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Abstract 
Nonmonotonic formal systems have been proposed as an exten- 

sion to classical first-order logic that will capture the process of hu- 
man “default reasoning” or “plausible inference” through their infer- 
ence mechanisms just as modus ponena provides a model for deduc- 
tive reasoning. But although the technical properties of these logics 
have been studied in detail and many examples of human default 
reasoning have been identified, for the most part these logics have 
not actually been applied to practical problems to see whether they 
produce the expected results. 

We provide axioms for a simple problem in temporal reasoning 
which has long been identified as a case of default reasoning, thus pre- 
sumably amenable to representation in nonmonotonic logic. Upon 
examining the resulting nonmonotonic theories, however, we find 
that the inferences permitted by the logics are not those we had in- 
tended when we wrote the axioms, and in fact are much weaker. This 
problem is shown to be independent of the logic used; nor does it 
depend on any particular temporal representation. Upon analyzing 
the failure we find that the nonmonotonic logics we considered are 
inherently incapable of representing this kind of default reasoning. 
Finally we discuss two recent proposals for solving this problem. 

1 Introduction 

Logic as a representation language for AI theories has always held 
a particular appeal in the research community (or in some parts of 
it, anyway): its rigid syntax forces one to be precise about what 
one is saying, and its semantics provide an agreed-upon and well- 
understood way of assigning meaning to the symbols. But if logic is 
to be more than just a concise and convenient notation that helps 
us in the task of writing programs, we somehow have to validate 
the axioms we write: are the conclusions we can draw from our 
representation (i.e., the inferences the logic allows) the same as the 
snes characteristic of the reasoning process we are trying to model? 
If so, we’ve gone a long way toward validating our theory. 

The limitation of classical logic as a representation for human 
knowledge and reasoning is that its inference rule, modus ponena, is 
the analogue to human deductive reasoning, but for the most part 
everyday human reasoning seems to have significant non-deductive 
components. But while certain aspects of human reasoning (e.g. 
inductive generalization and abductive explanation) seem to be sub- 
stantially different from deduction, a certain class of reasoning, dubbed 
“default reasoning,” resembles deduction more closely. Thus it was 
thought that extensions to first-order logic might result in formal 
systems capable of representing the process of default reasoning. 

While it is still not clear exactly what constitutes default reason- 
ing, the phenomenon commonly manifests itself when we know what 
conclusions should be drawn about typical situations or objects, but 
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we must jump to the conclusion that an observed situation or object 
ia typical. For example, I may know that I typically meet with my 
advisor on Thursday afternoons, but I can’t deduce that I will ac- 
tually have a meeting nezt Thursday because I don’t know whether 
next Thursday is typical. While certain facts may allow me to de- 
duce that next Thursday is not typical (e.g. if I learn he will be out 
of town all next week), in general there will be no way for me to 
deduce that it ia. What we want to do in cases like this is to jump to 
the conclusion that next Thursday is typical based on two pieces of 
information: first that most Thursdays are typical, and second that 
we have no reason to believe that this one is not. Another way to 
express the same notion is to say that I know that I have meetings 
on typical Thursdays, and that the only atypical Thursdays are the 
ones that I know (can deduce) are atypical. 

Research on nonmonotonic logics2, most notably by McCarthy 
(in (81 and [9]), McDermott and Doyle (in [12]) and Reiter (in [l4]) 
attacked the problem of extending first-order logic. in a way that 
captured the intuitive meaning of statements of the form “lacking 
evidence to the contrary, infer CX” or more generally “infer p from the 
inability to infer a.” But since that first flurry of research the area 
has developed in a strange way. On one hand the logics have been 
subjected to intense technical scrutiny (in the papers cited above, 
and also, for example, in Davis [2]) and have been shown to produce 
counterintuitive results under certain circumstances. At the same 
time we see in the literature practical representation problems such 
as story understanding (Charniak [1]), social convention in conver- 
sation (Joshi, Webber, and Weischedel [6]), and temporal reasoning 
(McDermott [11] and McCarthy [9]), in which default rules would 
aeem to be of use, but in these cases technical details of the formal 
systems are for the most part ignored. 

The middle ground-whether the technical workings of the logics 
correctly bear out one’s intentions in representing practical default- 
reasoning problems-is for the most part empty, though the work 
of Reiter, Etherington, and Criscuoio, in 131, [4], and elsewhere, is a 
notable exception. Logicians have for the most part ignored practical 
problems to focus on technical details, and “practitioners’ have used 
the default rules intuitively, with the hope (most often unstated) that 
the proof theory or semantics of the logics can eventually be shown 
to support those intuitions. 

We explore that middle ground by presenting a problem in tem- 
poral reasoning that involves default inference, writing axioms in 
nonmonotonic logics intended to represent that reasoning process, 

*So called because of the property that inferences allowed by the logic may be 

disallowed as axioms are added. For example I may jump to the conclusion that 

next Thursday is typical, thus deduce that I will have a meeting. If I later come 

to find out that it is otypicd, I will have to retmcl that conclusion. In first-order 

logic the addition of new knowledge (axioms) to a theory can never diminish the 

deductions one can make from that theory, thus it is never necessary to retract 

conclusions. 
3This sounds much more straightforward than it is: consider that the theo- 

rems of a logic are defined in terms of its inference rules, yet here we are trying 

to define an inference rule in terms of what is or is not a theorem. 
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then analyzing the resulting theory. Reasoning about time is an 
interesting application for a couple of reasons. First of all, the prob- 
lem of representing the tendency of facts to endure over time (the 
“frame problem” of McCarthy and Hayes ]lO] or the notion of =per- 
sistence” in McDermott [ll]) has long been assumed to be one of 
those practical reasoning problems that nonmonotonic logics would 
solve. Second, one has strong intuitions about how the problem 
should be formalized in the three logics, and even stronger intuitions 
about what inferences should then follow, so it will be clear whether 
the logics have succeeded or failed to represent the domain correctly. 

In the rest of the paper we discuss briefly some technical aspects 
of nonmonotonic logics, then go on to pose formally the problem of 
temporal projection. We then analyze the inferences allowed by the 
resulting theory and show that they do not correspond to what we 
intended when we wrote the axioms. Finally we point out the (un- 
expected) characteristics of the domain that the logics were unable 
to capture, and discuss proposed solutions to the problem. 

2 Nonmonotonic inference 

testing theoremhood within an extension. So any definition of de- 
fault reasoning based on discriminating among extensions is actually 
beyond the expressive power of default logic. Reiter does provide a 
proof procedure for asking whether a sentence is a member of any 
extension, but, as he points out, this is not a satisfying definition 
of inference since both a sentence and its negation may appear in 
different extensions. 

Our view in this paper is that some notion of inference is neces- 
sary to judge the representational power of the logic. A logic that 
generates one intuitive extension and one unintuitive extension does 
not provide an adequate representation of the problem, since there 
is no way to distinguish between the two interpretations. For that 
reason we will define inference in the manner of McDermott’s logic: 
a sentence 5 can be inferred from a default theory jnst in case 6 is 
in every extension of that theory. (This definition is also consistent 
with circumscriptive inference as described in the next section.) 

While there is no general procedure for determining how many 
extensions a given theory has, as a practical matter it has been noted 
that theories with “conflicting” default rules tend to generate multi- 
ple extensions. For example, the following default theory 

Since we are considering the question of what inferences can be drawn 
from a nonmonotonic theory, we should look briefly at how inference 
is defined in these logics. We will concentrate on Reiter’s default logic 
and on circumscription, but the discussion and subsequent results 
hold for McDermott’s nonmonotonic logic as well. 

2.1 Inference in default logic 

Reiter in [14] defines a default theory as two sets of rules. The first 
consists of sentences in first-order logic (and is usually referred to 
as W), and the second is a set of default rules (referred to as D). 
Default rules are supposed to indicate what conclusions to jump to, 
and are of the form 

ct :MB 

w = {Q(N), R(N)}, D = (Q(x) ;,,l” p(x), R(x) : M 7p(x) ) 
-P(x) . , 

has two rules that would have us jump to contradictory conclusions. 
But note that applying one of the rules means that the other cannot 
be applied, since its precondition is not met. This default theory has 
two extensions: El = {Q(N), R(N), P(N)} and E2 = {Q(N), R(N), 
1 P(N)} that correspond to the two choices one has in applying the 
default rules. (One interpretation of this theory reads Q as ‘Quaker,” 
R as “Republican,” P as “Pacifist,” and N as ‘Nixon.“) Thus the 
above theory entails only the sentences in W, plus tautologies (for 
example P(N) V -P(N)). 

We are not claiming that this admission of multiple extensions is a 
fault or deficiency of the logic-in this particular example it’s hard to 
imagine how the logic could license any other conclusions. Our point 
is that when a theory generates multiple extensions it’s generally 
going to be the case that only weak inferences can be drawn. Further, 
if one extension captures the intended interpretation but there are 
other different extensions, it will not be possible to make only the 
intended inferences. 

where (Y, p, and 7 are first-order sentences. The intended interpre- 
tation of this rule is “if you believe Q, and it’s consistent to believe 
p, then believe 7,” or, to phrase the idea more like an inference rule, 
“from a and the inability to prove +, infer 7.” (But recall our 
note above about the futility of trying to define inference in terms 
of inference.) 

In order to discuss default inference we must introduce the con- 
cept of an extension-a set of sentences that “extend” the sentences 
in W according to the dictates of the default rules. A default the- 
ory defines zero or more extensions, each of which has the following 
properties: (1) any extension E contains W, (2) E is closed under 
(monotonic) deduction, and (3) E is faithful to the default rules. 

2.2 Inference in circumscription 

To describe inference in circumscribed theories we will have to be 
rather vague: there are several versions of the logic, defined in [8], 
(91 and elsewhere, and we will not spend time discussing these dif- 
ferences. 

By the last we mean that if there’s a default rule in the theory of 
the form y , and if a E E, and (-p) @ E, then 7 E E. The 
extensions of a default theory are all the minimal sets E that satisfy 
rthese three properties. Extensions can be looked upon as internally 
consistent and coherent states of the world, though the union of two 
extensions may be inconsistent. 

We will speak generally of predicate circumscription, in which the 
intent is to minimize the extension of a predicate (say P) in a set 
of first-order axioms. Using terms like those we used in describing 
default logic, we might say that when we circumscribe axioms over 
P we intend that “the only individuals for which P holds are those 
individuals for which P must hold,” or alternatively we might phrase 
it as ‘believe ‘not P’ by default.” 

To circumscribe a set of axioms A over a predicate P one adds 
to A an axiom (the exact form of which is not important for our 
discussion) that says something like this: “any predicate P’ that 
satisfies the axioms A, and is at least as strong as P, is exactly as 
strong as P.” The intended effect is (roughly) that for any individual 

X7 

Finding a satisfying definition of default inference--what sen- 
tences can be said to follow from a default theory-is tricky. Reiter 
avoids the problem altogether, focusing on the task of defining ex- 
tensions and exploring their properties. He expresses the view that 
default reasoning is really a process of selecting one extension of a 
theory, then reasoning “within” this extension until new information 
forces a revision of one’s beliefs and hence the selection of a new 
extension. 

This view of default reasoning, while intuitively appealing, is in- 
feasible from a practical standpoint: there is no way of “isolating” 
a single extension of a theory, thus no procedure for enumerating or 

if A Y P(x) 
Circum(A, P) t- 1 P(x) 

then 
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where Circum(A, P) f re ers to the axioms A augmented by the cir- 
cumscription axiom for P. 

To talk about circumscriptive inference, we should first note that 
since Circum(A, P) is a first-order theory we want to know what 
deductively follows, but we are interested in characterizing these de- 
ductions in terms of the original axioms A. In brief, the results are 
these: if a formula ‘p is a theorem of Circum(A, P) then cp is true 
in all models of A minimal in P (this property is called soundness), 
and if a formula cp is true in all models of A minimal in P then ‘p 
is a theorem of Circum(A, P) (this property is called completeness). 
Completeness does not hold for all circumscribed theories, but it 
does hold in certain special cases-see Minker and Perlis [13]. 

Minimal models, the model-theoretic analogue to default-logic 
extensions, are defined as follows: a model M is minimal in P just 
in case there is no model M’ that agrees with M on all predicates 
ezcept for P, but whose extension of P is a subset of M’s extension 
of P. 

As with default logic, there is no effective procedure for deter- 
mining how many minimal models a theory has. And note that the 
converse of the soundness property says that if ‘p is not true in all 
models minimal in P it does not follow from Circum(A, P). So once 
again, if we have multiple minimal models, what we can deduce are 
only those formulas true in all of them. Because of the obvious paral- 
lels between extensions and minimal models (and “NM fixed points” 
in McDermott’s logic, which we will not discuss here), we will use 
the terms interchangeably when the exact logic or object doesn’t 
matter. 

Intuitively we would like to assume so, because it’s typically the case 
that eating breakfast does not cause one to fall asleep. But given 
the above axioms there is no way to deduce 

T( AWAKE(JOHNj. &j. 
We could add an axiom to the effect that if one is awake in a situ- 
ation then one is still awake after eating breakfast, but this seems 
somewhat arbitrary (and will occasionally be false). And in any rea- 
sonable description of what one might do in the course of a morning 
there would have to be a staggering number of axioms expressing 
something like “if fact f is true in a situation s, and e is an event, 
then f is still true in the situation RE.SULT(e. sj.” McCarthy and 
Hayes (in [lo]) 11 ca axioms of this kind “frame axioms,” and identi- 
fied the “frame problem” as that of having to explicitly state many 
such axioms. Deductive logic forces us into the position of assuming 
that an event occurence may potentially change the truth value of 
all facts, thus if it does not change the value of a particular fact in a 
particular situation we must explicitly say so. What we would like 
to do is assume just the opposite: that most events do not affect the 
truth of most facts under most circumstances. 

Intuitively we want to solve the frame problem by assuming that 
in general an event happening in a situation is irrelevant to a fact’s 
truth value in the resulting situation. Or, to make the notion a little 
more precise, we want to assume “by default” that 

T(t sj I T(t RESULT(e, sjj 
for all facts, situations, and events. But note the quotes: the point 
of this paper is that formalizing this assumption is not as straight- 
forward as the phrase might lead one to believe. 

3 The temporal projection problem 

The problem we want to represent is this: given an initial description 
of the world (some facts that are true), the occurence of some events, 
and some notion of causality (that an event occuring can cause a fact 
to become true), what facts are true once all the events have occured? 

We obviously need some temporal representation to express these 
concepts, and we will use the situation calculus [lo]. We will thus 
speak about jucta holding true in situations. A fact syntactically 
has the form of a first-order sentence, and is intended to be an 
assertion about the world, such as SUNNY, LOADED(GlJN-35), or 
V x.HAPPY(xj. Situations are individuals denoting intervals of time 
over which facts hold or do not hold, but over which no fact changes 
its truth value. This latter property allows us to speak unambigu- 
ously about what facts are true or false in a situation. To say that a 
fact f is true in a situation s we assert T([ s), where T is a predicate 
and f and s are terms. 

Events are things that happen in the world, and the occurence of 
an event may have the effect of changing the truth value of a fact. So 
we think of an event occuring in a situation and causing a transition 
to another situation-one in which the event’s effects on the world 
are reflected. The function RESULT maps a situation and an event 
into another situation, so if So is a situation and WAKEUP(JOHNj is 
an event, then RESULT(WAKEUP(JOHNj. So) is also a situation- 
presumably the one resulting from JOHN waking up in situation So. 
We might then want to state that JOHN is awake in this situation: 

T( AWAKE(JOHNj. RESULT( WAKEUP(JOHNj, So)) 
or more generally we might state that 

V p, s. T(AWAKE(pj, RESULT(WAKEUP(pj, sjj. 

A problem arises when we try to express the notion that facts 
tend to stay true from situation to situation as irrelevant events 
occur. For example, is JOHN still awake in the state SZ, where 

S2 = RESULT(EAT-BREAKFAST(JOHNj, 
RESULT(WAKEUP(JOHNj. So))? 

McCarthy’s proposed solution to the frame problem (described in 
191) involves extending the situation calculus a little, to make it what 
he calls a “simple abnormality theory.” We state that all ‘normal” 
facts persist across occurences of ‘normal” events: 

V f. e. s. T(t sj A 7 AB(f e. sj I T(t RESULT(e. sjj 
where AB(f, e, sj is taken to mean ‘fact f is abnormal with respect 
to event e occuring in state s,” or, “there’s something about event 
e occuring in state s that causes fact f to stop being true in RE- 
SULT(e.s).” We would expect, for example, that it would be true 
that 

V p, s. AB(AWAKE(p), GOTOSLEEP(pj. sj 
and we would have to add a specific axiom to that effect. 

Of course we still haven’t solved the frame problem, since we 
haven’t provided any way to deduce 7 AB(te,sj for most facts, 
events, and situations. As an alternative to providing myriad frame 
axioms of this form, McCarthy proposes that we circumscribe over 
the predicate AB, thus “minimizing” the abnormal temporal indi- 
viduals. The question is whether this indeed represents what we 
intuitively mean by saying that we should ‘assume the persistence 
of facts by default,” or “once true, facts tend to stay true over time.” 

As an illustration of what we can infer from a very simple situation- 
calculus abnormality theory, consider the axioms of Figure 1. For 
simplicity we have restricted the syntactic form of facts and events 
to be propositional symbols, so the axioms can be interpreted as re- 
ferring to a single individual who at any point in time (situation) 
can be either ALIVE or DEAD and a gun that can be either LOADED 
or UNLOADED. At some known situation So the person is alive (Ax- 
iom l), and the gun becomes loaded any time a LOAD event happens 
(Axiom 2). Axiom 3 says that any time the person is shot with a 
loaded gun he becomes dead, and furthermore that being shot with 
a loaded gun is abnormal with respect to staying alive. Or to use 
our definition from above: there is something about a SHOOT event 
occuring in a situation in which the gun is loaded that causes the 
fact ALIVE to stop being true in the situation resulting from the 
shot. Axiom 4 is just the assertion we made above that %ormal” 
facts persist across the occurence of “normaln events. 
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(1) ~(ALIVE. 54-J 
(2) V s. T(LOADED. RESULT(LOAD. s)) 
(3) V s. T(LOADED. s) > AB(ALIVE. SHOOT, s) A 

compels us to believe AB(ALlVE, LOAD, So), so we assume its nega- 
tion. From this assumption and from Axiom 4 we deduce T(ALIVE, 
Sr). Reasoning along the same lines, we can deduce T(LOADED, 
Sr) and we are free to make the assumptions 1 AB(ALlVE, WAIT, 

(4) 
T(DEAD. RESULT(SHOOT. s)) 

V 6 e, s. T(t s) A 7 AB(t e. S)I T(t RESULT(e. s)) 
SJ and 7 AB(LOADED. WAIT. S,) so we do so and go on to de- 
duce T(ALIVE. S2) and T(LOADED, $j. Again moving forward in 
time, we can deduce from Axiom 3 that AB(ALIVE, SHOOT, Sz) so 

Figure 1: Simple situation-calculus axioms we can’t assume its negation, but we can assume 1 AB(LOADED, 
SHOOT, $1. At that point we have T(DEAD, Ss) and T(LOADED. 
S3). 

This line of reasoning leads us to the interpretation of Figure 2b. 
We can easily verify that this interpretation is indeed a model of A 
(that Axioms 1 through 4 are satisfied). Furthermore, this model is 
minimal in AB: any submodel would have to have an empty extension 
for AB, which cannot be the ca.se.5 

model of first-order axioms 

-AB(ALIVE, LOAD, SO) -AB(ALIVE, WAIT, Sl) 
-C\B(LOADED, WAIT, $1) 

AB(ALIVE, SHOOT, S2) 
-AB(LOADED, SHXIT, 52) 

The interesting question now is whether the model of Figure 2b- 
our intended model of A-is the only minimal model, or, more to 
the point, whether T(DEAD. Ss) and T(LOADED. $1 are true in all 

(b) a model minimal in AB minimal models. Because if they’re not true 
they can’t be deduced from Circum(A, AB). 

in all minimal models 

-AB(ALNE LOAD, So) -.AB(ALIVE WAIT, $1) 
ABJLOADED, WATT, $1) 

-AB(ALIVE SHOOT, 9) 

(c) another minimal model 

Figure 2: Three models of the Figure 1 axioms 

Consider the situation in Figure 2c. The picture describes a state 
of affairs in which the gun ceases to be loaded “as a result of” waiting. 
Then the individual does not die as a result of the shot, since the gun 
is not loaded. Of course this state of affairs directly contradicts our 
stated intention that since nothing is explicitly “AB” with respect 
to waiting everything should be “not AB” with respect to waiting. 
Does this interpretation describe a minimal model? First recall that 
there can be no models having a null extension for AB, so if this 
interpretation is a model at all it must be minimal in AB. 

Then we circumscribe Axioms l-4 over AB, recalling that the 
deducible formulas will be those that are true in all models mini- 
ma1 in AB. As above we will refer to Axioms l-4 as A, and to t,he 

circumscribed axioms as Circum(A, AB). 

of what facts will be true 

One can “build” this model in much the same way we constructed 
the model of Figure 2b, except this time instead of starting at SO 
and working forward in time, we will start at Ss and work backward. 
In other words, we will start by noting that T(ALIVE&) must be I 
true, then consider what must have been true at SZ and in earlier 
situations for that to have been the case. 

in 
Now consider the problem 

the following situations: 
projecting 

The first abnormality decision to make is whether AB(ALIVE, 
SHOOT. S2) is true. Since we haven’t made a decision to the con- 
trary, we will assume its negation. But then from the contrapositive 
of Axiom 3, we we can deduce 7 T(LOADED. Sz). But if that is 
the case, and since it must also be the case that T(LOADED. Sl), we 
can deduce from Axiom 4 that AB(LOADED, WAIT. 5~). The rest 
of Figure 2c follows directly, since we can assume that ALIVEis %ot 
AB” with respect to LOAD and WAIT, thus deduce that it is true in 
both Sr and Sz. 

:= RESULT(LOAD. So), 
$= RESULT(WAIT. S1), and 
S3= RESULT(SHOOT. &) 

= RESULT(SHOOT. RESULT(WAIT. RESULT(LOAD. So))). 

In other words, our individual is initially known to be alive, then 
the gun is loaded, then he waits for a while, then he is shot with the 
gun. The projection problem is to determine what facts are true at 
the situations S;. The event WAIT is supposed to signify a period 
of time when nothing of interest happens. Since according to the 
axioms no fact is abnormal with respect to a WAIT event occuring, 
we intend that every fact true before the event happens should also 
be true ajter it happens. 

One interpretation of the Figure 1 axioms is shown in Figure 2a. 
This first picture represents facts true in all models of A (thus what 
we can deduce if we don’t circumscribe). 
can make the following deductions: 

From Axioms i and 2 we 

What, then, can be deduced from the (circumscribed) abnormal- 
ity theory? It’s fairly easy to verify that the two models we have 
presented are the only two minimal in AB, so the theorems of 
Circum(A, AB) are those common to those two models. So we can 
deduce that ALIVE and LOADED are true in Sr, that ALIVE is true 
in $,, but we ca,n say nothing about what is true in &except for 
statements like T(ALIVE, Ss) v T(DEAD. 5). What we can deduce 
from Circum(A, AB) is therefore considerably weaker than what we 
had intended. 

T(ALIVE. St,), T(L OADED. S,), 
but we can deduce nothing about what is true in S, or in S3. We 
also cannot deduce any Uabnormalitiesn nor their negations. But this 
is pretty much as expected: the ALIVE fact did not persist because 
we could not deduce that it was “not AB” with respect to loading 
the gun, and the gun being loaded did not persist through the WAIT 
event because we could not deduce that it was ‘not AB” with respect 
to waiting. 

Intuitively we would like to reason about “minimizing abnormal- 
ities” like this: we know ALIVE must be true in So, and nothing 

4 How general is this problem? 

The question now arises: how dependent is this result on the specific 
problem and formulation we just presented? Does the same prob- 
lem arise if we use a different default logic or a different temporal 
formalism? 

sTo see why this is true, consider that in any model of A either T(ALIVE 5%~ 
is true, or it’s false. If it’s true we can immediately deduce an abnormality from 

Axiom 3. But if it’s false then either AB(ALIVE. LOAD. So) or AB(ALIVE. WAIT. 
S1) would have to be true. In either case we must have at least one abnormality. 
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We can easily express the theory above in Reiter’s logic: we use 
the same first-order axioms from Figure 1, but instead of circum- 
scribing over AB we represent “minimizing abnormal individuals” 
with a class of (normal) default rules of the form 

D={ 
: M yAB(f, e, s) 

> 
lAB(I, e,s) 

only a single default rule? It turns out that conflict between rulG 
arises in our domain in a different, more subtle, manner. To see how, 
recall how we built the first minimal model (that of Figure 2b). The 
idea was that we assumed one ‘normality,” then went on to make all 
possible deductions, then assumed another “normality,” and so on. 
The picture looks something like this: 

(where any individual may be substituted for < e, and s). Recall 
that extensions are defined proof-theoretically instead of in terms of 
models, so we must translate the minimal models shown in Figure 2 
(b and c) into sets of sentences; the question becomes whether the 
following sets are default-logic extensions: 

where the conflict to notice is that as a result of assuming a ‘nor- 
mality” we could deduce an abnormality. The same thing happened 
when we build the model in Figure 2c, except the picture looks like 

A B(LOA DED, WAIT, SI) a T(LOADED, Sz) j . . . =s- 
AB(ALIVE, SHOOT, S2) 

E, 
this instead (reading from right to left): 

T(ALIVE. So) 
7 AB(ALIVE. LOAD, So) 
T(A Ll VE. SJ 
T(LOA DED. SI) 
- AB(ALIVE. WAIT, S1) 
7 AB(LOADED. WAIT. SI) 
T(ALIVE, S2) 
T(LOA DED, SJ 
AB(ALIVE. SHOOT, S2) 
7 AB(LOADED. SHOOT, S2) 
T(DEA D, S3) 
T(LOA DED. S3) 

T(A LIVE. So) 
7 AB(ALIVE, LOAD, So) 
T(ALIVE. S1) 
T(LOADED. SJ 
7 AB(ALIVE. WAIT, S1) 
AB(LOADED. WAIT. S1) 
T(ALIVE, &) 

7 AB(ALIVE, SHOOT, Sz) 

T(ALIVE, S3) 

AB(LOADED. WAIT, SI) s= . . . -e --, T(LOADED. s2) -+ 
7 AB(ALIVE. SHOOT. 52). 

The only difference between the two models is that in the first 
case we started at the (temporally) earliest situation and worked 
our way forward in time, and in the second case we started at the 
latest point and worked our way backward in time. Another way 
to express the idea is that in the first model we always picked the 
Uearliest possible” ([ e, S) triple to assume “normal” and in the 
second model we always picked the latest. 

So the class of models we want our logic to select is not the “min- 
imal models” in the set-inclusion sense of circumscription, but the 
“chronologically minimal” models (a term due to Yoav Shoham): 
those in which normality assumptions are made in chronological or- 
der, from earliest to latest, or, equivalently, those in which abnor- 
mality occurs as late as possible. 

(In a richer temporal formalism the criterion chronological min- 

Of course these are partial descriptions of extensions. Each set also 
contains A and all tautologies, and in E,, for example, we also in- 
elude all sentences of the form 1 AB(f. e, s) for all individuals (t e, 
s) except (ALIVE, SHOOT. &). 

We will omit the proof that both E, and Er, are extensions, imality might not be the right one. If several years had lapsed be- 
though in our longer paper, [5), we carry it out in some detail. It tween the WAIT and the SHOT, for example, it would be reasonable 
should be easy to convince oneself that both sets satisfy the three to assume that the gun was no longer loaded. But chronological 
conditions we set down in Section 2: they contain A, they are closed minimality does correctly represent our simple notion of persistence: 
under deduction, and they are faithful to the default rule in the sense that facts tend to stay true (forever) unless they are “clipped” by a 
defined previously. To verify that they are both minimal, note that contradictory fact.) 
in both cases all the sentences except the default-rule assumptions 
indeed follow from the default assumptions and the axioms in A. 

So circumscription is not the culprit here-Reiter’s proof-theoretic 
default logic has the same problem. We can also express the same 
problem in McDermott’s nonmonotonic logic and show that the the- 
ory has the same two fixed points. 

Nor is the situation calculus to blame: in a previous paper [5] 

we use a simplified version of McDermott’s temporal logic and show 
that the same problem arises, again for all three default logics. In the 
next section we will show what characteristics of temporal projection 
lead to the multiple-extension problem, and why it appears that the 
three default logics are inherently unable to represent the domain 

There appears to be no way represent this criterion, either in 
published versions of circumscription6 or in the logics of Reiter or 
McDermott. The concept of minimality in circumscription is inti- 
mately bound up with the notion of set inclusion, and chronological 
minimality cannot be expressed in those terms. As far as Reiter and 
McDermott’s logics go, what we need is some way to mediate appli- 
cation of default rules in building extensions or fixed points, which 
is beyond the expressive power of (Reiter’s) default rules or of NML 
sentences involving the M operator. 

6 Potential solutions 
correctly. 

5 A minimality criterion for temporal 
reasoning 

We noted above that default-logic theories often generate multiple 
extensions. But characteristic of all the usual examples, like the one 
we used in Section 2, is the fact that the default rules of these theories 
were mutually exclusive: the application of one rule rendered other 
rules inapplicable by blocking their preconditions. 

Thus it comes as somewhat of a surprise that the temporal pro- 
jection problem should exhibit several extensions. How can there be 
conflicting rules in the same way we saw above when our theory has 

Two lines of work have been proposed as solutions to this prob- 
lem. Yoav Shoham in 1151 presents a logic that directly addresses 
the problem of representing causation in terms of “time flowing for- 
ward.? Rather than trying to extend existing nonmonotonic logics 
so that they capture this new minimality criterion’he instead starts 
with a precise description of the chronologically minimal models. He 
then demonstrates that when a certain restricted class of first-order 
theories are minimized with respect to how much is known about 
each situation (instead of minimizing what is true in each situation) 
the resulting theory has a unique chronologically minimal model. 
While Shoham’s logic handles the specific case of causal or temporal 

6These include predicate circumscription and joint circumscription [8], for- 

mula circumscription and prioritized circumscription [9]. But see the note on 

pointwise circumscription below. 
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reasoning, his solution is obviously not an answer to the question we 
pose about the general relationship between default reasoning and 
nonmonotonic logics. 

A second proposal, due to Vladimir Lifschitz in [7], involves a 
reformulation of and extension to predicate circumscription called 
pointwise circumscription, in which one minimizes a predicate one 
point at a time (in our example a point would be a (fact, event, 
situation) triple). The order in which points are minimized is spec- 
ified by an object-language formula that can express the concept 
of “temporally earlier” and “temporally later.* Thus one is able 
to say something to the effect “minimize abnormalities, but favor- 
ing chronologically earlier ones.” Pointwise circumscription contains 
predicate circumscription as a special case, and has been shown to 
solve a simple example of interacting defaults that we presented in 

PI* 
But what benefits do we realize from these new, more expres- 

sive, more complex versions of circumscription? The problem is that 
the original idea behind circumscription, that a simple, problem- 
independent extension to a first-order theory would “minimize” pred- 
icates in just the right way, has been lost along the way. Instead, 
a complex, problem-specific axiom must be found to rationalize a 
set of inferences which must themselves be justified on completely 
separate grounds. The real theory of reasoning is the minimality cri- 
terion. In this example it was Shoham’s chronological minimality; for 
other cases of default reasoning there will be other criteria for adding 
deductively unwarranted conclusions to a theory. It contributes lit- 
tle to our understanding of the problem that these criteria can be 
expressed as a second-order circumscription axiom; the criteria are 
justifying the axiom rather than the other way around. 

The situation might be different if the second-order axiom were 
‘productive,” that is, if further, perhaps unforeseen conclusions could 
be drawn from it, mechanically or otherwise. But it can be very hard 
to characterize the consequences of the circumscription axioms for a 
reasonably large and complex theory, and when the consequences are 
understood, they may not be at all what we intended. The upshot is 
that no one really wants to know what follows from circumscription 
axioms; they usually wind up as hopefully harmless decorations to 
the actual theory. 

7 Conclusion 

We have presented a problem in temporal reasoning-causal or tem- 
poral projection-that involves defeasible inference of the sort nor- 
mally associated with nonmonotonic logics. But upon writing axioms 
that describe temporal projection in an intuitive way, we found that 
the inferences licensed by the logics did not correspond to our in- 
tentions in writing the axioms. There seem to be two reasons for 
this: that conflicting default rule instances lead to unexpected mul- 
tiple fixed points (minimal models), and that our preference of one 
extension over another (our criterion for minimality) depends on an 
ordering of individuals that cannot be expressed by circumscribing 
over any predicate or set of predicates, or by the default rules in the 
other nonmonotonic logics. 

At this point we need to re-evaluate the relationship between 
nonmonotonic logics and human default reasoning. We can no longer 
engage in the logical “wishful thinking” that led us to claim that 
circumscription solves the frame problem [9], or that “consistent’ is 
to be understood in the normal way it is construed in nonmonotonic 
logic.[l]” From a technical standpoint, there is no “normal way” to 
understand the M operator, or the Reiter default rules, or a theory 
circumscribed over some predicate, apart from the proof- or model 
theory of the chosen logic. 

The term “consistent,” has too often used informally by researchers 
(e.g. in [6]) as if it had an intuitive and domain-independent mean- 
ing. \n7e have shown that in at least one case a precise definition 

of the term is much more complex than intuition would have us be- 
lieve, and that the definition is tightly bound up with the problem 
domain. As such, the claim implicit in the development of nonmono- 
tonic logics-that a simple extension to classical logic would result 
in the power to express an important class of human nondeductive 
reasoning-is certainly called into question by our result. 
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