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Abstract

The past �ve years have seen dramatic advances in planning algo-

rithms, with an emphasis on propositional methods such as Graphplan

and compilers that convert planning problems into propositional CNF

formulae for solution via systematic or stochastic SAT methods. Related

work on the Deep Space One spacecraft control algorithms advances our

understanding of interleaved planning and execution. In this survey, we

explain the latest techniques and suggest areas for future research.
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1 Introduction

The �eld of AI planning seeks to build control algorithms that enable an agent

to synthesize a course of action that will achieve its goals. Although researchers

have studied planning since the early days of AI, recent developments have

revolutionized the �eld. Two approaches, in particular have attracted much

attention:

� The two phase Graphplan [7] planning algorithm, and

� Methods for compiling planning problems into propositional formulae for

solution using the latest, speedy systematic and stochastic SAT algo-

rithms.

These approaches have much in common and both are impacted by recent

progress in constraint satisfaction and search technology. The current level of

performance is quite impressive with several planners quickly solving problems

which are orders of magnitude harder than the testpieces of only two years ago.

As a single, representative example, the BLACKBOX planner [55] requires only

six minutes to �nd a 105-action logistics plan in a world with 1016 possible

states.

Furthermore, work on propositional planning is closely related to the algo-

rithms used in the autonomous controller for NASA's Deep Space One space-

craft, scheduled to be launched in late 1998. As a result, our understanding

of interleaved planning and execution has advanced as well as the speed with

which we can solve classical planning problems.

The goal of this survey is to explain these recent advances and suggest new

directions for research. Since this paper requires minimal AI background (e.g.,

simple logic and basic search algorithms), it's suitable for a wide audience.

We progress as follows. The remainder of the introduction de�nes the plan-

ning problem and surveys freely-downloadable planner implementations. The

next sections discuss graphplan, SAT compilation, and interleaved planning and

execution. We conclude by quickly mentioning other recent advances and sug-

gestion topics for future research.

1.1 Preliminaries

A simple formulation of the planning problem de�nes three inputs:

1. a description of initial state of the world in some formal language,

2. a description of the agent's goal (i.e., what behavior is desired) in some

formal language, and

3. a description of the possible actions that can be performed (again, in some

formal language). This last description is often called a domain theory.
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The planner's output is a sequence of actions which, when executed in any

world satisfying the initial state description, will achieve the goal. Note that this

formulation of the planning problem is quite abstract | in fact, it really speci�es

a class of planning problems parameterized by the languages used to represent

the world, goals, and actions. For example, one might use propositional logic to

describe the e�ects of actions, but this would make it quite awkward to describe

actions with universally quanti�ed e�ects, such as a machine shop spray paint

action which coats all objects in the hopper. Thus one might describe the

e�ects of actions with �rst order predicate calculus, but this still assumes that

all e�ects are deterministic. In general, there is a spectrum of more and more

expressive languages for representing the world, an agent's goals, and possible

actions. In this paper we start by explaining algorithms for planning with the

\STRIPS representation."1 The STRIPS representation describes the initial

state of world with a complete set of ground literals. The STRIPS representation

is restricted to goals of attainment, and these goals are de�ned as a propositional

conjunction; all world states satisfying the goal formula are considered equally

good. A domain theory (i.e. a formal description of the actions that are available

to the agent) completes a planning problem. In the STRIPS representation, each

action is described with a conjunctive precondition and conjunctive e�ect that

de�ne a transition function from worlds to worlds. The action can be executed

in any world w satisfying the precondition formula. The result of executing an

action in world w is described by taking w's state description and adding each

literal from the action's e�ect conjunction in turn, eliminating contradictory

literals along the way.

This de�nes the so called \classical" planning problem which makes many

simplifying assumptions: atomic time, no exogenous events, deterministic action

e�ects, omniscience on the part of the agent, etc.. We relax some of these

assumptions later in the paper.

1.2 Available Implementations

Many readers will �nd it helpful to experiment with implementations of the ideas

discussed in this paper. Fortunately, there are a variety of freely distributed

alternatives, and most accept domains expressed in PDDL2 syntax, the language

used for the AIPS planning competition3 which we expect will be widely adopted

as a standard for teaching purposes and collaborative domain interchange for

performance comparison.

� Graphplan and its descendants:

1The acronym STRIPS stands for \STanford Research Institute Problem Solver" a very
famous and in
uential planner built in the 1970s to control an unstable mobile robot a�ec-

tionately known as \Shakey" [28].
2See ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz for the PDDL

speci�cation.
3See ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html for competition results.
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{ Graphplan | the original, somewhat dated, C implementation [6] is

still available from www.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/www/graphplan.html.

{ IPP [64] is a highly optimized C implementation of Graphplan, ex-

tended to handle expressive actions (e.g., universal quanti�cation and

conditional e�ects); download from www.informatik.uni-freiburg.de/~koehler.

{ STAN is another highly-optimized C implementation which uses an

in-place graph representation and performs sophisticated type analy-

sis to compute invariants. Download from www.dur.ac.uk/~dcs0www/research/stanstuff/stanpag

{ SGP [109] is a simple, pedagogical Lisp implementation of Graph-

plan, extended to handle universal quanti�cation, conditional e�ects,

and uncertainty; see www.cs.washington.edu/research/projects/ai/www/sgp.html.

� Systems based on compilation to SAT:

{ The highest performance SAT compiler is Blackbox [55] available

www.research.att.com/~kautz/blackbox/index.html.

{ The Medic planner [22] is a 
exible testbed, implemented in Lisp,

allowing direct comparison of over a dozen di�erent SAT encodings

see ftp://ftp.cs.washington.edu/pub/ai/medic.tar.gz.

2 Graphplan & Descendants

Blum and Furst's Graphplan algorithm [6, 7] is one of the most exciting recent

developments in AI planning for two reasons:

� Graphplan is a simple, elegant algorithm that yields an extremely speedy

planner | in many cases orders of magnitude faster than previous systems

such as SNLP [78], Prodigy [82], or UCPOP [88].

� The representations used by Graphplan form the basis of the most success-

ful encodings of planning problems into propositional SAT; hence familiar-

ity with Graphplan aids in understanding SAT-based plannning systems

(section 3).

Graphplan alternates between two phases: graph expansion and solution

extraction. The graph expansion phase extends a planning graph forward in

\time" until it has achieved a necessary (but insu�cient) condition for plan

existence. The solution extraction phase then performs a backward-chaining

search on the graph, looking for a plan that solves the problem; if no solution

is found, the cycle repeats by further expanding the planning graph.

We start our discussion by considering the initial formulation of Graphplan,

thus restricting our attention to STRIPS planning problems in a deterministic,

fully-speci�ed world. In other words, both the preconditions and e�ects of

actions are conjunctions of literals (i.e., positive literals denoting entries in the

add lists and negative literals correspond to elements of the delete list). After

covering the basics, we describe optimizations and explain how to handle more

expressive action languages.
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Figure 1: The planning graph alternates proposition (circle) and action (square)

layers. Horizontal grey lines between proposition layers represent \maintenance

actions," which encode the possibility that una�ected propositions will persist

until the next layer.

2.1 Expanding the Planning Graph

The planning graph contains two types of nodes, proposition nodes and action

nodes, arranged into levels. Even-numbered levels contain proposition nodes

(i.e., ground literals), and the zeroth level consists precisely of the proposi-

tions that are true in the initial state of the planning problem. Nodes in odd-

numbered levels correspond to action instances; there is one such node for each

action instance whose preconditions are present (and are mutually consistent) at

the previous level. Edges connect proposition nodes to the action instances (at

the next level) whose preconditions mention those propositions, and additional

edges connect from action nodes to subsequent propositions made true by the

action's e�ects.

Note that the planning graph represents \parallel" actions at each action

level. This means that a planning graph with k action levels can represent a

plan with more than k actions. However, just because two actions are included

in the planning graph at some level, doesn't mean that it is possible to execute

both at once. Central to Graphplan's e�ciency is inference regarding a binary

mutual exclusion relation (\mutex") between nodes at the same level. We de�ne

this relation recursively as follows (see also �gure 2):

� Two action instances at level i are mutex if either

{ Inconsistent E�ects: the e�ect of one action is the negation of another

action's e�ect, or

{ Interference: one action deletes the precondition of another, or

{ Competing Needs: the actions have preconditions that are mutually

exclusive at level i � 1.
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Figure 2: Graphical depiction of the mutex de�nition (devised by David Smith).

Circles denote propositions, squares represent actions, and thin, curved lines

denote mutex relations. The �rst three parts illustrate deduction of a new

action-action mutex (between the dark boxes), and rightmost part depicts the

discovery of a new mutex between propositions (the dark circles).

Initial Conditions: (and (garbage) (cleanHands) (quiet))

Goal: (and (dinner) (present) (not (garbage)))

Actions:

cook :precondition (cleanHands)

:effect (dinner)

wrap :precondition (quiet)

:effect (present))

carry :precondition

:effect (and (not (garbage)) (not (cleanHands)))

dolly :precondition

:effect (and (not (garbage)) (not (quiet)))

Figure 3: STRIPS speci�cation of the dinner-date problem.

� Two propositions at level i are mutex if one is the negation of the other,

or if all ways of achieving the propositions (i.e., actions at level i� 1) are

pairwise mutex (Inconsistent Support).

For example, consider the problem of preparing a surprise date for one's

sleeping sweetheart (�gure 3). The goal is to take out the garbage, �x dinner,

and wrap a present. There are four possible actions: cook, wrap, carry, and

dolly. Cook requires cleanHands and achieves dinner. Wrap has precondition

quiet (since the gift is a surprise, one mustn't wake the recipient) and pro-

duces present. Carry eliminates the garbage, but the intimate contact with a

smelly container negates cleanHands. The �nal action, dolly, also eliminates

the garbage, but because of the noisy handtruck it negates quiet. Initially, you

have cleanHands while the house has garbage and is quiet; all other proposi-

tions are false.

Figure 4 shows the planning graph for the dinner date problem expanded
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Figure 4: Planning graph for the dinner date problem, expanded out to level

two. Action names are surrounded by boxes, and horizontal grey lines between

proposition layers represent maintenance actions that encode persistence. Thin,

curved lines between actions and propositions at a single level denote mutex

relations.

from level zero through one action and proposition level. Note that the carry

action is mutex with the persistence of garbage because they have inconsistent

e�ects. Dolly is mutex with wrap because of interference, since dolly deletes

quiet. At proposition level two, :quiet is mutex with present because of

inconsistent support. Recall that the goal of the dinner date problem is to

achieve :garbage ^ dinner ^ present. Since all of these literals are present at

proposition level two, and since none of them are mutex with each other, there

is a chance that a plan exists. In this case, the second phase of Graphplan is

executed: solution extraction.

2.2 Solution Extraction

Suppose that Graphplan is trying to generate a plan for a goal with n \subgoal"

conjuncts, and (as in our example) it has extended the planning graph to an

even level, i, in which all goal propositions are present and none are pairwise

mutex. This is a necessary (but insu�cient) condition for plan existence, so

Graphplan performs solution extraction | a backward chaining search to see if

a plan exists in the current planning graph.

Solution extraction searches for a plan by considering each of the n subgoals

in turn. For each such literal at level i, Graphplan chooses an action a at level
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Figure 5: Planning graph for the dinner date problem, expanded out to level

four. Although no new literals are present at this proposition level, both dinner

and present have additional support from persistence actions and as a result

Graphplan's solution extraction search can �nd a plan.

i � 1 that achieves the subgoal. This choice is a backtrack point: if more than

one action produces a given subgoal, then Graphplan must consider all of them

in order to ensure completeness. If a is consistent (i.e., nonmutex) with all

actions that have been chosen so far at this level, then Graphplan proceeds to

the next subgoal, otherwise if no such choice is available Graphplan backtracks

to a previous choice.

After Graphplan has found a consistent set of actions at level i� 1 it recur-

sively tries to �nd a plan for the set formed by taking the union of all of the

preconditions of those actions at level i � 2. The base case for the recursion is

level zero | if the propositions are present there, then Graphplan has found

a solution. Otherwise, if backtracking fails on all combinations of the possible

supporting actions for each subgoal (at each level), then Graphplan extends

the planning graph with additional action and proposition levels and then tries

solution extraction again.

In the dinner date example, there are three subgoals at level two. :garbage
is supported by carry and by dolly; dinner is supported by cook, and present

is supported by wrap. Thus Graphplan must consider two sets of actions at level

one: fcarry; cook; wrapg and fdolly; cook; wrapg, but unfortunately neither of
these sets is consistent because carry is mutex with cook while dolly is mutex

with wrap. Thus solution extraction fails, and Graphplan extends the planning

graph to level four as shown in �gure 5.
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Note the di�erence between levels two and four of the planning graph. Al-

though there are no new literals present at level four, there are fewer mutex

relations. For example, there is no mutex between dinner and cleanHands at

level four. The most important di�erence is at level three | where there are

�ve additional maintenance actions encoding the possible persistence of literals

achieved by level two. This means that each of the subgoals have additional

supporting actions for consideration during the backward chaining process of

solution extraction. Speci�cally,

� :Garbage is supported by carry, dolly, and a maintenance action.

� Dinner is supported by cook and a maintenance action.

� Present is supported by wrap, and a maintenance action.

so solution extraction needs to consider 3�2�2 = 12 combinations of supporting

actions at level three instead of the 2 � 1 � 1 = 2 combinations during the

previous attempt at solution extraction. And, indeed, this increased 
exibility

allows solution extraction to �nd a plan. There are actually several combinations

which work; we illustrate one below.

Support :garbage with carry, support dinner with the maintenance ac-

tion, and support present with wrap. None of these actions is mutex with

another, so the choices for level three are consistent. The selection of these

actions lead to the following subgoals for level two: dinner (precondition of

the maintenance action) and quiet (precondition of wrap); since carry has

no preconditions, there are only two level-two subgoals. Solution extraction

recurses, and chooses cook to support dinner and the maintenance action to

support quiet; these two actions aren't mutex so the selections for level one

are consistent. The preconditions of these actions create two subgoals for level

zero: cleanHands and quiet. Since these propositions are present in the initial

conditions, the selection is consistent and a solution plan exists!

Figure 6 illustrates the results of solution extraction. Note that Graphplan

generates an inherently parallel (partially ordered) plan. The actions selected

for level three, carry and wrap, can be executed in either order and will achieve

the same e�ect. Thus, if one wishes a totally ordered sequence of actions for

one's plan, one may choose arbitrarily: cook; carry; wrap.

2.3 Optimizations

So far we have covered the basic Graphplan algorithm, but there are several

optimizations that have a huge e�ect on e�ciency. The �rst improvements

speed solution extraction: forward checking, memoization, and explanation-

based learning. The second set of optimizations concern the graph expansion

process: handling the closed world assumption, compilation of action schemata

to remove static 
uents via type analysis, regression focussing, and in-place

graph expansion.
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Figure 6: One of four plans that might be found by solution extraction. Actions

in black are to be executed; all others are not.

The bene�t achieved by each of these optimizations depends on the speci�c

planning problem to be solved. In the worst case, planning graph expansion

is polynomial time while solution extraction is exponential [6]. However, in

many planning problems it is expansion time which dominates, so each of the

optimizations described below is important.

2.3.1 Solution Extraction as Constraint Satisfaction

By observing the connection between the Graphplan solution extraction process

and constraint satisfaction problems, we can transfer many insights from the

CSP �eld to planning.4 There are many possible formulations, but the simplest

is in terms of a dynamic CSP [27], i.e. a constraint satisfaction problem in which

the set of variables and associated constraints changes based on the selection

of values to earlier variables. There is a CSP variable for subgoal literals at

each proposition level after level zero. The domain of a variable (i.e., its set

of possible values) is the set of supporting actions at the previous level. The

4Although there is a long history of research applying ideas from constraint satisfaction to
planning, we focus on applications to Graphplan in this paper (although compilation of plan-
ning to SAT can be viewed as taking the constraint satisfaction perspective to its logical con-
clusion). See MOLGEN [102] for seminal work on constraint-posting planning. TWEAK [13],

SNLP [78], and UCPOP [88] manipulated explicit codesignation and ordering constraints.
[44] describes a planner that represented all of its decisions as constraints. [48] provides a for-

mal framework of planning that compares di�erent planners in terms of the way they handle
constraints. GEMPLAN [70] is a modern constraint-posting planner.
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set of constraints are de�ned by the mutex relations. For example, consider

the process of solution extraction from the level four dinner date graph shown

in �gure 5. Initially, we create a CSP variable for each subgoal at level four:

V
4;:garbage takes a value from fcarry, dolly, maintaing, V

4;dinner takes a

value from fcook, maintaing, and V
4;present from fwrap, maintaing. The

assignments

V
4;:garbage = carry

V
4;dinner = maintain

V
4;present = wrap

corresponds to the �rst part of the solutiom shown in 6. Once a solution is found

for the variables at proposition level four, the actions corresponding to the vari-

able values de�ne a CSP problem at level two. Note that there is no requirement

to perform this search level by level. In other words, our previous description of

solution extraction dictated �nding a consistent set of actions at level i before

performing any search at level i � 2. However, this methodical order is unnec-

essary and potentially ine�cient. For example, the BLACKBOX planner [55]

takes the planning graph, compiles it to SAT, and uses fast stochastic methods

to perform the equivalent of solution extraction in which search jumps around

from level to level in a greedy fashion. Rintanen [91] describes an opportunistic,

non-directional search strategy which bypasses conversion to SAT.

By itself, this CSP formulation of solution extraction is unremarkable, but

it suggests certain strategies for speeding the search, such as forward checking,

dynamic variable ordering, memoization, and con
ict-directed backjumping.

� When assigning a value to a variable, simple CSP solvers check to ensure

that this choice is consistent with all values previously chosen. A bet-

ter strategy, called forward checking [41], checks unassigned variables in

addition, shrinking their domain by eliminating any values that are incon-

sistent with the recent choice. If the domain of any unassigned variable

collapses (i.e., it shrinks to the empty set), then the CSP solver should

backtrack. [66] shows analytically that forward checking is an excellent

strategy, strengthening previous empirical support.

� Dynamic variable ordering refers to a class of heuristics for choosing which

CSP variable should next be assigned a value [3]. Of course, eventually

all variables must have values assigned but the order in which they are

selected can have a huge impact on e�ciency [67, 4]. Note that if a vari-

able has only one choice, then it is clearly best to make that assignment

immediately. In general, a good heuristic is to select the variable with the

fewest remaining (noncon
icting) values and this information is readily

available if forward checking is employed.5 While not astounding, these

5Similar heuristics have been investigated in the context of causal-link planners; see [97,
43, 113, 101, 33, 90].

10



techniques lead to signi�cant (e.g., 50%) performance improvements in

Graphplan [49].

Another method for determining a good subgoal ordering is through struc-

tural analysis of subgoal interactions [42, 14, 96]. Precomputation aimed

at calculating speedy subgoal orderings is closely related to the use of

abstraction in planning [59, 103, 114]. In general, one can distinguish

between domain-speci�c approaches (which are based on action de�ni-

tions alone) and problem-speci�c approaches (which additionally use the

goal and initial state speci�cations); problem-speci�c approaches typically

provide more leverage, but the cost of domain-speci�c precomputation can

be amortized amongst many planning problems. Koehler [63] describes a

problem-speci�c method which speeds Graphplan by orders of magnitude

on problems from many domains.6

� The original Graphplan paper [6] describes a technique calledmemoization

which caches for future use the results learned from exhaustive search

about inconsistent subgoal sets. Suppose that solution extraction is called

at level i and in the course of search attempts to achieve subgoals P ,

Q, R, and S at level k (where k � i). If none of the combinations of

supporting actions for these subgoals proves consistent (regardless of the

level at which this inconsistency is detected), then Graphplan records the

set fP;Q;R; Sg to be a nogood at level k. Later, if Graphplan extends the

planning graph to level i+2 and once again attempts solution extraction,

it might attempt to achieve the same four goals at level k but this time

it will backtrack immediately rather than performing exhaustive search.

The memoization process trades space for time, and although the space

requirements can be large, the resulting speedups are signi�cant.

As stated, this memoization process is rather simplistic, and since more so-

phisticated approaches have proven e�ective in systematic SAT solvers [5],

one might suspect memoization improvements are possible. Indeed, re-

cent work by Kambhampati [49] demonstrates dramatic speedups (e.g.,

between 1.6 and 120 times faster depending on domain). The basic idea

is to determine which subset of goals is responsible for failure at a given

level and record only that subset; if solution extraction ever returns to the

level with that set or a superset then failure is justi�ed. This approach

leads to much smaller (and hence more general) nogoods; for example, it

might be the case that subgoals P , Q, and S are together unachievable,

regardless of R.

An additional idea (also described in [49]) is the regression of level k failure

explanations through the action de�nitions for level k+1 to calculate fail-

ure conditions for level k+2. When these level-k+2 conditions are short,

then many searches can be terminated very quickly. These methods are

6See [25, 97, 98] for additional uses of precomputation based on analysis of action
interactions
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(defschema (drive)

:parameters (?v ?s ?d)

:precondition (and (vehicle ?v)

(location ?s)

(location ?d)

(road-connected ?s ?d)

(at ?v ?s))

:effect (and (not (at ?v ?s))

(at ?v ?d)))

Figure 7: Parameterized speci�cation of the action of driving a vehicle from a

source location to a destination.

based on Kambhampati's earlier work on the relationship between tradi-

tional planning-based speedup methods (e.g., explanation-based learning)

and CSP methods [50].

2.3.2 Closed World Assumption

The closed world assumption says that any proposition not explicitly known to

be true in the initial state can be presumed false. A simple way of implement-

ing the closed world assumption in Graphplan would be to explicitly close the

zeroth level of the planning graph | i.e. to add negative literals for all possible

propositions that were not explicitly stated to be true. Because there are an

in�nite number of possible propositions, one should restrict this approach to the

relevant subset | i.e. those that were mentioned in the preconditions of some

action or in the goal; other literals can't a�ect any solution.

A better solution is to handle the closed world assumption lazily, since this

shrinks the size of the planning graph and diminishes cost of graph expansion.

Create the zeroth level of the planning graph by adding only the propositions

known to be true in the initial state (as shown in �gure 4). When expanding

the planning graph to action level i one does the following. Suppose action A

requires :P as precondition. If :P is in the planning graph at level i�1 simply

link to it as usual. However, if :P is missing from level i � 1 one must check

to see if its negation (i.e. proposition P ) is present at level zero. If P is absent

from level zero, then add :P to level zero and add maintenance actions and

mutexes to carry :P up to the current level. With this simple approach, no

changes are necessary for solution extraction.

Note that the issue of the closed world assumption never rose with respect

to the dinner date example because none of the actions had a negative precondi-

tion. And while the goal did include a negative literal (:garbage) the positive
proposition garbagewas present in the initial conditions thus voiding the closed

world assumption.
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drive-truck37-Seattle-Tacoma

:precondition (at truck37 Seattle)

:effect (and (not (at truck37 Seattle))

(at truck37 Tacoma))

Figure 8: Ground instance of drive after type analysis and elimination of \time-

less" (eternally true, static) preconditions. Compare with the schema in �gure 7.

2.3.3 Action Schemata, Type Analysis & Simpli�cation

In the dinner date example all of the actions were propositional, but in realistic

domains it is much more convenient to de�ne parameterized action schemata.

For example, in a logistics domain one might de�ne the operation of driving a

truck as shown in �gure 7. The intuition is simply that at this level of abstraction

driving one vehicle has the same preconditions and e�ects as driving another,

so one should only write it once.

The use of action schemata requires a few changes to the planning graph

expansion routine at action levels: the planner must instantiate each parame-

terized schema to create possible ground actions by considering all combinations

of appropriately typed constants. For example, in order to handle the drive

schema, the system must create O(n3) ground drive actions, assuming that

there are n constants de�ned in the initial state of the world.

Many of these ground combinations will be irrelevant, because the selection

of constants to parameters will never satisfy the preconditions. For example,

if ?v is bound to Seattle then presumably the ground precondition (vehicle

Seattle) will never be satis�ed. So an important optimization involves type

analysis which determines which predicates represent types, calculates the set

of constants that form the extent of each type, and then instantiates ground

actions only for plausibly typed combinations of constants.

The simplest form of type analysis scans the set of predicates present in the

initial conditions which are absent from the e�ects of any action schemata.

These predicates (e.g. location and vehicle) are static, so terms formed

with these predicates (e.g., (location Seattle) and (vehicle truck37)) will

never change. Thus the planner may conclude that Seattle is in the extent of

the location type and similarly reason about vehicle.

Since one can evalute static terms at instantiation time, there is no need to

include these terms in the planning graph at all; action schemata that include

these terms as preconditions can be simpli�ed (during instantiation) by elim-

inating static preconditions. Furthermore, this simpli�cation is not limited to

unary predicates. For example, if vehicle, location and road-connected are

all static, and if instances of these actions are only instantiated for constants

which obey these preconditions, then planning graph expansion may add ground

action instances (such as the one shown in �gure 8) and eliminate static terms

from proposition levels in the planning graph.

Fox et al. have devised more sophisticated, polynomial-time, planner-independent
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type-inference methods that deduce state invariants, and they demonstrate that

this analysis can signi�cantly speed their version of Graphplan on some do-

mains [29].7 Their method is based on the observation that a planning domain

can be viewed as a collection of �nite-state machines where domain constants

traverse between states corresponding to predicates.

2.3.4 Regression Focussing

As described previously, the planning graph with d proposition levels contains

only8 those actions which could possibly be executed in the initial state or in a

world reachable from the initial state. But many of the actions in the planning

graph may be irrelevant to the goal at hand. In other words, the graph expansion

algorithm is uninformed by the goal of the planning problem, and as a result

time may be wasted by adding useless actions and their e�ects into the graph

and by reasoning about mutex relations involving these irrelevant facts.

Two optimizations have been proposed to make graph expansion more goal-

directed: heuristically �ltering facts from the initial state with a fact-generation

graph [84] and backward expansion of the planning graph [45].

A fact-generation graph is an AND-OR-graph created from a problem goal

and domain actions as follows. The root of the graph is an AND node corre-

sponding to the goal and its children are the conjunctive subgoals. Each subgoal

P is an OR node whose children correspond to the di�erent ground actions that

have P as an e�ect. This structure would be a tree except in order to avoid

exponential blowup, nodes are reused within levels of the graph. We say that

an OR-node is solved if it is in the initial conditions or if an immediate child is

solved; an AND-node is solved if all of its children are solved. Because the fact

generation graph ignores subgoal interactions from negative literals, solution of

a depth d fact-generation graph is a necessary but insu�cient condition for solu-

tion of a depth d planning graph. At the risk of incompleteness, one may try to

speed planning by eliminating initial conditions (or ground actions) that don't

appear (or appear infrequently) in the fact-generation graph [84]. Note that

this approach is similar to (and motivated by) McDermott's greedy regression

graph heuristic [81].

A similar approach, due to [45], provides speedup without sacri�cing com-

pleteness. Recall that Graphplan follows a simple loop: expand the planning

graph with action and proposition levels, then attempt solution extraction, if

no plan is found then repeat. Kambhampati modi�ed the loop to �rst grow

the planning graph backwards from the subgoals by an action and proposition

level, then grow the graph forwards from the intersection of the initial state

and the backward propositional fringe, including only ground actions that were

added during backwards propagation and adding in mutex relations, then per-

7Fox al. also point out that their method can dramatically improve the software-
engineering process of designing, debugging and maintaining complex planning domains.

8Our use of the word only is too strong, since the planning graph might contain some
actions which can't ever be executed. Strictly speaking, the planning graph contains a proper

superset of the executable actions which is a close approximation of that set.
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forming solution extraction if necessary. If solution extraction failed to �nd a

plan, then Kambhampati's system would grow the graph backwards for another

pair of levels, compute a new (larger) intersection with the initial state, and

resume forward growth. Although Kambhampati's implementation regenerated

the graphs from scratch at each stage (duplicating discovery of mutex relations),

the resulting planning graph was so much smaller that his system outperformed

the basic Graphplan on most problems.

2.3.5 In-Place Graph Expansion

One can avoid duplicated work during regression focussing by exploiting the

following observations concerning monotonicity in the planning graph.

� Propositions are monontonically increasing: if proposition P is present at

level i it will appear at level i+2 and in all subsequent proposition levels.

� Actions are monontonically increasing: if action A is present at level i it

will appear at level i + 2 and in all subsequent action levels.

� Mutexes are monotonically decreasing: if mutex M between actions A

and B is present at level i then M is present at all previous action levels

in which both A and B appear. The same is true of mutexes between

propositions.9

� Nogoods are monotonically decreasing: If subgoals P , Q, and R are un-

achievable at level i then they are unachievable at all previous proposition

levels. 10

These observation suggest that one can dispense with a multi-level planning

graph altogether. Instead, all one needs is a bipartite graph with action and

proposition nodes. Arcs from propositions to actions denote the precondition re-

lation and arcs from actions to propositions encode e�ects. Action, proposition,

mutex, and nogood structures are all annotated with an integer label �eld; for

proposition and action nodes this integer denotes the �rst planning graph level

at which the proposition (or action) appears. For mutex or nogood nodes, the

label marks the last level at which the relation holds. By adding an additional

set of labels one may interleave forward and backward expansion of the planning

graph. Using this scheme, the time and space costs of the expansion phase are

vastly decreased, but the bookkeeping required is surprisingly tricky; see [100]

for details and see also the STAN planner's \wavefront" representation.

9Proof sketch: if A and B appear at both level i and i�2 and are mutex at level i then by
de�nition this mutex must be due to inconsistent e�ects, interference, or competing needs. If
the mutex is due to the �rst two reasons then the mutex will occur at every level containing
A and B. However, if the mutex is due to competing needs then there are preconditions P
and Q of A and B respectively such that P is mutex with Q at level i� 1. This propositional
mutex can only result from the fact that all level i�3 actions supportingP andQ are pairwise
mutex, so an inductive argument (combined with action monotonicity) completes the proof.

10Proof sketch: if they were achievable at level i � 2 then adding a level of maintenance
actions would achieve them at level i.
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2.4 Handling Expressive Action Languages

Until now, our discussion has been restricted to the problem of planning with

the STRIPS representation in which actions are limited to quanti�er-free, con-

junctive preconditions and e�ects. Since this representation is severely limited,

this section discusses extensions to more expressive representations aimed at

complex, real-world domains. We focus on disjunctive preconditions, condi-

tional e�ects, and universally-quanti�ed preconditions and e�ects because these

areas have received the most attention. Koehler has developed methods for

handling resource constraints [62], and we discuss work on uncertainty at the

end of this paper (after describing methods for compiling planning problems to

SAT). But other capabilities such as domain axioms, procedural attachment,

numeric 
uents, exogenous events, and actions with temporal duration beg for

exploration.

2.4.1 Disjunctive Preconditions

It is easy to extend Graphplan to handle disjunctive preconditions. Conceptu-

ally, the precondition (which may contain nested ands and ors) is converted to

disjunctive normal form (DNF). Then when the planning graph is extended with

an action schema whose precondition contains multiple disjuncts, an action in-

stance may be added if any disjunct has all of its conjuncts present (nonmutex)

in the previous level. During the solution extraction phase, if the planner at

level i considers an action with disjunctive preconditions, then it must consider

all possible precondition disjuncts at level i� 1 to ensure completeness.

Disjunctive e�ects are much harder since they imply nondeterminism| one

cannot predict the precise e�ect of execution in advance. As a result, they

require a general approach to uncertainty, which we discuss near the end of this

paper.

2.4.2 Conditional E�ects

Conditional e�ects are used to describe actions whose e�ects are context-dependent.

The basic idea is simple: we allow a special when clause in the syntax of action

e�ects. When takes two arguments, an antecedent and a consequent; execution of

the action will have the consequent's e�ect just in the case that the antecedent

is true immediately before execution (i.e., much like the action's precondition

determines if execution itself is legal | for this reason the antecedent is some-

times referred to as a secondary precondition [86]). Note also that, like an

action precondition, the antecedent part refers to the world before the action is

executed while the consequent refers to the world after execution. For now, we

assume that the consequent to be a conjunction of positive or negative literals.

Figure 9 illustrates how conditional e�ects allow one to de�ne a single action

schema that accounts for driving a vehicle that may possibly contain a spare

tire and/or cargo.

Three methods have been devised for allowingGraphplan-derivative planners

to handle action schemata with conditional e�ects: full expansion [30], factored
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(defschema (drive)

:parameters (?v ?s ?d)

:precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)

(road-connected ?s ?d))

:effect (and (at ?v ?d) (not (at ?v ?s))

(when (in cargo ?v)

(and (at cargo ?v)) (not (at cargo ?s)))

(when (in spare-tire ?v)

(and (at spare-tire ?d)) (not (at spare-tire ?s)))))

Figure 9: Conditional e�ects allow the same drive schema to be used when the

vehicle is empty or contains cargo and/or a spare tire.

expansion [1], and partially factored [64]. The simplest approach, full expan-

sion, rewrites an action schema containing conditional e�ects into a number

of mutually exclusive STRIPS schemata by considering all minimal consistent

combinations of antecedents in the conditional e�ects. For example, the action

schema in Figure 9 would be broken up into four separate STRIPS schemata (as

shown in Figure 10): one for the empty vehicle, one for the vehicle with cargo,

one for the vehicle with spare tire, and one for the vehicle with both cargo and

spare.

Although full-expansion has the advantage of simplicity, it can result in an

exponential explosion in the number of actions. If a spare fuel drum could also

be in the vehicle, then full expansion would generate eight STRIPS schemata.

In general, if an action has n conditional e�ects, each containing m antecedent

conjuncts, then full expansion may produce as many as nm STRIPS actions [30].

This explosion is commonwhen the conditional e�ects are universally quanti�ed

as in Figure 11. In essence, this schema has one conditional e�ect for each object

that could possibly be put in the truck. If there were only twenty such cargo

items, full expansion would yield over a million STRIPS schemata.

The other two approaches for dealing with conditional e�ects consider the

conditional e�ects themselves as the primitive elements handled by Graphplan.11

Note that in contrast to the STRIPS actions produced by full expansion, an

action's conditional e�ects are not mutually exclusive, but neither are they

independent since the antecedent of one e�ect may imply that of another. The

advantage of factored expansion is an increase in performance. By avoiding

the need to expand actions containing conditional e�ects into an exponential

number of plain STRIPS actions, factored expansion yields dramatic speedup.

But this increased performance comes at the expense of complexity:

11In essence, this makes all e�ects conditional since the action preconditions are added

into the antecedent for each conditional e�ect, and the unavoidable e�ects (e.g., changing
the vehicle's location) form a new conditional e�ect with just the action's preconditions as

antecedent.
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(defschema (drive-empty)

:parameters (?v ?s ?d)
:precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)
(not (in cargo ?v)) (not (in spare-tire ?v)))

:effect (and (at ?v ?d) (not (at ?v ?s))))
(defschema (drive-cargo)

:parameters (?v ?s ?d)
:precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)

(road-connected ?s ?d)
(in cargo ?v) (not (in spare-tire ?v)))

:effect (and (at ?v ?d) (not (at ?v ?s))
(and (at cargo ?v)) (not (at cargo ?s))))

(defschema (drive-spare)

:parameters (?v ?s ?d)
:precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)
(road-connected ?s ?d)

(not (in cargo ?v)) (in spare-tire ?v))
:effect (and (at ?v ?d) (not (at ?v ?s))

(and (at spare-tire ?v)) (not (at spare-tire ?s))))
(defschema (drive-both)

:parameters (?v ?s ?d)

:precondition (and (vehicle ?v) (at ?v ?s)
(location ?s) (location ?d)
(road-connected ?s ?d)
(not (in cargo ?v)) (in spare-tire ?v))

:effect (and (at ?v ?d) (not (at ?v ?s))

(and (at cargo ?v)) (not (at cargo ?s))
(and (at spare-tire ?v)) (not (at spare-tire ?s))))

Figure 10: The four STRIPS schemas for driving with possible contents.

� Because factored expansion reasons about individual e�ects of actions (in-

stead of complete actions), more complex rules are required in order to

de�ne the necessary mutual exclusion constraints during planning graph

construction. The most tricky extension stems from the case when one

conditional e�ect is induced by another | i.e., when it is impossible to

execute one e�ect without causing the other to happen as well [1].

� Factored expansion also complicates the solution extraction, because of

the need to perform the analog of confrontation [88, 107], i.e., prevent the

antecedent of undesirable e�ects from occuring.

The IPP planner [65] uses a third method for handling conditional e�ects

which we call partially factored expansion. The primary di�erence stems from

IPP's mutex rules which state that two actions are marked as mutex only if

their unconditional e�ects and preconditions are in con
ict. This di�erence

allows IPP to do less computation during graph expansion, but reduces the

number of mutex constraints that will be found. For most domains, the di�er-

ence doesn't matter, but in some cases (e.g., the movie watching domain [1])

factored expansion performs exponentially better than IPP.
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(defschema (drive)

:parameters (?v ?s ?d)

:precondition (and (vehicle ?v) (at ?v ?s)

(location ?s) (location ?d)

(road-connected ?s ?d))

:effect (and (at ?v ?d) (not (at ?v ?s))

(forall (object ?o)

(when (in ?o ?v)

(and (at ?o ?v)) (not (at ?o ?s))))))

Figure 11: Universally quanti�ed conditional schemata for driving.

2.4.3 Universal Quanti�cation

The Graphplan descendants IPP [64] and SGP [1] each allow action schemata

with universal quanti�cation. In preconditions, universal quanti�cation lets one

conveniently describe real world actions like the UNIX rmdir command which

deletes a directory only if all �les inside it have already been deleted. Univers-

ally quanti�ed e�ects allow one to describe actions like chmod * which set the

protection of all �les in a given directory. Naturally, universal quanti�cation

is equally useful in describing physical domains. As shown in �gure 11, one

can use a universally quanti�ed conditional e�ect to say that all objects on the

vehicle will change loaction as a result of driving.

To add universal quanti�cation to Graphplan, it helps to make several sim-

plifying assumptions. Speci�cally, assume that the world being modeled has a

�nite, static universe of typed objects. For each object in the universe, the initial

state description must include a unary atomic sentence declaring its type.12 For

example, the initial description might include sentences of the form (vehicle

truck37) and (location Renton) where vehicle and location are types.13

The assumption of a static universe means that action e�ects may not assert type

information. For example, if an action were allowed to assert (not (vehicle

truck37)) as an e�ect, then that would amount to the destruction of an object;

the assumption forbids destruction or creation of objects.

To assure systematic establishment of goals and preconditions that have

universally quanti�ed clauses, one must modify the graph expansion phase to

map these formulae into a corresponding ground version. The Herbrand base �

of a �rst-order, function-free sentence, �, is de�ned recursively as follows:

�(�) = � if � contains no quanti�ers

�(8t1x �(x)) = �(�1) ^ : : :^�(�n)

12See the previous section on Action Schemata for further explanation of types.
13It's �ne for a given object to have multiple types, but this must be stated explicitly or

else some form on inheritance reasoning must be added to the graph expansion process.
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where the �i correspond to each possible interpretation of �(x) under the

universe of discourse, fC1; : : : ; Cng, i.e. the possible objects of type t1 [31, p.

10]. In each �i, all references to x have been replaced with the constant Ci. For

example, suppose that the universe of vehicle is ftruck37; loader55; plane7g.
If � is (forall ((vehicle ?v)) (at ?v Seattle)) then the Herbrand base

�(�) is the following conjunction:

(and (at truck37 Seattle) (at loader55 Seattle) (at plane7 Seattle))

Under the static universe assumption, if this goal is satis�ed, then the uni-

versally quanti�ed goal is satis�ed as well. Note that the Herbrand base for a

formula containing only universal quanti�ers will always be ground, so one may

use formulae of this form as action e�ects. It's easy to handle existential quan-

ti�ers interleaved arbitrarily with universal quanti�cation, when the expression

is used as a goal, action precondition or the antecedent of a conditional e�ect.

Existential quanti�ers are not allowed in action e�ects because they are equiv-

alent to disjunctive e�ects and (as described above) imply nondeterminism and

hence require reasoning about uncertainty.

In order to handle existential quanti�cation in goals, one needs to extend

the de�nition of Herbrand base as follows.

�(9t1y �(y)) = t1(y) ^�(�(y))

�(8t1x 9t2y �(x; y)) = t2(y1) ^�(�1) ^ : : :^ t2(yn) ^�(�n)

Once again the �i correspond to each possible interpretation of �(x; y) under

the universe of discourse for type t1: fC1; : : : ; Cng. In each �i all references

to x have been replaced with the constant Ci. In addition, references to y have

been replaced with Skolem constants (i.e., the yi).
14 All existential quanti�ers

are eliminated as well, but the remaining, free variables (which act as Skolem

constants) are implicitly existentially quanti�ed; they will be treated just like

action schemata parameters during graph expansion. Since we are careful to

generate one such Skolem constant for each possible assignment of values to

the universally quanti�ed variables in the enclosing scope, there is no need to

generate and reason about Skolem functions. In other words, instead of using

y = f(x), we enumerate the set ff(C1); f(C2); : : : ; f(Cn)g for each member

of the universe of x and then generate the appropriate set of clauses �i by

substitution and renaming. Since each type's universe is assumed �nite, the

Herbrand base is guaranteed �nite as well. Two more examples illustrate the

handling of existential quanti�cation. Suppose that the universe of location is

fSeattle; Rentong and that � is

(exists ((location ?l))

(forall ((vehicle ?v)) (at ?v ?l)))

14Note that this de�nition relies on the fact that type t1 has a �nite universe; as a result n
Skolem constants are generated. If there were two leading, universally quanti�ed variables of
the same type, then n2 Skolem constants (yi;j) would be necessary.
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then the Herbrand base is the following:

(and (location ?l) (at truck37 ?l) (at loader55 ?l) (at plane7 ?l))

As a �nal example, suppose � is

(forall ((location ?l))

(exists ((vehicle ?v)) (at ?v ?l)))

Then the universal base contains two Skolem constants (?v1 and ?v2) which

are treated as parameters:

(and (vehicle ?v1) (at ?v1 Seattle) (vehicle ?v2) (at ?v2 Renton))

Since there are only two locations, the Skolem constants ?v1 and ?v2 exhaust

the range of the Skolem function whose domain is the universe of vehicles. Be-

cause of the �nite, static universe assumption, one can always do this expansion

when creating the Herbrand base.

In summary, we only allow universal quanti�ers in action e�ects, but goals,

preconditions, and e�ect antecedents may have interleaved universal and ex-

istential quanti�ers. Quanti�ed formulae are compiled into the corresponding

Herbrand base and all remaining variables are treated like action schemata pa-

rameters during graph expansion. Since the resulting planning graph contains

quanti�er-free ground action instances, no changes are required during solution

extraction.

3 Compilation of Planning to SAT

Despite the early formulation of planning as theorem proving [39], most re-

searchers have long assumed that special-purpose planning algorithms are nec-

essary for practical performance. Algorithms such as TWEAK [13], SNLP [78],

UCPOP [88], and Graphplan [6] may all be viewed as special purpose theorem

provers aimed at planning problems.

However, recent improvements in the performance of propositional satis�a-

bilitymethods [15] call this whole endeavor in doubt. Initial results for compiling

bounded-length planning problems to SAT were unremarkable [53], but recent

experiments [54] suggest that compilation to SAT might yield the world's fastest

STRIPS-style planner.

Figure 12 shows the architecture of a typical SAT-based planning system,

e.g. MEDIC [22] or Blackbox [55]. The compiler takes a planning problem as

input, guesses a plan length, and generates a propositional logic formula, which

if satis�ed, implies the existence of a solution plan; a symbol table records the

correspondence between propositional variables and the planning instance. The

simpli�er uses fast (linear time) techniques such as unit clause propagation and

pure literal elimination (e.g., [105]) to shrink the CNF formula. The solver

uses systematic or stochastic methods to �nd a satisfying assignment which

21



Compiler
 Simplifier
 Solver
CNF
 CNF


Symbol Table


       Increment time bound if

unsatisfiable


Decoder
Satisfying

Assignment


Plan
Init State

Goal

Actions


Figure 12: Architecture of a typical SAT-based planning system.

the decoder translates (using the symbol table) into a solution plan. If the

solver �nds that the formula is unsatis�able, then the compiler generates a new

encoding re
ecting a longer plan length.

3.1 The Space of Encodings

Compilers for high-level programming languages (e.g., Lisp) are compared on

the basis of speed and also on the quality of the machine code they produce.

These same notions carry over to SAT compilers as well. One wishes a compiler

to quickly produce a small SAT encoding, since solver speed can be exponential

in the size of the formula being tested. But this measure of size is complicated by

the fact that a propositional formula can be measured in terms of the number

of variables, the number of clauses, or the total number of literals summed

over all clauses; often a decrease in one parameter (variables, say) will increase

another (e.g., clauses). Two factors determine these sizes: the encoding and

optimizations being used. Since the encoding is the more fundamental notion,

we focus on it �rst, presenting a parameterized space of possibilities (developed

in [22]) with two dimensions

� The choice of a regular, simply split, overloaded split, or bitwise action rep-

resentation speci�es the correspondence between propositional variables

and ground (fully-instantiated) plan actions. These choices represent dif-

ferent points in the tradeo� between the number of variables and the

number of clauses in the formula.

� The choice of classical or explanatory frame axioms varies the way that

stationary 
uents are constrained.

Each of the encodings uses a standard 
uent model in which time takes non-

negative integer values. State-
uents occur at even-numbered times and actions

at odd times. For example, in the context of the dinner-date problem described

previously, the propositional variable garb
0
means that there is garbage in the

initial state, :garb
2
signi�es that there is no garbage after executing the �rst

set of parallel actions, and carry
1
means that the carry action is executed at

time one.

Each of the encodings uses the following set of universal axioms:
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init The initial state is completely speci�ed at time zero, including all proper-

ties presumed false by the closed-world assumption. For the dinner date

problem, one gets:

garb
0
^ cleanH0 ^ quiet

0
^ :dinner0 ^ :present0

goal In order to test for a plan of length n, all desired goal properties are

asserted to be true at time 2n, (but the goal state need not be fully

speci�ed). Assuming a desired dinner-date plan length of n = 1, one gets:

:garb
2
^ dinner2 ^ present

2

a)p,e Actions imply their preconditions and e�ects. For each odd time t

between 1 and 2n � 1 and for each consistent ground action, an axiom

asserts that execution of the action at time t implies that its e�ects hold

at t + 1 and its preconditions hold at t � 1. The a)p,e can generate

numerous clauses when applied to action schemata in the context of a

world with many objects, but for the simple non-parameterized dinner-

date cook action, one gets:

(:carry
1
_ dinner2) ^ (:carry1 _ cleanH0)

3.1.1 Action Representation

The �rst major encoding choice is whether to represent the names of ground

action instances in regular, simply split, overloaded split, or the bitwise for-

mat. This choice is irrelevant for purely propositional planning problems (scuh

as the dinner date example), but becomes crucial given parameterized action

schemata (e.g., the STRIPS drive schema shown in �gure 7). In the regular

representation, each ground action is represented by a di�erent logical variable,

for a total of njSchematajjDomj
Ps such variables, where n denotes the number

of odd time steps, jSchemataj is the number of action schema, Ps denotes the

maximumnumber of parameters per action schemata, and jDomj is the number
of objects in the domain. Since systematic solvers take worst-case time which

is exponential in the number of variables, and large numbers of variables also

slow stochastic solvers, one would like to reduce this number.

In order to do this, [54] introduced simple action splitting, which replaces

each n-ary action 
uent with n unary 
uents throughout the encoding. For

example, variables of the form Drive(Truck37, Seattle, Renton, t) are re-

placed with the conjunction of DriveArg1(Truck37, t), DriveArg2(Seattle, t),

DriveArg3(Renton, t).15 Doing this for each action reduces the number of

15Note thatwe are using nonstandardnotation here in order to emphasize the combinatorics.
When we write DriveArg3(Renton, t) we denote a propositional variable, not a functional

term from �rst order predicate calculus. Thus DriveArg3(Renton, t) is treated as if it has no
substructure. To make this aspect clear, we might better write the symbol DriveArg3Rentont,
but we prefer our notation because it more clearly illustrates the e�ects of representational
di�erences on CNF size.

23



variables needed to represent all actions to njSchematajjDomjPs, but each action
(formerly a single variable) is now described by a conjunction of Ps variables.

With the simple splitting representation, only instances of the same ac-

tion schemata share propositional variables. An alternative is overloaded

splitting, whereby all operators share the same split 
uents. Overloaded

splitting replaces Drive(Truck37, Seattle, Renton, t) by the conjunction

of Act(Drive, t), Arg1(Truck37, t), Arg2(Seattle, t), Arg3(Renton, t),

while a di�erent action Load(Truck37, Drum9, t) is replaced with Act(Load, t)

^ Arg1(Truck37, t) ^ Arg2(Drum9, t). This technique further reduces the

number of variables needed to represent all actions to n(jSchemataj+ jDomjPs).
The bitwise representation shrinks the number of variables even more, by

representing the action instances with only dlog
2
jSchematajjDomj

Pse proposi-

tional symbols (per odd time step), each such variable representing a bit. The

ground action instances are numbered from 0 to (jSchematajjDomj
Ps) � 1. The

number encoded by the bit symbols determines the ground action which exe-

cutes at each odd time step. For instance, if there were four ground actions,

then (:bit1(t)^:bit2(t)) would replace the �rst action, (:bit1(t)^bit2(t))
would replace the second, and so forth.

Which action representation is the best? While more experiments need to

be performed, preliminary results suggest that the regular and simply split rep-

resentations are good choices [22]. In contrast, bitwise and overloaded result in

convoluted encodings that resist simpli�cation and type analysis. For example,

although the bitwise encoding yields the smallest number of propositional vari-

ables before simpli�cation, the linear-time procedure described in [105] shrunk

the CNF formulae from the other representations so much that afterwards bit-

wise had the most variables.

3.1.2 Frame Axioms

Every encoding requires axioms to confront the frame problem[80].

frame Frame axioms constrain una�ected 
uents when an action occurs. There

are two alternatives: classical or explanatory frames.

Classical frame axioms [80] state which 
uents are left unchanged by a given

action. For example, one classical frame axiom for the STRIPS drive schemata

(Figure 7) would say \Driving vehicle Truck37 from Seattle to Renton leaves

Truck9's location (Kent) unchanged,"

(At(Truck9, Kent, t�1)^Drive(Truck37, Seattle, Renton, t))) At(Truck9, Kent, t+1)

Since the encoding is propositional, one must write a version of this axiom

for each combination of (1) possible location of Truck9, (2) source location for

Truck37, and (3) destination for Truck37. If these aren't the only two trucks,

then there will be even more combinations. Note also the use of the regular ac-

tion representation implied by our choice of variable Drive(Truck37, Seattle, Renton, t);
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if a di�erent representation is desired, then the frame axiommight contain more

literals.

Adding classical frame axioms for each action and each odd time t to the

universal axioms almost produces a valid encoding of the planning problem.

However, if no action occurs at time t, the axioms of the encoding can infer

nothing about the truth value of 
uents at time t+ 1, which can therefore take

on arbitrary values. The solution is to add at-least-one axioms for each time

step.

at-least-one A disjunction of every possible, fully-instantiated action ensures

that some action occurs at each odd time step. (A maintenance action is

inserted as a preprocessing step.) Note that action representation has a

huge e�ect on the size of this axiom.

The resulting plan consists of a totally-ordered sequence of actions; indeed

it corresponds roughly to a \linear" encoding in [52], except that they include

exclusion axioms (see below) to ensure that at most one action is active at a

time. However, exclusion axioms are unnecessary because the classical frame

axioms combined with the a)p,e axioms ensure that any two actions occurring

at time t lead to an identical world-state at time t+ 1. Therefore, if more than

one action does occur in a time step, then either one can be selected to form a

valid plan.

Explanatory frame axioms [40] enumerate the set of actions that could have

occurred in order to account for a state change. For example, an explanatory

frame axiom would say which actions could have caused truck9 to have left

Seattle.

(At(Truck9, t�1) ^ :At(Truck9, t+1)))
(Drive(Truck9, Seattle, Renton, t)_
Drive(Truck9, Seattle, Kent, t) _ : : :_
Drive(Truck9, Seattle, Tacoma, t))

Note (again) that the choice of action representation a�ects the length of the

frame axioms. Furthermore, note that the axiom can be simpli�ed dramatically

if a di�erent representation is chosen. For example, if we use the simply split

representation then a straight translation yields.

At(Truck9, t�1) ^:At(Truck9, t+1))
((DriveArg1(Truck9, t) ^ DriveArg2(Seattle, t) ^ DriveArg3(Renton, t))_
(DriveArg1(Truck9, t) ^ DriveArg2(Seattle, t) ^ DriveArg3(Kent, t)) _ : : :_
(DriveArg1(Truck9, t) ^ DriveArg2(Seattle, t) ^ DriveArg3(Tacoma, t)))

But this disjunction is really just enumerating all the possible destinations,

which is silly, so the compiler can do a factoring optimization [22] by recog-

nizing which parameters a�ect which literals, and generating simpli�ed frames

axioms16 For this example, the compiler should generate (the vastly simpler):

16In fact, the factoring optimization should be applied to all axiom types | not just frame
axioms.
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At(Truck9, t�1)^:At(Truck9, t+1)) (DriveArg1(Truck9, t)^DriveArg2(Seattle, t))

As a supplement to the universal axioms, explanatory frame axioms must

be added for each ground 
uent and each odd time t to produce a reasonable

encoding. With explanatory frames, a change in a 
uent's truth value implies

that some action occurs, so (contrapositively) if no action occurs at a time step,

this will be correctly treated as a maintenance action. Therefore, no at-least-

one axioms are required.

The use of explanatory frame axioms brings an important bene�t: since they

do not explicitly force the 
uents una�ected by an executing action to remain

unchanged, explanatory frames permit parallelism. Speci�cally, any actions

whose preconditions are satis�ed at time t and whose e�ects do not contradict

each other can be executed in parallel. Parallelism is important because it

allows one to encode an n step plan with less than n odd time steps, and small

encodings are good. But uncontrolled parallelism is problematic because it can

create valid plans which have no linear solution. For example, suppose action �

has precondition X and e�ect Y , while action � has precondition :Y and e�ect

:X. While these actions might be executed in parallel (because their e�ects

are not contradictory) there is no legal total ordering of the two actions. Hence,

one must explicitly rule out this type of pathologic behavior with more axioms:

exclusion Linearizability of resulting plans is guaranteed by restricting which

actions may occur simultaneously.

Two kinds of exclusion enforce di�erent constraints in the resulting plan:

� Complete exclusion: For each odd time step, and for all distinct, fully-

instantiated action pairs �; �, add clauses of the form:�t_:�t. Complete

exclusion ensures that only one action occurs at each time step, guaran-

teeing a totally-ordered plan.

� Con
ict exclusion: For each odd time step, and for all distinct, fully-

instantiated, con
icting action pairs �; �, add clauses of the form :�t _
:�t. In our framework, two actions con
ict if one's precondition is incon-

sistent with the other's e�ect.17 Con
ict exclusion results in plans whose

actions form a partial order. Any total order consistent with the partial

order is a valid plan.

Note that con
ict exclusion cannot be used in isolation given a split action

representation, because splitting causes there not to be a unique variable for

each fully-instantiated action. For example, with simple splitting, it would be

impossible to have two instantiations of the same action schema execute at

the same time, because their split 
uents would interfere. Overloaded splitting

17Contrast our de�nition of con
ict with that of Graphplan [6] and [54]. Unlike Kautz and
Selman's parallel encoding, but like their linear one, our encodings have axioms stating that
actions imply their e�ects; their parallel encoding prohibits e�ect-e�ect con
icts instead.
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further disallows two instantiations of di�erent actions to execute at the same

time, so it requires complete exclusion. Simple splitting may be used with

con
ict exclusion when augmented with additional axioms that ban multiple

instances of a single schema from executing.

The bitwise action representation requires no action exclusion axioms. At

any time step, only one fully-instantiated action's index can be represented by

the bit symbols, so a total ordering is guaranteed.

What is the best way to represent frame axioms? Experience [54, 22] shows

that explanatory frame axioms are clearly superior to classical frames in almost

every case. Since parallel actions encode longer plans with the same number of

time steps, con
ict exclusion should be used whenever possible (e.g., with the

regular action representation or with the minimal additional exclusions neces-

sary for the simply split representation).

3.1.3 Other Kinds of Encodings

The MEDIC planning compiler [22] uses the taxonomy described above to

generate any of twelve di�erent encodings. In addition, MEDIC incorporates

many switch-selectable optimizations such as type analysis; these features make

MEDIC a powerful testbed for research in SAT-based planning. But there are

several encodings which do not �t in our taxonomy and hence cannot be gener-

ated by MEDIC.

The causal encoding [52] is based on the causal-link representation used by

partial-order planners such as SNLP [78]. While this encoding has been shown to

have the smallest encoding when measured asymptotically, the constant factors

are large, and despite several e�orts no one has succeeded in building a practical

compiler based on the idea.

Work has also been done exploring ways of encoding hierarchical task net-

work (HTN) planning [23] as a SAT problem [75].

3.1.4 Comparison with Graphplan

Note the strong similarities between Graphplan-derivative and SAT-based plan-

ning systems.

� Both approaches convert parameterized action schemata into a �nite propo-

sitional structure (e.g., the planning graph and a CNF formula) represent-

ing the space of possible plans up to a given length.

� Both approaches use local consistency methods (e.g., mutex propagation

and propositional simpli�cation) before resorting to exhaustive search.

� Both approaches iteratively expand their propositional structure until they

�nd a solution.

Indeed, Kautz and Selman [54] showed that the planning graph can be au-

tomatically converted into CNF notation for solution with SAT solvers, by con-

structing propositional formulae stating:
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1. The (fully speci�ed) initial state holds at level zero and the goal holds at

the highest level (i.e., our init and goal axioms).

2. Con
icting actions are mutually exclusive (i.e., con
ict-based exclusion

axioms).

3. Actions imply their preconditions (i.e., the precondition part of our a)p,e

axioms).

4. Each fact at positive even levels implies the disjunction of all actions at

the previous levels (including maintenance actions). For example, consider

the dinner date proposition :garb at level 4 in �gure 5; one obtains:

:garb
4
) (dolly

3
_ carry

3
_ maintain-no-garb

3
)

Kautz et al. [52] observe that this encoding is very close to the combina-

tion of explanatory frames with a regular action representation; there are two

di�erences. First, this encoding does not explicitly include explanatory frame

axioms, but they may be generated by resolving axioms of type (4) with the \ac-

tions imply their preconditions" axioms for the maintenance actions. Second,

there are no axioms stating that actions imply their e�ects, so spurious actions

may be included in the solution (these can be removed later by the decoder).

Fortunately, the con
ict exclusion axioms prevent these spurious actions from

interfering with the rest of the plan.

The BLACKBOX system [55] uses this Graphplan-based encoding to provide

a very fast planner. BLACKBOX uses the graph expansion phase of IPP [64]

to create the planning graph, then converts the graph into CNF rather than

performing traditional solution extraction. One of the keys to BLACKBOX's

performance is the observation that the simpli�cation algorithm employed by

Graphplan is more powerful than the unit propagation used in their previous

SAT planning system [47, 55]. Speci�cally, Graphplan employs negative binary

propagation in a limited way: binary exclusion clauses corresponding to mutex

relations (e.g., f:p _:qg) are resolved against proposition support sets (e.g.,

fp _ r _ s _ : : :g) to infer f:q _ r _ s _ : : :g.

3.2 Optimizations

There are several ways to improve the encodings discussed above; in this section

we discuss compile-time type optimization and the addition of domain-speci�c

information.

The principles and objectives underlying type analysis for SAT-compilation

are the same as previously discussed in the context of Graphplan. Graphplan-

based approaches (e.g., inertia optimization [64] and TIM [29]) aimed to shrink

the size of the planning graph by eliminating static 
uents and by avoiding

nonsensical action-schemata instantiations. The same approaches can be used

to shrink the size of the CNF formula that a SAT-compiler generates. The
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MEDIC compiler performs optimizations that reduce CNF size by as much at

69% on a variety of problems [22].

Another way to optimize the CNF formula produced by a compiler is to

add domain speci�c information. Typically this knowledge is impossible to

express in terms of STRIPS actions but is natural when writing general logical

axioms, and can be induced when processing action schemata and initial state

speci�cations. For example, in the blocks world one might state axioms to the

e�ect that the relation On is both non-commutative and irre
exive, only one

block may be on another at any time, etc.. Ernst et al. show that adding

these types of axioms increased the clause-size of the resulting CNF formulae,

but decreased the number of variables (after simpli�cation) by 15% and speeded

solver time signi�cantly.

Domain axioms may be classi�ed in terms of the logical relationship between

the knowledge encoded and the original problem statement [56]:

� Action con
icts and derived e�ects are entailed solely by the preconditions

and e�ects of the domain's action schemata.

� Heuristics which are entailed by the initial state in conjunction with the

domain's action schemata include state invariants. For example, a vehicle

can only be in one location at a time.

� Optimality heuristics restrict plans by disallowing unnecessary subplans.

For example, in a package delivery domain one might specify that packages

should never be returned to their original location.

� Simplifying assumptions are not logically entailed by the domain de�nition

or goal, but may restrict search without eliminating plans. For example,

one might specify that once trucks are loaded they should immediately

move.

DISCOPLAN [34] is a preprocessing system that infers state constraints from

domain de�nitions. The basic idea is to look for four general axiom patterns

(which can be discovered with low-order polynomial e�ort). For example, a

\single-valuedness constraint" would be discovered for the logistics world, saying

that each vehicle can be in only one place at a time. IPP's planning graph

is used to discover some of these constraints, while others are deduced using

special purpose analysis. No attempt is made to deduce optimality heuristics or

simplifying assumptions | all constraints are completeness preserving. Never

the less, the CNF formulae with DISCOPLAN-inferred axiomswere solved many

times faster than plain MEDIC or SATPLAN [54] formulae, regardless of SAT

solver used. Indeed, in many cases the plain encodings were unsolvable in the

alloted time, while the DISCOPLAN-augmented encodings quickly yielded a

plan.

Other researchers have devised alternative methods for detecting constraints.

For example, [2] describes a method similar to DISCOPLAN which, in addi-

tion, uses regression search to further restrict the predicate domains. Rinta-

nen modi�ed algorithms from computer-aided veri�cation to discover binary
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invariants [91]. Earlier work on the subject is presented in [57]. Despite these

promising �rst-e�orts, much more exciting work remains to done in the area of

optimizing SAT encodings for speedy solution.

3.3 SAT Solvers

Without an e�cient solver, a planning-to-SAT compiler is useless; in this section

we review the state of the art. Perhaps the best summary is that this area of

research is highly dynamic. Each year seems to bring a new method which

eclipses the previous leader. Selman et al. [95] present an excellent summary

of the state of the art in propositional reasoning, and sketches challenges for

coming years. Our discussion is therefore brief.

SAT solvers are best distinguished by the type of search they perform: sys-

tematic or stochastic.

3.3.1 Systematic SAT Solvers

Although it was discovered many years ago, the DPLL algorithm [17] remains

a central algorithm, and it can be summarized with a minimum of background.

Let � be a CNF formula, i.e., a conjunction of clauses (disjunctions). If one

of the clauses is just a single literal P , then clearly P must be true in order

to satisfy the conjunction; P is called a unit clause. Furthermore, if there

exists some other literal Q such that every clause in � which refers to Q or :Q,
references Q in the same polarity e.g., all references are true (or all are false)

then Q (or :Q) is said to be a pure literal. For example, in the CNF formula

below

 = (A _B _ :E) ^ (B _:C _D) ^ (:A) ^ (B _C _E) ^ (:D _ :E)

:A is a unit clause and B is a pure literal. We use the notation \�(u)" to denote

the result of setting literal u true and then simplifying. For example,  (:A) is

(B _ :E) ^ (B _ :C _D) ^ (B _C _E) ^ (:D _ :E)

and  (B) is

(:A) ^ (:D _ :E)

We can now describe DPLL in simple terms; it performs a backtracking,

depth-�rst search through the space of partial truth assignments, using unit-

clause and pure-literal heuristics (�gure 13). Tableau [16] and Satz [71] are

tight implementations of DPLL with careful attention to datastructures and

indexing. Many additional heuristics have been proposed to guide the choice

of a splitting variable in preparation for the divide and conquer recursive call.

For example, Satz selects variables by considering how much unit propagation

is facilitated if it branches on that variable [71]. See [15] for a discussion of

other heuristics.
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Procedure DPLL(CNF formula: �)

If � is empty, return yes.

Else if there is an empty clause in � return no.

Else if there is a pure literal u in � return DPLL(�(u))

Else if there is a unit clause fug in � return DPLL(�(u))

Else

Choose a variable v mentioned in �.

If DPLL(�(v)) = yes then return yes.

Else return DPLL(�(:v)).

Figure 13: Backtracking, depth-�rst search through the space of partial truth

assignments.

Procedure GSAT(CNF formula: �, integer: Nrestarts, N
ips)

For i equals 1 to Nrestarts,

Set A to a randomly generated truth assignment.

For j equals 1 to N
ips,

If A satis�es � then return yes.

Else

Set v to be a variable in � whose change gives the largest increase

in the number of stais�ed clauses; break ties randomly.

Modify A by 
ipping the truth assignment of v.

Figure 14: Random-restart, hill-climbing search through the space of complete

truth assignments.

By incorporating CSP \Look Back" techniques such as con
ict-directed

backjumping and and its generalization, relevance-bounded learning, solver speed

was increased substantially [5].

Another interesting direction is the construction of special-purpose SAT

solvers, optimized for CNF encodings of planning problems. A �rst e�ort in this

direction is based on the insight that propositional variables corresponding to

action choices are more important than other variables (e.g., those correspond-

ing to 
uent values) which follow deterministically from action choices. This

insight suggests a small change to DPLL: restrict the choice of splitting vari-

ables to action variables. Interestingly, the result of this restriction is dramatic:

up to four orders of magnitude speedup [35]. The MODOC solver [104, 85] also

uses the high-level structure of the planning problem to speed the SAT solver,

but MODOC uses knowledge of which propositions correspond to goals (rather

than to actions) to guide its search; the resulting solver is competitive with

Walksat (described below).
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Figure 15: The time required by DPLL to �nd a satisfying assignment is highly

dependent on the order in which variables are chosen. While the distribution

of times as a function of variable order varies from problem to problem, many

problems show a heavy tailed distribution (dashed curve) instead of Gaussian

(hairline curve). Note that the mean value for a heavy tailed distribution can be

in�nite, because probabilitymass stretches rightwards without bound. However,

since there is a sizable probability mass to the left of time t, one is likely to land

in that area after a small number of restarts sample di�erent orderings.

3.3.2 Stochastic SAT Solvers

In contrast to systematic solvers, stochastic methods search locally using ran-

dom moves to escape from local minima. As a result, stochastic methods are

incomplete | when called on hard problems a stochastic solver may simply re-

port that it is unable to �nd a satisfying assignment in the allotted time. This

output leaves the observer uninformed since there is no sure way to distinguish

an unsatis�able formula from one whose satisfying assignment is di�cult to

�nd. On the other hand, stochastic solvers are frequently much faster at �nding

satisfying assignments when they exist.

The simple and popular GSAT solver is a random-restart, hill-climbing

search algorithm (�gure 14) [94]. The successors of a truth assignment are

assignments that di�er only in the value assigned to a single variable. GSAT

performs a greedy search, prefering one assignment over another based on the

number of satis�ed clauses. Note that the algorithm may move sideways (no

change in the number of satis�ed clauses) or make negative progress. After hill

climbing for a �xed amount of 
ips (as directed by N
ips), GSAT starts anew

with a freshly generated, random assignment. After Nrestarts many of these

restarts, GSAT gives up.

WALKSAT18 [92, 93] improves upon GSAT by adding additional random-

ness akin to simulated annealing. On each 
ip, WALKSAT does one of two

things; with probability p it chooses the same variable GSAT would have cho-

sen, otherwise it selects a random variable from an unsatis�ed clause. Many

variants on these algorithms have been constructed and compared, e.g. [32, 79].

An especially promising new method, reported in [38], exploits the fact that

the time required by the DPLL procedure is highly dependent on the choice of

18Download from http://www.informatik.tu-darmstadt.de/AI/SATLIB.
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splitting variable, producing a heavy-tailed distribution of running times (�g-

ure 15). They augmented a version of DPLL by (1) adding randomization to the

choice of splitting variable, and (2) causing the algorithm to quit and restart if

it failed to �nd a solution after a very small time limit t. These restarts curtail

unpromising choices (i.e., ones that might lead to extremely long running times)

before they consume much time. After a number of restarts the odds are high

that the algorithm will stumble on a good choice that leads to a quick solution

(i.e., one with a running time less than the time limit t). Since very little time

is wasted on the restarts, the result is a speedup of several orders of magnitude.

While stochastic methods can perform extremely well, their performance is

usually sensitive to a variety of parameters: random noise p, Nrestarts, N
ips,

etc.. Since the optimal values for these parameters are a function of the problem

being solved and the speci�c algorithm in question, it can take considerable

experimentation to \tune" these parameters for a speci�c problem distribution.

For stochastic methods to reach their potential, automated tuning methods

(which don't require solving complete problem instances!) must be developed;

[79] reports on work in this direction.

3.3.3 Incremental SAT Solving

The problem of propositional satis�ability is closely related to that of truth

maintenance [20, 77, 18]; we focus on LTMS-style truth maintenance systems [76].

Both problems concern a CNF formula represented as a set of clauses � over a

set of propositional variables V. A SAT solver seeks to �nd a truth assignment

(i.e., a function from V to ftrue; falseg) that makes � true. An LTMS has

two di�erences:

� An LTMSmanipulates a function fromV to ftrue; false; unknowng, which
is more general than a truth assignment.

� An LTMS doesn't just �nd this mapping, it maintains it during incremen-

tal changes (additions and deletions) to the set of clauses �.

An LTMS uses unit propagation to update its mapping. Any unit clauses can

be assigned values immediately, and a clause with a single unknown literal and all

remaining literals labeled false can also be updated. If a new clause is added to

� it may enable additional inference, and dependency records allow the LTMS

to retract inferences that depended on clauses later removed from �. Nayak

and Williams [83] describe an especially e�cient method for maintaining this

mapping (which they call an ITMS), and the resulting algorithm is a powerful

foundation for building real-time planning and execution systems, as we describe

below.

4 Interleaved Planning & Execution Monitoring

One of the most exciting recent developments is a partially SAT-based reac-

tive control system that will command the NASA Deep Space One autonomous
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Figure 16: Schematics for spacecraft engine (adapted from [111]). Closed valves

are shown �lled black. Pyro values may be opened (or closed) only once.

spacecraft which is to be launched in autumn 1998. As one would expect given

the magnitude of the task, the complete agent is quite complex [87]; we focus

on the con�guration planning and execution subsystem [110, 111] which are

best explained with an example. Figure 16 shows a simpli�ed schematic for the

main engines of a spacecraft. The helium tank pressurizes the fuel and oxidizer

tanks, so that they are forced through valves (if open), to combine in the engines

where these propellants ignite to produce thrust. Valves are opened by valve

drivers by sending commands through a control unit. During its long voyage

towards its destination (perhaps Saturn), as many components as possible are

turned o� in order to save energy, so these control units and drivers must be

both turned-on and operational before the valves can be adjusted. Radiation

makes space a harsh environment that can damage both electronic and physical

components. Valves may jam open or shut, and control units may fail in either

a soft (resettable) or permanent fashion. To counteract these problems, the

engines have a high degree of redundancy (�gure 16). However, some of these

propellant paths are more 
exible than others | e.g., pyro valves are less likely

to fail, but may be switched only once.

The spacecraft's con�guration management system must satisfy high-level

goals (e.g., \achieve thrust" before orbital insertion) by identifying when fail-

ures have occurred and executing actions (e.g., powering on control units and

switching valves) so that these goals are quickly achieved at minimum cost in

terms of power and spent pyro valves. As shown in �gure 17, these decisions

are made by a pipeline of three major components:

� The execution monitor (MI)19 interprets limited sensor readings to de-

19For clarity and consistency, we use di�erent terminology than Williams and Nayak's orig-
inal papers [110, 111], and we include their acronyms to facilitate correspondence for reader
recourse to primary literature. Williams and Nayak name the process of executionmonitoring
mode identi�cation, hence the abbreviation \MI." The intuition is that the system's \mode"
is its state and hence execution monitoring determines whether the system is in the expected
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Figure 17: Architecture of the Deep Space One spacecraft con�guration planning

and execution system.

termine the current physical state of the spacecraft; this includes rec-

ognizing when an execution failure has occurred. Frequently, there will

be several possible states consistent with previous values and current sen-

sors, and in this case the execution monitor returns the mostly likely single

state.

� The goal interpreter (MR) determines the set of spacecraft states that

achieve the high-level goals and are reachable from the current state. It re-

turns the lowest cost such state, e.g. one with minimal power consumption

and the fewest blown pyro valves.

� The incremental replanner (MRP) calculates the �rst action of a plan

to reach the state selected by goal interpretation.

4.1 Propositional Encoding of Spacecraft Capabilities

Each of these modules utilizes a propositional encoding of spacecraft capabilities

which (despite super�cial di�erences) is quite similar to the STRIPS domain

theories considered earlier in this paper. For example, each valve in the engine

is described in terms of the following modeling variables: valve-mode, fin,

fout, pin, pout. These variables have the domains shown below:

valve-mode 2 fopen; closed; stuck-open; stuck-closedg
fin; FOUT 2 fpositive; zero; negativeg
pin; POUT 2 fhigh; nominal; lowg

Note the use of a discretized, qualitative representation [9, 108] of the real-valued


ow and pressure variables. The cross product of these �ve variables de�nes

state or if a failure has occurred. The process of goal interpretation was called mode recon-

�guration (hence \MR"), and what we call incremental replanning was called \model-based
reactive planning" (MRP).
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a space of possible valve states, but many of these states are not physically

attainable. For example, if the valve is open, there will be equal pressure on

both sides, so pin = pout. Infeasible states are eliminated by writing a set

of propositional logic formulae in which the underlying propositions are of the

form \modeling variable = value." For the valve example, one may write:

((valve-mode=open) _ (valve-mode=stuck-open)))
((pin=pout) ^ (fin=fout))

((valve-mode=closed) _ (valve-mode=stuck-closed)))
((fin=zero) ^ (fout=zero))

Note that these descriptions are implicitly parameterized. Each valve has it's

own variables and thus its own propositions. Augmenting these domain axioms,

control actions are speci�ed in a temporal, modal logic that adds a \next"

operator,
, to propositional logic. For example, the behavior of a valve driver20

may be partially described with the following formulae:

((driver-mode 6=failed) ^ (cmdin=reset)))

(driver-mode=on)

((driver-mode=on) ^ (cmdin=open) ^ (valve-mode 6=stuck-closed)))

(valve-mode=open)

Each of these transition equations is akin to a STRIPS operator | the an-

tecedent (i.e., left hand side) of the implication corresponds to the action name

and precondition, while the consequent (right-hand side) equations that follow

the 
 are e�ects that take place in the next time step. The name/parameter

distinction is a bit subtle, because it stems from the fact that modeling variables

are partitioned into disjoint sets: state variables (e.g., driver-mode), dependent

variables (e.g., fin), and control variables (e.g., smdin). The subexpression

of the antecedent that consists solely of propositions referring to control vari-

ables21 corresponds to the name of a STRIPS action, and the remainder of

the antecedent (i.e., propositions referring only to dependent and state vari-

ables) corresponds to the STRIPS action precondition. In summary, therefore,

Williams and Nayak model the spacecraft with a combination of STRIPS actions

and propositional constraints de�ning the space of feasible states.

4.2 Real-Time Inference

Suppose that the agent knows the state of all modeling variables (and hence all

propositions) at time zero. This information su�ces to predict which actions

20Again, we ignore parameterization.
21By assumption 22, every transition equation has at least one proposition involving control

variables in its antecedent.
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will be executed, and hence the expected, next spacecraft-state. But actions

don't always have their desired e�ects, so Williams and Nayak included ad-

ditional transition equations that describe possible failure modes as well. For

example, in contrast to the expected result of setting cmdin=open shown above,

a failure transition might enumerate the possibility that valve-mode could be-

come stuck-closed. Both normal and failure transition rules are annotated

with probabilities. Thus, instead of predicting a unique next spacecraft-state,

one may predict a ranked list of possible next states, ordered by likelihood.

Given this framework, the processes of execution monitoring and goal inter-

pretation can be cast in terms of combinatorial optimization subject to a set of

propositional logic constraints. As input execution monitoring takes a set of ob-

servations of the current values of a subset of the state and dependent variables,

and these observations set the values of the corresponding propositions. Thus,

execution monitoring is seen to be the problem of �nding the most likely next

state which is logically consistent with the current observations. An incremental

SAT solver forms the core of this optimization computation.

Goal interpretation is similar. The objective is to �nd a spacecraft-state

which entails the high-level goals, and which is most-cheaply reached from the

state that execution monitoring deems most likely. Estimating the cost of reach-

ing a goal state is relatively easy (e.g., one compares the number of switched

pyro valves and the di�erential power usage) so logical entailment, computed

by the incremental SAT solver is, again, central.

The incremental replanner takes as input the (most likely) initial state com-

puted by execution monitoring, the (least cost) goal state computed by goal

interpretation. As output the incremental replanner produces an action that is

guaranteed to be the �rst step of a successful23, cycle-free plan from the initial

state to the goal. The beauty of Williams and Nayak's algorithm is its guarantee

of a speedy response, which at �rst glance appears to contradict results showing

STRIPS planning is PSPACE-complete [12].

Underlying Williams and Nayak's method is the insight that spacecraft con-

�guration planning is far easier than general STRIPS planning, because space-

craft engineers speci�cally designed their creations to be controllable. Williams

and Nayak formalize this intuition with a set of crisp constraints that are sat-

is�ed by the spacecraft domain. The most important of these restrictions is

the presence of a serialization ordering for any (satis�able) set of goals. As

previous theoretical work has shown [67, 4], serialized subgoals can be solved

extremely quickly, because no backtracking is necessary between subgoals. To

give an intuitive blocksworld example, the set of goals

1. Have block C on the table.

2. Have block B on block C.

3. Have block A on block B.

23In the absence of failure transitions.
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is serializable, and solving them in the order 1, 2, 3 is the correct serialization.

It doesn't matter how goal 1 is achieved, goals 2 and 3 can be solved without

making goal 1 false. Once goals 1 and 2 are achieved, they never need be vio-

lated in order to solve goal 3. In summary, researchers have long known that

serializable goals were an ideal special case, but Williams and Nayak's contribu-

tion is twofold. First, they recognized that their spacecraft con�guration task

was serializable (many real-world domains are not), and second they developed

a fast algorithm for computing the correct order. This last step is crucial, be-

cause if one attempts to solve a serializable problem in the wrong order, than an

exponential amount of time can be wasted by backtracking search. For example,

if one solved goal 3 above (getting block A on block B) before solving 1 and 2,

the work on goal 3 might be wasted.

Williams and Nayak's goal ordering algorithm is based on the notion of

a causal graph24 whose vertices are state variables; a directed edge is present

from v1 to v2 if a proposition mentioning v1 is in the antecedent of a transi-

tion equation whose consequent mentions v2.
25 Williams and Nayak observe

that the spacecraft-model causal graphs are acyclic and thus a topological sort

of the graph yields a serialization ordering. If the goals are solved in an \up-

stream" order (i.e., goals involving v2 are solved before those of v1), then no

backtracking is required between goals. Essentially all search is eliminated, and

the incremental replanner generates control actions in real-time.

5 Discussion

While, the focus of this paper has been on the dramatic explosion in SAT-

planning and Graphplan-based algorithms, we close by brie
y mentioning some

other recent trends.

5.1 Planning as Search

Re�nement search forms an elegant framework for comparing di�erent planning

algorithms and representations [51, 48]. Recent results extend the theory to

handle partially HTN domains [46].

McDermott showed that an emphasis on (automatically) computing an infor-

mative heuristic can make an otherwise simple planner extremely e�ective [81].

TLPLAN uses (user-provided) domain speci�c control information to o�set a

simple, forward-chaining search strategy | with impressive results [2]. Hector

24It is interesting to compare this work with similar research on subgoal ordering dis-
cussed earlier in the section on Solution Extraction as Constraint Satisfaction. Problem-
space graphs [25] and operator graphs [97, 98] share many resemblances to causal graphs.
Knoblock's ALPINE abstraction system [58] can be viewed as �nding a serialization ordering,
and it can eliminate most search when given a problem with acyclic structure such as the
towers of Hanoi [60].

25The causal graph is constructed o�ine from a compiled version of the domain theory
which eliminates all reference to dependent variables.
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Ge�ner demonstrated impressive performance on planning competition prob-

lems using heuristic search through the space of world-states.

5.2 Causal Link Planning

Causal link planners, e.g. SNLP [78] and UCPOP [88], have received less at-

tention in recent years because they are outperformed by Graphplan and SAT-

PLAN in most domains. However, some of the intuitions underlying these plan-

ners have been adopted by the propositional approaches. For example, one of

the biggest advantages of causal-link planners, resulting from their backward-

chaining regression search, was their insensitivity to irrelevant information in

the initial state. Regression focussing (described previously) provides some of

these advantages to propositional planners.

One situation where causal link planners still seem to excel are software do-

mains in which the domain of discourse is unknown to the agent [24]. When an

agent is faced with incomplete information, it can not construct the Herbrand

base and hence is unable to use propositional planning methods. Causal-link

planners such as XII [37] and PUCCINI [36], on the other hand, work compe-

tently.

5.3 Handling Uncertainty

Starting with work on the CNLP [89], SENSp [26], Buridan [68, 69] and C-

Buridan [21] systems, the AI planning community has more seriously considered

extensions to action languages that allow the speci�cation of uncertain e�ects

and incomplete information. Of course, much related work has been performed

by the UAI community, but usually with di�erent assumptions. For example,

work on Markov Decision Processes (MDPs) typically assumes that an agent

has complete, immediate, free observability of the world state, even if its own

actions are not completely deterministic. Work on Partially-Observable MDPs

relaxes this assumption, but much remains to be done in this area since POMDP

solvers are typically much less e�cient than MDPs. MDP and POMDP re-

searchers typically state the agent's objective in terms of maximizing a utility

function over a �xed, �nite horizon. Planning researchers, on the other hand,

usually seek to achieve a �xed goal con�guration, either with complete con�-

dence or with probability greater than some threshold, but no time horizon is

considered. In the past it was thought that planning-based approaches (by their

goal-directed natures) were less sensitive to high-dimension state descriptions,

i.e. the presence of many attributes in the initial state. However, recent work

on MDP abstraction and aggregation [11, 19] calls this intuition into question.

In order for the �eld to advance, more work needs to be done comparing these

approaches and testing their relative strengths and limitations. Initial results

in this area are a start [10, 72], but empirical comparisons are badly needed.

Several researchers have extended Graphplan to handle uncertainty. Con-

formant graphplan (CGP) [99] handles uncertainty in the initial state and in

action e�ects, but does not allow sensing; the resulting \conformant" plan works
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in the presence of uncertainty by choosing robust actions that cover all eventu-

alities. Sensory graphplan (SGP) [109] extends CGP to allow branching (\con-

tingent") plans based on run-time information gathered by noiseless sensory

actions which may have preconditions. Neither CGP nor SGP incorporate nu-

merical probabilistic reasoning; both build separate planning graph structures

for each possible world speci�ed by the problem's uncertainty, and so scaling is a

concern. PGraphplan [8] adopts the MDP framework (i.e., numerical probabil-

ity, complete observability) and builds an optimal n-step, contingent plan using

a single planning-graph-like structure to accelerate forward-chaining search (see

also [11]).

Other researchers have investigated the compilation approach to planning

under uncertainty, but instead of compiling to SAT, they target a probabilistic

variant called E-MAJSAT:

Given a Boolean formula with choice variables (variables whose

truth status can be arbitrarily set) and chance variables (variables

whose truth status is determined by a set of independent probabil-

ities), �nd the setting of the choice variables that maximizes the

probability of a satisfying assignment with respect to the chance

variables. [72]

[73] describes a planning compiler based on this idea, and presents a E-

MAJSAT solver akin to DPLL. Caching expensive probability calculations leads

to impressive e�ciency gains [74].

5.4 Conclusions

In the past few years, the state of the art in AI planning systems has advanced

with extraordinary speed. Graphplan and SAT-based planning systems can

quickly solve problems that are orders of magnitude harder than those tackled

by the best previous planners. Recent developments extend these systems to

handle expressive action languages, metric resources, and uncertainty. Type-

theoretic domain analysis promises to provide additional speedup, and there are

likely more ideas in from the constraint satisfaction and compiler areas which

could be usefully applied. The use of a modern planning system to control a

real NASA spacecraft demonstrates that AI planning has matured enough as a

�eld to increase the number of �elded applications. A common thread running

through all of this research is the use of propositional representations, which

support extremely fast inference.
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