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Abstract

This paper considers the problem of shape-based recog-
nition and pose estimation of 3-D free-form objects in
scenes that contain occlusion and clutter. Our ap-
proach is based on a novel set of discriminating de-
scriptors called spherical spin images, which encode the
shape information conveyed by classes of distributions
of surface points constructed with respect to reference
points on the surface of an object. The key to this ap-
proach is the relationship that exists between the l2 met-
ric, which compares n-dimensional signatures in Eu-
clidean space, and the metric of the compact space on
which the class representatives (spherical spin images)
are de�ned. The connection allows us to eÆciently
utilize the linear correlation coeÆcient to discriminate
scene points which have spherical spin images that are
similar to the spherical spin images of points on the
object being sought. The paper also addresses the prob-
lem of a compressed spherical-spin-image representa-
tion by means of a random projection of the original
descriptors that reduces the dimensionality without a
signi�cant loss of recognition/localization performance.
Finally, the eÆcacy of the proposed representation is
validated in a comparative study of the two algorithms
introduced here that use uncompressed and compressed
spherical spin images versus two previous spin image
algorithms reported recently in the literature. The re-
sults of 2012 experiments suggest that the performance
of our proposed algorithms is signi�cantly better with
respect to accuracy and speed than the performance of
the other algorithms tested.

1. Introduction

With the increased availability and decreased prices for
3-D scanners, the use of range data for recognizing and
locating 3-D objects in complex scenes is a feasible op-
tion. Shape-based recognition systems that use surface
signatures to represent the shape of the object are par-
ticularly attractive, because they can handle a wide-

variety of objects, including those whose shape cannot
be easily approximated with parametric models (often
called \free-form" objects). A surface signature at a
given point on the surface of an object is a descriptor
that encodes the geometric properties measured in a
neighborhood of the point. Curvature is one of the old-
est and most basic local descriptors of shape. In early
work, Besl and Jain [1] characterized surface points
according to the signs of their mean and Gaussian cur-
vatures, which could then be used to classify points
into symbolic categories, such as peaks, pits, ridges,
and valleys. Faugeras and Hebert [6] used curvature
for detecting primitive features (points, lines, planes,
and quadric patches) in range data scenes. In recent
years, more complex surface-signature representation
schemes have been reported in the literature. They in-
clude the splash representation of Stein and Medioni,
the point signatures of Chua and Jarvis [2], the shape
spectrum scheme of Dorai and Jain [4], the surface sig-
natures from simplex meshes of Yamany et.al., [14], the
harmonic shape images of Zhang and Hebert [15], and
the spin-image representation introduced by Johnson
and Hebert [9].

The problem of shape-based 3-D object recognition
in complex scenes is diÆcult for two principal reasons.
In the �rst place, real range data scenes generally con-
tain multiple objects. The clutter due to the presence
of surface points that are not part of the object being
sought can cause confusion in the recognition process.
In the second place, scenes also contain varying levels
of occlusion, so there is only partial information per-
taining to the object of interest.

This paper addresses the problems described above
by proposing a simple and general representation of
shape that is amenable for e�ectively recognizing and
locating objects in complex 3-D scenes. The spherical-
spin-image representation (related to the spin-image
approach introduced in [9]) is a general representation
of shape based on a collection of descriptors (spheri-
cal spin images) that are robust to scene clutter and
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occlusion. The paper also considers reducing the di-
mensionality of the spherical spin images by means of
a random projection to a subspace of lower dimension,
thus accomplishing a compact representation of shape
we call compressed spherical-spin images. Random pro-
jections are transformations that are much faster than
traditional transforms like the Karhunen-Loeve Trans-
form (KLT), since they do not depend on the data to
be compressed. They were introduced in [7] and used
subsequently in [3] for density estimation and pattern
recognition applications. Finally, the paper presents
two algorithms that use uncompressed and compressed
spherical spin images to recognize and locate objects
in range data scenes. A performance evaluation is
conducted to compare these two algorithms to their
counterpart spin image algorithms given in [9]. The
results of 2012 experiments suggest that the spher-
ical spin-image representation signi�cantly improves
the recognition/localization performance and dramat-
ically reduces the matching time of the spin-image al-
gorithm. It also suggest that the compressed spher-
ical spin-image representation outperforms the recog-
nition/localization rates of its compressed spin-image
counterpart.

The rest of our paper is structured as follows. We
describe the original spin-image representation in Sec-
tion 2, since it motivated our representation of shape.
Section 3 is devoted to the spherical-spin image repre-
sentation and Section 4 to our recognition algorithms.
Section 5 discusses the results of the comparative study,
and Section 6 concludes the paper.

2 Spin Images

In [9] Johnson and Hebert introduce an elegant and
powerful representation for surface matching. The spin
image representation comprises a set of descriptive im-
ages associated with the oriented points on the surface
of an object. These images are created by constructing
a pose-invariant 2-D coordinate system at an oriented
point (3-D point with normal vector) on the surface,
and accumulating the coordinates (�; �) of other points
in a 2-D histogram called a spin image as explained in
Figure 1. The representation assumes that surfaces are
approximated by regular polygonal surface meshes, of a
given mesh resolution, de�ned as the median length of
all edges in the mesh. The spin image representation is
robust to scene clutter and occlusion and therefore suit-
able for object recognition posed as a surface-matching
problem.

Matching surfaces with spin images consists of �nd-
ing correspondences between surface points of two in-
stances of the same object, from which a rigid transfor-
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Figure 1: The spin image for point P is constructed by
accumulating in a 2-D histogram the coordinates � and
� of a set of contributing points (such as Q) on the mesh
representing the object . Contributing points are those that
are within a speci�ed distance of P and for which the surface
normal forms an angle of less than a speci�ed size with the
surface normal N of P. The coordinate � is the distance
from P to the projection of Q onto the tangent plane Tp; �
is the distance from Q to this plane.

mation that registers the surfaces is calculated. Corre-
spondences are found by comparing spin images from
points of one surface (usually the the model) with spin
images from points of a second surface (usually the
scene) using a loss function of the linear correlation co-
eÆcient as a measure of similarity, and selecting the
correspondence pairs with the highest similarity that
are geometrically consistent. The authors of [9] showed
that the method described above must be modi�ed in
order to extend surface matching using spin images to
object recognition in complex scenes. Finding corre-
spondences using the correlation coeÆcient is computa-
tionally expensive [9], and therefore, a di�erent way of
managing the information conveyed by the spin images
is needed. In order to make the process of matching
eÆcient, dimensionality reduction was achieved by pro-
jecting spin images represented as n-tuples to a space of
dimension d < n, using principal component analysis
(PCA). This compressed representation allows a sig-
ni�cant improvement in computational eÆciency that
justi�es an acceptable reduction of the recogition per-
formance.

In the compressed spin-images representation, corre-
spondences are found by using an eÆcient closest-point
search structure that looks for the best-matching model
spin image to a given scene spin image in a search space
of given dimensions and shape. Thus, �nding closest
tuples in a subspace of Rd replaces correlating spin
images [9]. One drawback of this compressed represen-
tation is that the magnitude of the d-tuples becomes
dependent on the resolution of the mesh. In principle it
is possible to control the resolution by using resampling
algorithms, but in some cases data cannot be set to a
speci�c resolution without loosing important informa-
tion related to their geometrical properties. In the sec-
tions that follow we show that the spherical spin image
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solves this problem and improves the overall perfor-
mance of the spin-image representation in the context
of object recognition/localization tasks.

3 Spherical Spin Images (SSI)

Like spin images, spherical spin images are signatures
associated with the vertices of a polygonal mesh of a
given resolution that approximates the surface of an
object. Spherical spin images are n-dimensional unit
vectors that identify the equivalence classes of spin im-
ages induced by the equivalence relation derived from
the linear correlation coeÆcient; a pair of spin images is
equivalent if their correlation coeÆcient equals 1. Fig-
ure 2 illustrates the relationship between spin images
represented as vectors in Rn and spherical spin images
on the (n-1)-sphere Sn�1 and shows several examples
of spherical spin images for selected points of a surface
mesh.

B

A

n-1Σ S
n-1

������
������
������
������
������
������
������

������
������
������
������
������
������
������

n

α

γ

2

nx

x1

x

C

B B A
θ

D

CD
Spherical 

β

D

C

A

Spin Images Spin Images

R

Figure 2: Spherical spin images for four oriented points
(3-D points plus normal vectors) A, B, C and D, on the
polygonal mesh of a model. They are obtained from spin
images via the mapping 
 de�ned in Section 3.1. The cor-
relation coeÆcient is calculated as the cosine of the angle
between spherical spin images. The angle � for the elements
labeled as A and B on the sphere is small indicating that
the spherical spin images are highly correlated. The angle
between points A and C (D) is large, indicating lack of pos-
itive correlation. Spherical spin images are n-dimensional
unit vectors that can be represented as images of n pixels,
as shown in the �gure.

The mathematical tools needed for creating spheri-
cal spin images are described in this section and sum-
marized in Figure 3. There are three main geometric
spaces involved and three mappings that relate each
space to the others. The function 
 assigns spin im-
ages to spherical spin images. The function g maps

equivalence classes of spin images to spherical spin im-
ages, and the function e maps each spin image to its
equivalence class. These functions are related by the
equation 
 = g Æ e, where Æ denotes function composi-
tion. We start by introducing our notation.

Throughout this paper we let Rn denote the set of
all ordered sets of n-tuples of real numbers. If x is an
element of Rn the coordinates of x will be denoted by
xi; hence, x = (x1; : : : ; xn). The letter o denotes the
origin (0; : : : ; 0) of Rn. We treat Rn as a vector-space
structure with componentwise addition and scalar mul-
tiplication. That is, the n-tuples are also considered to
be vectors of n components. If u; v 2 Rn we let u �v de-
note the inner product, and j u j the Euclidean norm.
We let Sn�1 denote the unit (n-1)-sphere centered at o,
that is Sn�1 = fx = (x1; � � � ; xn) j x21 + � � �+ x2n = 1g.

We let � denote the linear correlation coeÆcient,
which measures the degree of linear relationship be-
tween pairs of n-tuples in Rn. This means that for two
elements x and y of Rn, �(x; y) = 1 if and only if all
(xi; yi) pairs lie on a straight line with positive slope,
and �(x; y) = �1 if and only if all (xi; yi) pairs lie on
a straight line with negative slope.

There is a well-known geometrical interpretation of
the linear correlation coeÆcient, as the cosine of the
angle between two unit vectors, that is most convenient
for our purposes. To introduce this notion and simplify
our notation, we need to de�ne two mappings: � and
�. The function � maps elements of Rn to n-tuples of
the form (m(x); � � � ;m(x)), where m(x) = 1

n

Pn

i=1 xi:
Therefore, �(x) is an n-dimensional vector, all of whose
elements are the mean of the n components of x. We
let � denote the function de�ned as

�(x) =
x� �(x)

j x� �(x) j
: (1)

The function � produces an n-tuple (the unit di�er-
ence vector) �(x) whose ith component is the normal-
ized di�erence between the ith component of x and the
mean of the components of x. The range of � denoted
by �n�1 consists of points that lie on Sn�1. This map
allows us to write the correlation coeÆcient as

�(x; y) =

nX

i=1

xi �m(x)

j x� �(x) j
�

yi �m(y)

j y � �(y) j

= �(x) � �(y) = cos ��(x)�(y);

the cosine of the angle between the unit vectors �(x)
and �(y). Notice that �(x; y) = 1 if and only if � maps
x and y to the same unit vector; that is, if and only
if y = mx + (b; � � � ; b), m; b 2 R and m > 0. Also
note that the elements in the domain of � belong to
the complement of the set

N = fx j x 2 Rn; j x� �(x) j= 0g:
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The collection of spin images represented as n-tuples
can be de�ned as the set �n � N c . It consist of ele-
ments of N c that have non-negative components. This
means that

�n = fx j x 2 N c ; xi � 0;8i = 1; � � � ; ng: (2)

This de�nition is consistent with the original spin
image formulation of Johnson. The elements of �n pro-
duce well-de�ned values for the correlation coeÆcient,
and they have nonnegative components, since they are
histograms.

3.1 Equivalence Classes of Spin Images.

In this section we construct the set of spherical spin im-
ages in two steps. First we de�ne the set of equivalence
classes of spin images induced by the equivalence rela-
tion given by the linear correlation coeÆcient. Then,
we de�ne the function 
 that induces the same equiva-
lence relation and allows us to de�ne the spherical spin
images as the elements of its range and the function g
that allows us to identify the spherical spin images as
\labels" attached to the equivalence classes.

The linear correlation coeÆcient de�nes an equiva-
lence relation on the set of spin images. Two spin im-
ages x, y are equivalent if and only if their correlation
coeÆcient equals one. This equivalence relation parti-
tions the set of spin images into equivalence classes that
constitute the set �n=E; the equivalence class under E
of any element x 2 �n is formally de�ned as

[x] = fy j y 2 �n and xEyg;

and the set of all possible equivalence classes (or quo-
tient set) of E, as

�n=E = fC j C � �n and C = [x] for some x 2 �ng:

Here the notation xEy indicates that the spin images
x and y are equivalent.

A standard theorem in algebra shows that given the
equivalence relation E on �n and a function 
 : �n 7!
�n�1 such that xEy implies 
(x) = 
(y), there ex-
ists exactly one function g : �n=E 7! �n�1 for which

 = g Æ e, with e(x) = [x] for each u 2 �n. Further-
more, if 
 is a surjection (1-1), then g is a bijection
(1-1 and onto). The equivalence relation E is called
the equivalence kernel of 
.

The key points of the theorem are: 1) the function

 de�ned on �n implies the same equivalence relation
E de�ned by the correlation coeÆcient; and 2) for sur-
jective 
 the function g is bijective, so the elements of
�n�1 \label" the set of equivalence classes. We de�ne
the surjective function 
 such that E is its equivalence

γ
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g

      Images

e
Γ Γn / En

Spherical Spin

Figure 3: Commutative diagram that shows the relation
between the sets of spin images �n, the set of equivalence
clases of spin images �n=E and the set of spherical spin
images �n�1

� Sn�1.

kernel; that is, 
 is a restriction of the unit-di�erence-
function � : N c 7! �n�1 such that 
(u) = �(u) for
each u 2 �n, with �n � N c and �n�1 � �n�1. (See
Figure 3).

De�nition 1 Spherical spin images are elements of
the set �n�1 � Sn�1, which label the elements of the
quotient set of spin images induced by the equivalence
kernel of 
.

Some remarks are of importance. 1) Spherical spin
images are points on the (n-1)-sphere, but since we
are assuming a vector space structure in Rn, spheri-
cal spin images can also be de�ned as vectors of unit
length. In what follows we refer to spherical spin im-
ages as elements of Sn�1 or vectors of unit length,
interchangeably. 2) The value of the linear correla-
tion coeÆcient between spin images equals the co-
sine of the angle between the corresponding spheri-
cal spin images. That is, for each pair x; y 2 �n

�(x; y) = cos �
(x)
(y). 3) The angle between spherical
spin images u and v is related to the Euclidean distance
between them by the formula j u � v j= 2 sin(�uv=2).
This means that j u � v j= 2 sin(cos�1(�(u; v))=2),
where �(u; v) = cos�uv . �

n�1 is a metric space. 4) Spin
images and spherical spin images are characterized by
four parameters when represented as square matrices:
bin size, image width, support width and support an-
gle. See [9] for details. 5) The approach used here for
representing shape in terms of equivalence classes gen-
eralizes to any kind of surface signatures that can be
discriminated by the correlation coeÆcient.

3.2 Compressing Spherical Spin Images

Compression of spherical spin images is achieved by
means of a random projection. Random projections
rely on a fundamental result proved by Johnson and
Lindenstrauss [7], which says that any q point set in
Euclidean space can be embedded in O(log q=�) di-
mensions without distorting the distances between any
pair of points by more than a factor (1 � �), for any
0 < � < 1.
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A random projection from n dimensions to d dimen-
sions is represented by a d�n matrix that does not de-
pend on the data. The following algorithm generates a
random projection matrix. First, each entry of a d�n
matrix is set to an i.i.d. N(0; 1) value. Then the d rows
of the matrix are made orthogonal by using the Gram-
Schmidt algorithm. Finally, the rows are normalized to
unit length. This takes O(d2n) time overall compared
with the PCA, which takes O(n3). In practice the or-
thonormal basis is constructed by means of a Singular
Value Decomposition (SVD) algorithm. Compressed
spherical spin images are obtained by representing the
spin images as n-tuples and projecting them to a lower-
dimensional space using a previously created random
projection matrix A of order d � n. The resulting d-
tuple is then converted to a spherical spin image using
the mapping 
; that is for each u = 
(x) 2 �n�1,
x 2 �n�1, the corresponding compressed instance is

(AxT ) 2 �d�1 where AxT is a d-dimensional unit vec-
tor. (Notice the abuse of notation in this expression in
which we use the same symbol 
 to denote di�erent
functions).

4 Object Recognition with SSI

Recognizing and locating objects in complex 3-D scenes
using spherical spin images consist of �nding matches
from a set of candidate correspondences between sur-
face scene points and surface model points, that allow
us to calculate a rigid transformation that best aligns
both surfaces. Figure 4 illustrates the idea of �nding
correspondences for the scene point labeled A using
the spherical-spin-image representation. Points lying
inside the spherical cap are potential correspondences
for the query point A, since the respective spherical
spin images are similar (highly correlated). This means
that �nding correspondences consists of �nding closest
points to the query on a subset of Sn�1.

Finding closest spherical spin images is implemented
by using a modi�ed version of the closest-point search
algorithm proposed in [11], which has a complexity that
is linear in the number of points for structured data
[11]. Our algorithm searches for a group of neighbor-
ing points located on the surface of the sphere within
distance " = 2 sin(cos�1(�")=2) from the query point;
that is, inside a spherical cap of geodesic radius �"
with pole located at the query point. The neighbors
in the group that have a correlation value above ��"
(0 < � < 1) are kept as the candidate correspondences
for the query. Details of the geometry of our algorithm
and its relationship to the approach presented in [11]
are depicted in Figure 5.

The idea of searching for closest-points for matching
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Figure 4: Finding potential matches for the scene point
A consists of searching for model spherical spin images ly-
ing on a spherical cap of geodesic radius �" and pole lo-
cated at A. The radius determines the minimum expected
level of linear correlation �" for the potential matches, since
�" = cos �"; the smaller the radius the more correlated the
model spherical spin images inside the cap will be to the
scene query point. The spherical spin image labeled as B is
an example of a matching point. Notice that the geodesic
distance between two points on the unit sphere equals the
angle between the unit vectors associated with the points.

is not new. It can be found in the work of Murase and
Nayar [10] and Johnson [9]. Our contribution consists
of rede�ning the geometry of the search space in or-
der to utilize the correlation coeÆcient as a similarity
measure in an eÆcient fashion.

Surface matching using spherical spin images pro-
ceeds by storing (o�ine) the model spherical spin im-
ages (unit vectors of dimension n = 400) in a clos-
est point search structure and randomly selecting (on-
line) a percentage of the points from the scene, which
are compared individually to the model in two steps.
First, a scene point's spherical spin image is created
using the model's spherical spin image parameters and
the scene data; and second, the scene point is used
as a query point to the closest-point search algorithm
described above, which returns a list of candidate cor-
respondences for the query. The procedure is repeated
for various points of the scene, in order to obtain a
list of geometrically consistent correspondences, which
generates a set of potential matches that are scrutinized
in a veri�cation process resulting in rigid transforma-
tions that register the surfaces. The best transforma-
tion is selected as the one that generates the greatest
overlap between surfaces.
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Figure 5: Geometric details of the search space (shaded
area) used to �nd correspondences with the spherical-spin-
image representation. The point labeled as B is considered
a potential match to the query point A. Point C's spheri-
cal spin image is dissimilar to the query's point signature.
The square box in the �gure shows the geometry of the
algorithm described in [11] for �nding closest points. The
geometry of our algorithm is related to the geometry of that
algorithm by the geodesic radius �", since the side of the
cube is set to 4 sin(�"=2).

5 Comparative Study

We developed an experimental protocol to compare the
performance of four recognition and localization algo-
rithms in complex 3-D scenes. They are 1) standard
spin images (SI), 2) standard spin images with com-
pression using PCA (SIC), 3) spherical spin images
(SSI), and 4)spherical spin images with compression
using random projection (SSIC). SI and SIC are John-
son's algorithms, while SSI and SSIC are our new al-
gorithms.

A model library of 5 objects was used in the study.
Models were constructed by registering and integrat-
ing multiple range views of the objects, and enforcing
a uniform distribution of the vertices using the algo-
rithm described in [8]. The spherical spin images of
the models were created using the same generation pa-
rameters: bin size of 1 (mm), image width 20 and sup-
port angle 60Æ. The dimension of the uncompressed
(compressed) tuples was set to 400 (40) respectively.
Our test database consisted of 138 samples created by
placing, without any systematic method, four or �ve
models in the 3-D scene by hand. The resolution of all
the surfaces in the study was set to 1 mm, �� was set
to 0:96, and � to :75.

For each of the 138 scenes and for each model present
in the scene, the algorithms were executed one at a
time. The resulting recognition state after running was
classi�ed as true positive if the model was present in the
scene and was recognized by the algorithm; as false
positive if the model was not present in the scene but

the algorithm concluded that the model was present
or placed the model in an incorrect position; and false
negative if the model was present in the scene but was
not recognized. The true negative states did not apply
in our experiments, since the models being sought in
the scene were always present. For all the trials with
true positive recognition state, the localization state
was also determined. A localization state was classi�ed
as true localization if the position of the model in the
scene was determined accurately (mean square error
mse < 0:01); otherwise it was called false localization.

e)

d)

a) b)

c)

f)

Figure 6: Recognition/localization result for �ve models in
a typical 3-D scene. a) Color image. b) Three-dimensional
raw data. c) Surface mesh of the 3-D scene, 21340 vertices
(front view). d) Three-dimensional scene with recognized
models (front view). e) Surface mesh of the 3-D scene (side
view). f) Three-dimensional scene with recognized models
(side view). The �ve models, unicorn, bunny, deer, santa
and snowman in the scene had varying levels of occlusion
(75:54%, 65:7%, 73:6%, 58:6% and 72:21%, respectively)
and varying levels of clutter (25:4%, 94:53%, 91:9%, 56:6%
and 24:4%, respectively.)

The e�ect of clutter and occlusion on recognition
and localization, was measured by means of a graph-
ical interface. The occlusion of a model is de�ned as
the percent of the area of the model that is visible in
the scene. The clutter is de�ned as the percentage
of oriented points of the model, that are visible in the

6



scene, whose spherical spin images have been corrupted
by points in the scene that do not belong to the model.
The localization state was determined by calculating
the average distance error between the model and the
matched segment of the scene and also by visually in-
specting the alignment. Figure 6 shows a qualitative re-
sult obtained with the SSI algorithm for a typical scene
in our database in which the �ve models are present.

Data was analyzed by estimating the experimen-
tal recognition/localization rates as a function of the
scene clutter and occlusion by using average shift his-
tograms (ASHs) on the population of recognition (lo-
calization) states. This technique prevented problems
inherent to the binning of the data [12]. Con�dence in-
tervals for the resulting rates were calculated for each
algorithm by using standard bootstrap techniques [5].
More speci�cally, the population of recognition states
for each algorithm was randomly sampled with replace-
ment. The resulting sample was 75% the size of the
original population. Then, the recognition (localiza-
tion) rate versus occlusion (or clutter) was obtained
from the sample by means of the ASH technique. The
same procedure was repeated for 10; 000 di�erent sam-
ples. The mean and the standard deviation were then
calculated from the samples to obtain the �nal empir-
ical rate.

The performance of the algorithms SSI and SSIC
is illustrated in Figure 7, which shows that: 1) The
empirical recognition/localization rates versus occlu-
sion are monotonically decreasing functions. 2) The
recognition rate is about 90% for values of occlusion
smaller than 70%, and the localization rate is about
95% for values of occlusion below 80%; this suggests
that if about 30% of the area of the object is visible,
it will be recognized and located with high probability.
3) The recognition/localization rates seem to be rela-
tively uniform across the levels of clutter below 70%,
showing that spherical spin images are robust to clut-
ter. The variations observed are most likely related to
the non-uniform sampling of the scene data. Johnson
observed similar trends for the spin images in [9].

We used the paired t-test and the Wilcoxon matched
pairs test analysis to detect signi�cant di�erences in
the matching times between the four algorithms tested,
and signi�cant correlation and linear regression analy-
sis to study the relationship among the matching times
of all four algorithms. Our proposed algorithms are
faster than the other two as suggested by the results
shown in Table 1 where the average matching times
are statistically di�erent with a signi�cance level of
p = :0001. The times were measured using a real-time
clock on a dedicated Silicon Graphics O2 workstation
(194Mhz).

50 60 70 80 90 100

% Occlusion

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

ti
on

 R
at

e

Recognition rate vs. %Occlusion
503 Experiments / Algorithm SSI

True Positive
False Positive
False Negative

�

�
✳

0 20 40 60 80 100

% Clutter

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

ti
on

 R
at

e

Recognition rate vs. %Clutter
503 Experiments / Algorithm SSI

True Positive
False Positive
False Negative

�

�
✳

50 60 70 80 90 100

% Occlusion

0

0.2

0.4

0.6

0.8

1

L
oc

al
iz

at
io

n 
R

at
e

Localization rate vs. %Occlusion
425 True Positive Experiments / Algorithm SSI

True Localization
False Localization

�

✳

0 20 40 60 80 100

% Clutter

0

0.2

0.4

0.6

0.8

1

L
oc

al
iz

at
io

n 
R

at
e

Localization rate vs. %Clutter
425 True Positive Experiments / Algorithm SSI

True Localization
False Localization

�
✳

50 60 70 80 90 100

% Occlusion

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

ti
on

 R
at

e

Recognition rate vs. %Occlusion
503 Experiments / Algorithm SSIC

True Positive
False Positive
False Negative

�

�
✳

0 20 40 60 80 100

% Clutter

0

0.2

0.4

0.6

0.8

1

R
ec

og
ni

ti
on

 R
at

e

Recognition rate vs. %Clutter
503 Experiments / Algorithm SSIC

True Positive
False Positive
False Negative

�

�
✳

50 60 70 80 90 100

% Occlusion

0

0.2

0.4

0.6

0.8

1

L
oc

al
iz

at
io

n 
R

at
e

Localization rate vs. %Occlusion
363 True Positive Experiments / Algorithm SSIC

True Localization
False Localization

�

✳

0 20 40 60 80 100

% Clutter

0

0.2

0.4

0.6

0.8

1

L
oc

al
iz

at
io

n 
R

at
e

Localization rate vs. %Clutter
363 True Positive Experiments / Algorithm SSIC

True Localization
False Localization

�

✳

Figure 7: Recognition/localization rates for uncompressed
spherical spin images (SSI) (four plots at the top), and
compressed spherical spin images (SSIC) (four plots at the
bottom). The left column illustrates the recognition rates
versus occlusion, and the right column, versus clutter.

The recognition/localization performance of all four
tested algorithms is illustrated in Figure 8. A summary
of the improvements achieved with the proposed algo-
rithms is shown in Table 2. The algorithms SSI and
SSIC signi�cantly improve the performance of the SI
and SIC algorithms, respectively.

6 Summary and Conclusions

We have presented a general representation of shape
that allows eÆcient and e�ective recognition and pose
estimation for 3-D objects in complex 3-D scenes.
Spherical spin images are simple yet rich descriptors
of shape that are very robust to clutter and occlusion,
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thus widely applicable in practical situations. We have

shown that they can be compressed using a random

projection method without signi�cant loss of descrip-

tive power and robustness. We have experimentally

validated the e�ectiveness and eÆciency of our repre-

sentation in a comparative study that suggests that the

overall performance of our proposed algorithms is bet-

ter than the performance of the two original spin-image

algorithms. Finally we note that the representation

scheme in terms of equivalence classes can be adapted

to any kind of signatures that can be discriminated by

the linear correlation coeÆcient.

Algorithm Matching Time

SSI 1879:1 � 592:6
SI 7866:8 � 3159:4

SSIC 1686� 700:4
SIC 2009:9 � 758:5

Table 1: Average time per match in (ms).
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Figure 8: Recognition/localization rates versus occlusion
(top) and clutter (bottom) for the algorithms tested.

Algorithm RO RC LO LC T

SSI vs SI 3:36 4:24 4:74 6:68 76:11
SSIC vs SIC 32 25:41 22:2 33:13 16:12

Table 2: Average improvement (%) of the proposed algo-
rithms with respect to the recognition rate (R) and local-
ization rate (L) versus occlusion (O) and clutter (C); the
matching time (T) improvement is also shown.
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