=yl, x2!=y2

yl+,y2 4+ x1=yl, x2=y2

Table 4: Assignments to shatter set of 2 examples.

e A set of cardinality 3 cannot be shattered: there is no way to
realize the dichotomy y1 4+, y2 4+, y3 +, because H only allows
at most two points to be positive.

Some people thought the VC dimension was greater than 2. For
example, the claim is that you can shatter a sets of size 3, {a,b,c} by
selecting, for the dichotomy {a,b, ¢}, {} the hypothesis 2 = dVz = d (i.e.
by giving a hypothesis that selects the null set w.r.t. the 3 elements
in question, and thereby shattering out the rest of the elements by
elimination.) However, you need to be able to distinguish between
the dichotomy above and {},{a,b, c}, and now you’re forced to list the
elements explicitly, which you can’t do with only 2 elements in the
disjunction. Alternatively you can think of this as saying that you
need to be able to shatter the set into all possible class assignments.
So you can cover < a,+ >, < b,+ >,<c¢,+ >, but not <a,— >,<b,— >
, < c,— >.
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Question 12
(5 points)

Suppose you want to learn to recognize digits in a 7-segment LED display
from noisy examples (i.e., each segment has been flipped with 10% probabil-
ity). Which of the learning algorithms you studied would you use?

The best choice is naive Bayes, because the attributes (i.e., whether
each segment is on or off) are independent given the class (i.e.,
the digit), so naive Bayes is the optimal classifier for this problem.
Nearest-neighbor with overlap distance is also a reasonable solution,
and can be given half-credit. A general Bayes net can also be given
half-credit (it will have zero bias, like naive Bayes, but more variance,
and will also be slower). Likewise for a neural net with one output
per class and a ”"max” function. Decision trees and rules are the least
appropriate.
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Question 13
(8 points)

How would you modify Graphplan to handle uncertainty (i.e., the initial state is
a set of worlds) assuming that actions are still STRIPS (i.e., no sensing actions
are available)?

The problem asks to refine Graphplan to handle a limited level of un-
certainty, namely uncertainty as to the initial state of the world (but
not about the outcomes of actions). Furthermore, this uncertainty is
only represented as a set of possible initial states, rather than prob-
abilities over initial states or any other representation.

First a very simple, and unsatisfying solution, but one that might
start to expose the issues. Using the standard STRIPS representa-
tion, a plan (i.e. specification of which actions to execute at each
level of the planning graph) can only be correct if it succeeds in all
possible worlds. Any proposition which is required in the initial state
for success, and which does not appear in all the initial states cannot
contribute to a successful plan. So simply take the intersection of the
initial states (i.e. the set of propositions that are true in all possible
initial states) and use that as the initial state to run graphplan from.
This will handle situations where you don’t know if a precondition
is going to be true, but you can easily make it true. So if the work
surface may be clean or not, but you’re not sure, and you need it
clean to work, then you might as well add a clean action. It doesn’t
handle many other situations where uncertainty is present.

To motivate a better solution, consider the “bomb in the toilet” prob-
lem. You have two packages, one of which contains a bomb. You can
disarm the bomb by putting it into the toilet. This isn’t handled by
the solution described above because the uncertainty here is about
which package the bomb is in. If we just take the intersection of
BOMB-IN-A and BOMB-IN-B, we lose all information about the
bomb. The basic idea for the solution to this sort of problem is to
run Graphplan in each of the possible worlds in parallel. I give a
sketch here, and a reference to a paper with complete details below.

First, expand a separate planning graph out for each possible ini-
tial world state. Expand them out until all “worlds” have the goal
conditions in the final proposition level, and there are no mutexes
between them. Now, the instantiations of the actions will actually
have to vary. In the world with BOMB-IN-A, you want to execute
DUNK-A, and in the world with BOMB-IN-B, you want to execute
DUNK-B. So as a second cut, let’s try just taking the union of the
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plans in each world. We end up with the plan DUNK-A and DUNK-
B both at time step 1.

So we’re almost there, but not quite. Since there are no sensing ac-
tions, we can’t just execute the actions that are called for in each
world, because we don’t know which world we’ll be in. An action
that’s required in world u might be deadly in world v. To exemplify,
lets add a new condition, you can only stick one package into the
toilet at a time, and once you’ve done so, the package gets stuck and
you can never dunk another one. We can see that in this world, there
is no successful plan, but our algorithm doesn’t know it. To handle
this situation, we must check each action in world u against all the
other worlds v, w, etc. the same time step. By looking for mutexes
between an action in world u and the actions and propositions in the
other world, we can determine if that action is indeed legal in all
worlds. If not, we add mutexes as in regular graphplan and force
additional expansion of the planning graph.

Two additional notes. First, when we get to the solution extraction
phase (in which we search backwards through the planning graph for
a solution), it’s much more efficient to do this one level at a time in
each possible world than all the way through one world’s planning
graph and then the next one. Searching the planning graphs for the
different worlds in an interleaved fashion allows you to find interac-
tions more quickly. Also, there’s one additional tweak that is required
to make the algorithm complete. If an action that is necessary in one
world causes problems in another, there may be an additional way
to address the problem besides expanding the graph out more. This
is called confrontation. The basic idea is that you might be able to
avoid the unfortunate side effects of the action by forcing the appro-
priate preconditions to be true. For example, suppose your goal is to
get to school. There are two worlds, in one it’s RAINING, and in the
other you have ~CASH. You can BUS or WALK (but not both). In
world u you don’t have money(—CASH), so you have WALK, but in
world v, it’s RAINING, so if you WALK (which you’ve decided to do
because of world u), you’ll get WET. You can confront this undesired
outcome by first executing WEAR-RAINCOAT, even though it isn’t
raining in world u.

For a complete discussion of conformant graphplan addressing both
uncertain initial states and unceratin actions, see

ftp:/ /ftp.cs.washington.edu/pub/ai/cgp-aaai98.ps, particularly the sec-
tion called “Conformant Graphplan”, up to the section entitled “Ac-
tions with uncertain outcomes.”
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Question 14
(8 points)

Describe how you would design a probabilistic part-of-speech tagger. You may
assume you have a tagged corpus (that is, a large body of text in which each
word is already labelled with its correct part of speech.) Describe the objects
you will compute probabilities over, and how you will use those probabilities to
predict the tags for unseen text. (Your scheme can be as simple as you want,
but describe its shortcomings.)

There are many reasonable answers to this question. Two common
techniques used in statistical natural language parsing are Bayesian
networks and Hidden Markov Models. First let’s consider a Bayesian
network. The objects over which you’ll compute probabilities are
the parts of speech of the words in the tagged corpus. You could
compute the probability of a tag given the word being tagged (e.g.
p(VERB|“fly") = .8), or conditional on the word and the tag of the pre-
vious word, (p(VERB|ADJECTIVE, “fly”) = .1, as in “The big black
fly buzzed around my head.”) or conditional on the word and the
previous word (p(VERB|“black”, “fly)). Or you could consider more
context. The tradeoff is between more discriminatory power (by in-
cluding more information in the conditions) and more training data
required to get good probabilities for all things being conditioned on.
(How many times are you going to see “black fly” vs. “ADJECTIVE

fly”.)

A special case of Bayesian models is the Hidden Markov Model (HMM).
This is a probabilistic finite state machine that models a process using
the following two assumptions. (1) the probabilities for transitioning
between two states depend only on the previous k states for some
constant k, and (2) these probabilities don’t change over time. At
each transition (or equivalently for each state), an output symbol is
emitted, also probabilistically. Consider a vending machine which can
either be in Coke mode or Pepsi mode. When you stick in a coin, it
emits a soda, which is more likely to be Coke in Coke mode or Pepsi
in Pepsi mode, and it also transitions to one of the two states, based
on some probability table which is conditioned only on the previous
state. The kinds of questions you can ask with a HMM are: 1) From
a model and a sequence of symbols, compute how likely the sequence
is, given the model, 2) Given a sequence of symbols and a model,
compute the sequence of states that best explains the sequence of
symbols, and 3) Given a sequence of symbols and a space of models,
find the model that best explains the sequence. Efficient algorithms
exist for each of these questions. (Hint, the last one is a variation on
EM.) So how does this help us with the task at hand. Consider the
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sequence of states corresponding to parts of speech. With each state,
a symbol (word) is emitted with some probabilitity. Using the algo-
rithms above, we can train a hidden markov model on the labelled
data and then use that to predict parts of speech on new sentences.
For more information on these techniques, see the resources pointed
at in the course web. In particular, there is a nice sample chapter on
HMDMs on the webpage for Foundations of Statistical Natural Lan-
guage Processing. The subsequent chapter (which isn’t on the web)
talks about how to apply this to various problems like POS tagging.



