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Abstract

Diagnostic tasks involve identifying faulty com-
ponents from observations of symptomatic device
behavior. This paper presents a general diagnos-
tic theory that uses the perspective of diagnosis
as identifying consistent modes of behavior, cor-
rect or faulty. Our theory draws on the intu-
itions behind recent diagnostic theories to iden-
tify faulty components without necessarily know-
ing how they fail. To derive additional diagnos-
tic discrimination we use the models for behav-
ioral modes together with probabilistic informa-
tion about the likelihood of each mode of behav-
lor.

these failure modes are consistent with the observations.
Thus, unlikely possibilities are entertained as seriously as
likely ones. For example, as far as most model-based di-
agnostic approaches are concerned, a light bulb is equally
likely to burn out as to become permanently lit (even if
electrically disconnected) .

H uman diagnosticians, however, take great ad vantage of
behavioral models of known failure modes, together with
the likelihood that these modes will occur. Knowledge of
fault modes is used to pinpoint faulty components faster 1
and to help determine specific repairs that must be made
to the faulty components.

We view the central task of diagnosis as identifying the
beh:\.vinr:\.1 modes ( correct o~ ) of all the components.
Whether a mode is faulty or not is irrelevant. Our syn-
thesis hypothesizes that it is not the notion of fault, but
behavioral mode that is fundamental to diagnosis. Each
component has a set of possible behavioral modes including
an unknown mode which makes no predictions, and there-
fore can never conflict with the evidence. The unknown
mode is included to allow for the possibility, albeit small, of
unforeseen behavioral modes. This unknown mode is cru-
cial because early diagnostic algorithms, when confronted
with an unforeseen fault mode, either start making use-
less probes or simply give up. Our approach pinpoints the
failing component as behaving in an unknown mode.

The introduction of fault models potentially introduces
significant computational overhead for the diagnostic al-
gorithms. Diagnosing multiple faults is inherently a com-
binatoric process. Introducing fault models exacerbates
the process, by introducing multiple modes and possible
behaviors to consider. To control the combinatorics we
introduce computational techniques which focus reasoning
on more probable possibilities first. These techniques, in
effect, focus diagnostic reasoning only on those component
behavioral modes that are more probable given the evi-
dence. This set grows and shrinks as evidence is collected.

By using the new perspective of diagnosis as identify-
ing probable behavioral modes, we are able to extend our
earlier work on model-based diagnosis (the General Diag-
nostic Engine (GDE) [6]) to reason about modes of be-
havior. The resulting system we call Sherlock. GDE pro-
vides a general domain-independent architecture for diag-
nosing any number of simultaneous faults in a device given
solely a description of its structure (e.g., electrical circuit
schematic) and specifications of correct component behav-
iors (e.g., that resistors obey Ohm's law). Given a set
of observations, GDE constructs hypotheses ( called diag-
noses) identifies the faulty components and suggests points
where additional measurements (called probes) should be
made to localize the diagnosis with as few measurements

1 Introduction

When you have eliminated the impossible, what-
ever remains, however improbable, must be the
truth. -Sherlock Holmes. The Sign of the Four.

The objective of our research is to develop a general
theory of diagnosis that captures a human diagnostician's
predominant modes of reasoning. This theory is intended
to serve as the conceptual foundation for computational
systems that diagnose devices.

Early approaches [1, 4] to diagnosis used fault models
to identify failure modes of faulty components that ex-
plain the observations made. The ability to predict fail-
ing components' behaviors provided powerful diagnostic
discrimination. However, these techniques depend on the
assumption that all failure modes are known a priori -

an assumption that is sometimes warranted but is never
guaranteed. The unacceptable result of not satisfying this
assumption -faulty diagnoses -has led researchers to
abandon this powerful approach.

The @del-bas~.d diagnostic approach adopted by most
recent researchers [3, 6, 10] provides a framework for di-
agnosing a device from correct behavior only. This ap-
proach is based on the observation that it is not necessary
to determine how a component is failing to know that it
is faulty -a component is faulty if its correct behavior
~ specified by itR mRmlfRrt.llr~r) is inc~sistent with
the observations. Since only correct behavior needs to be
modeled, any knowledge about the behavior of component
fault modes is ignored. This provides a fundamental ad-
vantage over earlier techniques requiring a priori knowl-
edge of all fault modes. Unforeseen failure modes pose
no difficulty. However, what is lost is the additional diag-
nostic discrimination derived from knowing the likely ways
a component fails, and the ability to determine whether
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verter C almost always fails by having its output stuck-
at-O (because it is designed differently to drive an external
load). Given that knowledge, it is unlikely that inverter
A is failing, as its most common fault does not explain
the symptom. If operating correctly, A's output should be
one, so A being stuck-at-l would not explain the incor-
rect value being observed at the device's output. However ,
the likely failures of inverters B and C are consistent with
the symptom since either explains the deviation from ex-
pected behavior. Hence the diagnostician should measure
at y next to determine which of the two inverters is failing.

The objective of the the diagnosis dictates the granu-
larity of Sherlock's analysis. Sometimes the objective is to
identify which components are failing and how. Sometimes
the task is simply to identify the failing components so that
they can be replaced. Sometimes the task is to identify all
the behavioral modes (good and bad). Sometimes diag-
nosis considers multiple test vectors, and sometimes there
is only one. To accommodate these possibilities Sherlock
must be told which modes it must discriminate among.

It is important to note that even if it is diagnosti-
cally unimportant to distinguish between some behavioral
modes, knowledge of behavioral modes still helps Sherlock.
Suppose a component has two faulty modes, MI of high
probability, and M2 oflow probability, which we are not in-
terested in discriminating between. If a measurement elim-
inates M 1 from consideration then the (posterior) proba-
bility that the component is faulty becomes low.

as possible.
We have implemented our approach by extending GDE

to Sherlock, and have tested it on a variety of digital cir-
cuits- from simple three inverter circuits, to ALUs con-
sisting of 400 gates with 4 behavioral modes each. Sher-
lock exploits knowledge of failure modes to pinpoint faults
more equally and identify in what mode components are
functioning. Sherlock is described more fully in [7] .

2 Related work

Exploiting the use of fault models has recently become
an active research area (11, 12, 13, 16]. In particular,
Holtzblatt's (12] generalization of GDE incorporates the
notion of behavioral modes in a similar spirit to Sherlock.
But Holtzblatt's GMODS system is missing many key fea-
tures of Sherlock such as accommodating unexpected fail-
ures, incorporating probabilistic information to rank diag-
noses and guide probing, incorporating most-probable-first
heuristics to limit the computational complexity which
arises for larger devices, and combining evidence gathered
from multiple observations of a device. As GMODS does
not use probabilistic information it relies on an expensive
hyperresolution rule to rule out fault modes and cannot
focus reasoning on more probable diagnoses. Struss [16]
argues against the use of probabilistic information and the
use of an unknown mode. Instead he employs a resolu-
tion rule and controls reasoning to introduce appropriate
fault modes only when necessary. Through the use of an
alternative architecture which redefines the notion of fault,
Raimon [13] achieves some of the advantages of knowledge
of fault modes without having to incorporate them. Ham-
scher [11] incorporates fault models with his generalization
of GDE called X DE.

4 Framework

3 Diagnosis with modes

The perspective of diagnosis as identifying probable be-
havioral modes is best appreciated through an example.
Consider the simple three inverter circuit shown below.
Suppose that the input (I) is set to zero, and that, al-

L~~-Y~
~~2~-"-v---2

though the output (0) should be one if functioning cor-
rectly, it is measured to be zero. Without knowledge of
fault modes, all three inverters are equally likely to be
faulted. If we knew that inverters (almost) always failed
with output stuck-at-l, then we could infer that inverter B
was likely to be faulted. Thus knowledge of failure modes
can provide significant diagnostic information.

Knowledge of failure modes is also important to decide
what measurement to make next. If all faults were equally
likely, measuring X or y provides equal information. How-
ever, suppose we know that inverters A and B almost al-
ways fail by having their output stuck-at-l, and that in-

This section presents the overall framework including defi-
nitions for basic terminology and equations for computing
the relevant probabilistic information. Section 5 presents
heuristics for avoiding the combinatorial explosion result-
ing from moving from ODE to Sherlock.

The key conceptual extension to ODE is the introduc-
tion of behavioral modes. The extension is very easy as
ODE can be viewed as having two behavioral modes {the
good one and the faulty one with unspecified behavior) per
component. In Sherlock there are simply more behavioral
modes per component.

The structure of the device to be diagnosed specifies the
components and their interconnections. Components are
described as being in one of a set of distinct modes, where
each mode captures a physical manifestation of the com-
ponent {e.g., a valve being open, closed, clogged or leaky).
The behavior of each component is characterized by de-
scribing its behavior in each of its distinct modes. We
require that a component can be in only one mode at a
time. We also require that a faulty component must re-
main in the same mode for all test vectors {in the excep-
tional case where a fault cannot be modeled this way, its
behavior is captured by the unknown mode). Other than
these there are very few restrictions on behavior models: a
model can make incomplete predictions, the set of modes
can be incomplete, and the predictions of different modes
can overlap.

A component's modes consists of a set describing the
component's proper behavior {e.g., the valve being on or
off), and a set describing faulty behavior {e.g., the valve
being clogged or leaky). When there is only one mode for
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proper behavior we abbreviate it as G (for "good"). For-
mally, a behavioral mode is a predicate on components,
which is true of a device exactly when the device is in
that behavioral mode. Every component has an unknown
mode, U with no behavioral model, representing all (fail-
ure) modes whose behaviors are unknown.

In our example, we consider four behavioral modes of a
digital inverter: good (abbreviated G), output stuck-at-1
(abbreviated SI), output stuck-at-O (abbreviated SO), and
an unknown failure mode (abbreviated U). The axioms for
the behavior of the inverter are:
INV ERTER(z) -[

[G(z) -[IN(z) = 0 = OUT(z) = 1]]/\
[Sl(z) -OUT(z) = 1]/\
[SO(z) -OUT(z) = 0]].

The unknown behavioral mode U(z) has no model.
Given the model library and the device structure Sher-

lock directly constructs a set of axioms SD, called the
system description [14].

An observation is a set of literals describing the out-
comes of measurements (e.g., {I = O,X = 1,0 = 0}) for a
test vector which has been applied to the device. The evi-
dence consists of a set of observations (e.g., { {I = 0, X =
1,0 = 0},{1 = 1,0 = 0}}).1 This definition of allows
us to incorporate accumulated evidence from different test
vectors.

A candidate assigns a behavioral mode to every com-
ponent of the device. Intuitively, a diagnosis is a can-
didate that is consistent with the evidence, however, we
distinguish between a diagnosis for a particular observa-
tion and a diagnosis for all the evidence. A diagnosis for
an observation is a candidate that is consistent with the
observation -formally, that the union of the system de-
scription, the candidate, and the observation is logically
consistent2. Formally a candidate is a set of literals, e.g.,
{ G(A), G(B), U( a) }. To distinguish sets representing can-
didates we write [G(A), G(B), u(a)]. Note that in GDE a
candidate is represented by the set of failing components,
while in Sherlock a candidate is represented by a set that
assigns a behavioral mode to every component. Thus, the
Sherlock candidate [G(A), G(B), u(a)] corresponds to the
GDE candidate [a].

In combining information from different observations
we need to treat good and bad modes differently. By
definition, a component manifests the same failure mode
throughout all observations. However, if a component is in
a good mode (e.g., valve is on) in one observation there is
no reason to believe it should be in the same good mode for
another test vector. If components have only a single good
mode, combining information from multiple test vectors is
straight-forward. Namely, a diagnosis for the evidence is a
set of literals such that for every observation, the union of

the system description, the candidate, and the observation
is logically consistent. For brevity we operate within one
observation, in the remainder of this paper, unless other-
wise indicated. However, it is important to bear in mind
that many of the design decisions underlying Sherlock only
make sel1se when multiple observations are taken into con-
sideration.

Like GDE, we make the basic assumption that compo-
nents fail independently (which is sometimes unfounded)
and that the prior probabilities of finding a component
in a particular mode are provided. Recall that, although
the behaviors of the different modes may sometimes over-
lap, we require that each mode captures a distinct physical
state or condition of the component. Thus, the probabil-
ities of all the modes of a component always sum to one.
Under these assumptions, the prior probability that a par-
ticular candidate G, is the actual one is:

p(G,) = II p(m).

mEC,

where p( m ) denotes the prior probability of behavior mode
m being manifested (i.e., a particular component being in
a particular mode).

As candidates are eliminated, the probabilities of the
remaining diagnoses must increase. (On occasion a candi-
date is eliminated purely as a result of the device's topol-
ogy in which case the probability is adjusted by a renor-
malization.) Usually candidates are eliminated as a result
of measurements. Bayes rule allows us to calculate the
conditional probability of the candidates given that point
Xi is measured to be Vik (unless otherwise indicated, all
probabilities are conditional on evidence previously accu-
mulated. See [6] for more details):

p(G,IXi = Vik) = p(Xi = VikIG,)p(G,) .

p(Xi = Vik)

The denominator, p(Xi = Vik), is just a normalization.
p(G,) was computed as a result of the previous measure-
ment (or is the prior). Finally, p(Xi = VikIG,) is determined
as follows:

1. If Xi = Vik is predicted by G, given the evidence so far
then p(Xi = VikIG,) = 1.

2. If Xi = Vik is inconsistent with G, and the evidence
then p(Xi = VikIG,) = 0.

3. If Xi = Vik is neither predicted by nor inconsistent
with G, and the evidence then we make the presuppo-
sition (sometimes invalid) that every possible value for
Xi is equally likely. Hence, p(Xi = VikIG,) = .l where

m is the number of possible values Xi might have (in
a conventional digital circuit m = 2). Intuitively, this
provides a bias for candidates which predict a mea-
surement over those that don't.

Throughout the diagnostic session, the probability of
any particular observation Xi = Vik is bounded below by
the sum of the current probabilities of the candidates that
entail it and bounded above by one minus the sum of the
current probabilities of the candidates that are inconsistent
with it. See [6] for the estimate used. Similarly, the prob-
ability that a component is in a particular mode is given
by the sum of the current probabilities of the candidates
in which it appears.

lThe process of generating good test vectors is outside the
present scope of our theory.

2Note that by this definition some candidates may be elimi-
nated as diagnoses on the basis of no observations whatsoever.
For example, consider hypothetical models for two inverters in
series where the first inverter had a mode output-stuck-at-l
and the second had a mode input-stuck-at-O. Note also that
the candidate in which every component is operating in its un-
known mode is always a candidate unless the combination of the
system description and any observation by itself is inconsistent.
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4.1 Varieties of diagnostic tasks

In order to determine what next measurement is likely to
provide the most information, Sherlock must determine the
likelihood of hypothetical measurement outcomes and its
consequences on the candidate space. The different diag-
nostic objectives dictate differing scoring functions. Sher-
lock is asked to discriminate among some modes and not
others; by supplying Sherlock with sets of discrimination
specifications -( a set of modes that are not to be dis-
criminated). The discrimination specification partitions
the diagnoses into a set of d-partitions. The goal of diag-
nosis is to identify the probable d-partitions and to suggest
measurements which best pinpoint the actual one. For ex-
ample, it may only be important to discriminate between
good and faulty behavior. In this case, the most prob-
able d-partition identifies which components have to be
replaced. In the simple case where the objective is to
discriminate among all behavioral modes, then every d-
partition is just a singleton set consisting of a single diag-
nosis. Note that, in general, the different diagnoses within
a single d-partition make different predictions. Although
it may be unimportant to discriminate among them as far
as the overall diagnostic objective is concerned, it is im-
portant to keep them separate to correctly compute the
probabilities of measurement outcomes.

The specific approach used to select measurements is
a minimum entropy technique -pick that measurement
to make next that will yield, on average, the minimum
entropy H (or conversely that measurement which extracts
maximum information):

H = -Lp(D,)log p(D,).

Where p(D,) is the probability of a d-partition given ev-
idence. This, in turn, requires computing the candidate
probabilities given a hypothetical outcome. Fortunately
this is computable fairly directly using Hayes rule (see [6]
for details). The expected entropy resulting from measur-
ing Xi is:

k=m
He(Xi) = L::: P(Xi = Vik)H(Xi = Vik),

k=l

where Vik are the possible measurement outcomes and
H(Xi = Vik) is the entropy of the resulting set of d-
partitions. Information theory tells us that, given cer-
tain assumptions, the measurement chosen by this scor-
ing function will on average enable Sherlock to make the
fewest number of measurements to identify the actual d-
partition to a certain level of confidence. This approach
(see examples in [6]) almost always suggests the optimum
measurement common sense would suggest. The subse-
quent examples restate entropy as a cost function: ideal
measurements have O cost, and useless measurements have
cost 1.

If there are multiple test vectors, far greater care must
taken. Suppose the objective is to identify the faulty

and how they are faulted. In this case Sher-
only discriminate among faulty modes. The d-
for the overall objective are the intersection of

from each of the multiple test vectors. In
He(Xi) we must take care to use these global

d-partition, but only use the relevant candidates for de-
termining p(x = Vik) for a test vector. Thus, Sherlock
identifies not only the best place to measure but also the
best test vector (given the test vector set with which it has
been supplied) under which to make the measurement.

4.2 Algorithms commmon to GDE and Sherlock

Sherlock, like GDE, exploits an assumption-based truth
maintenance system (ATMS)[5]. Every literal stating that
some component is in some behavioral mode is represented
by an ATMS assumption. A literal indicating measure-
ment outcome (e.g., I N(A) = 0) is represented by an
ATMS premise3. The underlying Sherlock algorithms are
similar to those of GDE except components can have mul-
tiple modes.

Sherlock computes the diagnoses by first constructing a
set of conflicts. A conflict is a set of component behavioral
modes which is inconsistent with the system description
and some observation (i.e., a conflict is represented by an
ATMS nogood). A conflict contains at most one behavioral
mode per component. As in GDE, we represent the set of
conflicts compactly in terms of the minimal conflicts, since
conflicts are ordered by set-inclusion: every superset of a
conflict is necessarily a conflict as well.

Intuitively, a minimal conflict identifies a small kernel
set of component behavioral modes which violates some
observation. It is easily shown that a candidate is a diag-
nosis iff it does not contain any minimal conflict. Thus, the
complete set of diagnoses is computable from the minimal
conflicts alone. Thus, Sherlock attempts to determine the
minimal conflicts (in ATMS terminology these are mini-
mal nogoods) as these provide the maximum diagnostic
information.

Sherlock is typically used with a sound but incomplete
prediction facility. Although soundness guarantees the
conflicts Sherlock discovers are indeed conflicts, incom-
pleteness sometimes makes it impossible to identify the
minimal conflicts and consequently fails to rule out candi-
dates as diagnoses. In the rest of this paper by minimal
conflicts we simply mean the set of unsubsumed conflicts
found by Sherlock, and by diagnosis we mean a candidate
not ruled out by one of these conflicts. The consequences
of incompleteness are not catastrophic and usually result
in only a minimal degradation in diagnostic performance.
This issue is discussed in more detail in [6] .

In order to select the next ~easurement (and under
which test vector) to make, Sherlock must evaluate the
effects of a hypothetical measurement. To do so, Sherlock
must be able to determine what possible outcomes hold
in which candidates. Sherlock computes the sets of be-
havioral modes which support each possible outcome. If
an outcome follows from a set of behavior modes, then it
necessarily follows from any superset. Therefore, Sherlock
need only record with each possible outcome the minimal
sets of behavior modes upon which it depends. Thus a pos-
sible measurement outcome holds in a candidate if a set of
behavioral modes supporting the outcome is a subset of
the candidate. Each set of behavioral modes supporting
an outcome is represented by an ATMS environment and

3To implement the search strategy discussed in the next sec-
tion these literals have to be assumptions as well but this is
outside the scope of this paper.
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the set of all environments for an outcome is represented
by an ATMS label. The details for this algorithm can be
found in [5, 6]. In a later section we work through a simple
example illustrating Sherlock's functioning.

5 Controlling the combinatorics

The presence of behavioral modes has two immediate con-
sequences affecting the algorithms: (1) there are far more
behavioral modes to reason about, and (2) the concept
of minimal diagnoses which was so useful to GDE is now
virtually meaningless. For example, if there are n compo-
nents, each with k behavioral modes, there are kn candi-
dates which might have to be considered ( as opposed to
GDE's 2n). Together these consequences make Sherlock
significantly slower than GDE. This potential combina-
torial explosion manifests itself in two ways in Sherlock.
First, the set of conflicts, as well as the sets of behavioral
modes underlying possible outcomes (i.e., the ATMS la-
bels, explodes). This causes the prediction phase of Sher-
lock to explode. Second, the number of possible diagnoses
is exponential, causing candidate generation to explode.
Thus, the Sherlock architecture adds two tactics beyond
those used in GDE to keep the combinatorial explosion
under control. These tactics apply to GDE as well as Sher-
lock.

The focussing tactics do not affect the set of diagnoses
produced (or probabilities ratios among them). We first
present our strategy for the diagnostic objective of identi-
fying all fault modes, and then later show it can be modi-
fied to find the best d-partitions. The basic idea is to focus
reasoning to the subset of the diagnoses (called leading di-
agnoses) that satisfy the following conditions:

.All leading diagnoses have higher probability than all

non-leading diagnoses.
.There are no more than kt (usually kt = r,) leading

diagnoses. The exception is that all diagnoses having
probability approximately equal to the kt th diagnosis
are included (to accommodate roundoff difficulties).

.Candidates with probability less than tth (usually
k2 = 100) of the best diagnosis are not considered.

.The diagnoses need not include more than k3 (usually
k3 = .75) of the total probability mass of the candi-
dates.

This approach focusses candidate generation to a small
tractable set of leading diagnoses.

The primary remaining source of combinatorial explo-
sion is the size of the ATMS labels for Sherlock's predic-
tions. This is dealt with using a generalization of the fo-
cussing strategies outlined in [9] and are similar to some
suggested in [8]. To handle this both the ATMS and the
underlying constraint propagator used by Sherlock are re-
stricted to focus their reasoning only on the leading di-
agnoses or tentative leading diagnoses. No prediction is
made unless its results hold (i.e., one of its environments
is a subset of some focus environment) in the current fo-
cus. Furthermore, no environment is added to any ATMS
label unless it holds in some current focus. If the ATMS
discovers an environment not part of any current diagno-
sis, it does not add it to the prediction's label and instead
stores it on its "blocked" label.

Unfortunately, there is a bootstrapping problem. The
leading diagnoses cannot be accurately identified without
sufficient minimal conflicts. The reasoning cannot produce
enough minimal conflicts unless there are leading diagnoses
to focus on. Another complication is that Sherlock cannot
correctly evaluate the probability of a candidate via Bayes
rule unless it is in the focus.

The following is an outline of the procedure Sherlock
uses to identify the leading diagnoses and consists of a
backtracking best-first search coupled with focussing tac-
tics just discussed. The normalization factor of Bayes rule
is left out in the search since it does not change the prob-
ability ordering of diagnoses and is the same for all candi-
dates. The search estimates the probability of a tentative
diagnosis -a candidate which is consistent with the pre-
dictions (more precisely contains no known conflict as a
subset), but which has not yet been focussed upon -to
be simply its prior probability ( corrected by the normal-
ization). This is an upper bound of its correct probability.
Focussing the attention of the predictor on the tentative
diagnosis might produce a conflict which eliminates it (i.e.,
drives its probability to zero) or it might be discovered that
the diagnosis does not predict every measurement outcome
(in which case its probability needs to be adjusted down-
wards by Bayes rule). Using these techniques the following
search guarantees that it finds the same leading diagnoses
an unfocussed Sherlock would find.

I. If, according to the criteria, there are sufficient leading
candidates, stop. Let b be the upper-bound of the
probabilities of the diagnoses which are reachable from
the next place to push the best-first search forward.
The key test is: is b less than the leading candidates?

2. Continue a best-first search for the next highest-
probability (estimated by its upper bound) candidate
which accounts for all the minimal conflicts.

3. Focus the predictor on the candidate (i.e., by unblock-
ing the ATMS labels and permitting consumer exe-
cution). This finds any conflicts. It also finds any
new predictions which follow from this candidate but
which haven't been discovered earlier .

4. If the candidate contains a conflict, go to step I.

5. Compute the probability of the candidate according
to Bayes rule by multiplying its probability by ~
where n is the number of times the candidate fails to
predict some measurement outcome.

6. Go to I.

This search may find more than the required number of
diagnoses because the corrected probability of a best next
candidate may be much lower than estimated. Although
such candidates are diagnoses, they are not necessarily the
leading ones.

Thus far we presumed that it is important to discrimi-
nate between all modes and that the d-partitions are the
simple diagnoses. If it is not important to discriminate
among certain modes, the preceding algorithms must be
modified to identify d-partitions.

To identify d-partitions efficiently requires some subtle
changes to the best-first search. Whenever a diagnosis is
found, all the other candidates potentially in the same d-
partition must be identified to fill out the d-partition and
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accurately calculate its probability. However, this alone is
insufficient to ensure that our previous algorithm finds the
best d-partitions because the probability of the best diag-
noses within a d-partitions is only a lower bound on the
probability of the d-partition it could be part of. There-
fore, we must modify the search such that each diagnoses
is scored (only for the purposes of the search) by an up-
per bound of the probability of the d-partition it is part
of. For each component, the 'probability' score assigned
to each mode is the sum of the prior probabilities of that
mode and all modes later in the mode ordering among
which Sherlock is not required to discriminate. As a result
of this ordering the 'probability' of a diagnosis is an upper-
bound of the d-partition of which it is a member. Once one
diagnosis of a d-partition is found, the remaining members
of the d-partitions are filled out and its probability cor-
rectly computed. (Sherlock incorporates heuristics that
avoid filling out the d-partition with extremely low prob-
ability diagnoses.) As a result, Sherlock finds the leading
d-partitions meeting the criteria for simple diagnoses just
laid out.

leading diagnosis), (2) the first inverter is stuck-at-1 and
the other two are good, (3) the second inverter is stuck-at-
0, and the final inverter is good, or (4) the last inverter is
stuck-at-1.

If we apply the minimum entropy technique we find costs
($ denotes the cost function, and the focussed Sherlock cost
is shown first followed by the correct cost in parentheses):

$(X) = 1(.99), $(Y) = 1(.95), $(0) = 1(.91).

All these costs are high because there is no evidence that a
fault necessarily exists. The costs are all equal for the fo-
cussed Sherlock because there is only one leading diagnosis
and therefore nothing can be learned by further measure-
ment.

Suppose 0 is measured to be zero. There are four min-
imal conflicts (because each set of the minimal environ-
ments supporting 0 = 1 is now a conflict):

{G(A),G(B),G(C)} {Sl(A),G(B),G(C)}

{SO(B),G(C}} {Sl(C)}
Sherlock notices the leading candidate is eliminated and

continues best-first search to find the following leading di-
agnoses:

6 A simple example

To demonstrate the basic ideas of Sherlock's operation
with fault modes consider the three inverter example. We
set the focussing thresholds as indicated earlier and the
diagnostic objective to identify the mode of every compo-
nent. However, as this example is tractable without using
any focussing heuristics, we also show the correct values
(i.e., having computed all the diagnoses) in parentheses.
Suppose every inverter is modeled as described earlier ,
with A and B tending to fail stuck-at-1 and C tending
to fail stuck-at-O:

A B C
p(G(A)) = .99 p(G(B)) = .99 p(G(C)) = .99
p(SI(A)) = .008 p(SI(B)) = .008 p(SI(C)) = .001
p(SO(A)) = .001 p(SO(B)) = .001 p(SO(C)) = .008
p(U(A)) = .001 p(U(B)) = .001 p(U(C)) = .001

With no observations Sherlock finds the single leading
diagnosis (all diagnosis probabilities are normalized):

p[G(A), G(B), G(C)] = 1(.970).

The unfocussed Sherlock finds 43 = 64 diagnoses ( as there
are no symptoms anything could be happening). Given a
zero input (I = 0), Sherlock computes the following out-
comes and their supporting environments. The final col-
umn indicates the additional environments an unfocussed
Sherlock discovers):
X = 0, {SO(A)}
X = 1, {G(A)} {SI(A)}
y = 0, {G(A), G(B)} {SI(A), G(B)}{SO(B)}
y = 1, {SO(A), G(B)} {SI(B)}
O = 0, {SO(A), G(B~, G(C)}

{Sl(B)G(C)} {SO(C)} ,
0 = 1, {G(A), G(B), G(C~} {Sl(A), G(B), G(C)}

{SO(B),G(C)} {Sl(C)}
The first line states that X = O under assumption SO(A),
or equivalently that X = O in every candidate which in-
cludes SO(A). However, the focussed Sherlock finds no
label for X = 0 as it does not hold in the single leading
diagnosis. Intuitively, the last line states that the output is
one if either (1) all the components are good (which is the

p([G(A),G(B),SO(C)]) = 0.432(.426)

p([G(A), Sl(B), G( C)]) = 0.432( .426)

p([SO(A),G(B),G(C)]) = 0.054(.053)

p([G(A), G(B), U(C)]) = 0.027(.027)

p([U(A), G(B), G( C)]) = 0.027( .027)

p([G(A), G(C), U(B)]) = 0.027(.027)

Total = .999( .986)

The next highest probability diagnoses being:

p([Sl(A),G(B),SO(C)]) = .003(.003).

The figures in parentheses indicate the correct probabil-
ities (initially there were 64 diagnoses, now 42 diagnoses
remain) and Sherlock has identified the leading ones.

There are four important things to notice about this
list of leading diagnoses. First, even though the Sher-
lock algorithm is running with kl = 5, it finds 6 can-
didates because it expands its search slightly to make
sure candidates are not eliminated simply by round off
errors. Second, the top 6 of the 42 candidates contain
98.6% of the probability mass. Third, the heuristic es-
timates are quite accurate -they are equal to the cor-
rect values normalized by .986. Fourth, although diagnosis
[SO(A), G(B), G(C)] has the same prior probability of the
three candidates [G(A),G(B),U(C)], [U(A),G(B),G(C)]
and [G(A), G(C), U(B)], after the two measurements its
probability is twice that of the others. This is because the
three candidates predict no value of the output and hence
their posterior probability is reduced by one-half by Hayes
rule.

Given the leading diagnoses, the resultant probabilities
of behavior modes are:

A B C

p(G) .918(.911) .541(.538) .541(.538)
p(Sl) 0(.007) .432(.434) 0
p(SO) .054(.054) 0(.0005) .432(.435)
p(U) .027( .028) .027( .027) .027( .027)
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The table indicates that the major failure modes to con-
sider are C stuck-at-O, and B stuck-at-l and that all other
faults are unlikely.

The resulting ATMS labels are (for this simple example
focussing no longer has any affect on labels):

X = 0, {G(B),G(C)} {SO(A)}
X = 1, {G(A)} {SI(A)}
y = 0, {G(A), G(B)} {G(B), SI(A)} {SO(B)}
y = 1, {G(C)} {G(B),SO(A)} {SI(B)}

{SI(A), G(B), G(C)}{SO(B), G(C)} {SI(C)}
Suppose that we applied a second test vector with I = 1

(the first test vector was I = 0), and evaluated the hypo-
thetical measurements: .

$(Xl) = .72(.72),$(X2) = .94(.92),$(Y1) = .31(.31)

$(Y2) = .91(.90), $(02) = .89(.89).

Thus we see that measuring y using the first test vector
(I = 0) is the best measurement. This is because measur~
ing y will differentiate between the two high probability
candidates. However, measuring 0 under the second test
vector (I = 1) is useful as well. Suppose 0 = 0 under the
second test vector. The resulting probabilities are:

p([G(A), G(B), SO(C)]) = 0.450(.444)

p([G(A), SI(B),G(C)]) = 0.450(.444)

p([SO(A), G(B), G(C)]) = 0.056(.056)

p([G(A), G(B), U(C)]) = 0.014(.014)

p([U(A), G(B), G(C)]) = 0.014(.014)

p([G(A), G(C), U(B)]) = 0.014(.014)

Although measuring 0 = 0 again does not eliminate any
diagnosis, it provides further evidence that a component is
not behaving in some unknown mode, thus slightly raising
the probabilities of the first three diagnoses.
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