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Matchingin 2D

engine model
Is there an engine in the image?| image containing an
If so, whereisit located? instance of the model

How can the engine in the image
differ from that in the model? ]

2D Affine Transformations

1. trandation Q
2.

rotation =
3. scde
T REID
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Point Representation and
Transformations

Normal Coordinates for a 2D Point

P=pey = [ ) ]

Homogeneous Coordinates

P=[sx, sy, s]t where sis ascale factor

scaling by
afactor of 2
about (0,0)
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Rotation

[x'] _ [cosq -sjnq] [x ] _ [xcosq-ysinq
B sing cosq y | © Lxsing+ycosq

2T 7 [P '”:p.u
q :
PE——
Feoluyl
] i v
roimlen of polsi P b angh & wpirion sl Rewelt v By
rotate point rotate axes

]

Trandation

2 X 2 matrix doesn’t work for trand ation!
Here' s where we need homogeneous coordinates.

X 10 xo X X + Xo
AR
1 001 1 1
. (X¥Xxoy +y0)
. (XY)
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Rotation, Scaling and Translation

Xw 10 xo s00)fcosq -sng O Xi
yw|= [01yo 0sO0]||sing cosq O yi
1

001 001 0 0 1 1
T S R
~— ™

TR

2D Model and 3 Matching
Images of a Boeing Airplane Part

o) Rad sled Bruage A} Paisier] snd Stewrd Tianr
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Computing Affine Transformations
between Sets of Matching Points

P2=(x2,y2) P3'=(u3,v3)

P1'=(ul,v1)

P1=(x1,y1l) P3=(x3y3)

Given 3 matching pairs of points, the affine transformation
can be computed through solving a simple matrix equation.

ul u2 u3 all al? al3 x1 x2 x3
vl v2 v3] = [a21 az2 a23] [yl y2 y3]
1 11 0O 0 1 111

A More Robust Approach

Using only 3 pointsis dangerous, because if even oneis
off, the transformation can be far from correct.

Instead, use many (n =10 or more) pairs of matching
control points to determine aleast squares estimate of
the six parameters of the affine transformation.

Error(all, al2, al3, a21, a22, a23) =

B ((allrxj +al2tyj +al3- uj) +
PV (@217 x) + a22*yj + a23 - vj) %)

10
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The Equations to Solve
gy e e By B 2] = ili-..-' + @ity + = u P (e +aaa—y 17
What isthisfor?

Many 2D matching techniques use it.
1. Local-Feature Focus Method

2. Pose Clustering

3. Geometric Hashing

12
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L ocal -Feature-Focus M ethod

» Each model has a set of features (interesting points).

- The focus features are the particul arly detectable features,
usually representing several different areas of the model.

- Each focus feature has a set of nearby features that
can be used, along with the focus feature, to compute
the transformation.

(0) focus feature

13

LFF Algorithm

Let G bethe set of detected image features.
Let Fm be focus features of the model.
Let S(f) be the nearby features for feature f.

for each focus feature Fm
for each image feature Gi of the sametype asFm

. find the maximal subgraph Sm of S(Fm) that matches a subgraph Si of S(Gi).

. Compute transformation T that maps the points

of each feature of Sm to the corresponding one of S.

. Apply T to the line segments of the model.

If enough transformed segments find evidence in the image, return(T)
14
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Example Match 1. Good Match

knbed F

()8

Bleid £

15

Example Match 2: Poor Match

=
L r—
a=ml-

[

Wimrd E
Fi

9]
(o2}

16




Pose Clustering Pose Clustering Applied to

Let T be atransformation aligning model M with image object Of DeteCtI ng a Partl CUI ar AI rpl ane

The pose of object O isitslocation and orientation, defined by T
The idea of pose clustering isto compute lots of possible pose
transformations each based on 2 points from the model and

2 hypothesized corresponding points from the image.

Then cluster al the transformations in pose space and try
to verify the large clusters.

17 19
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Pose Clustering Geometric Hashing

A » This method was developed for the case where thereis
awhole database of models to try to find in an image.
A e |ttrades:
B C
Model alarge amount of offline preprocessing and

alarge amount of space
Image g $

« for potentialy fast online
Correct Match: mapping ={ (1,A), (2,B), (3,C) }
object recognition
There will be some votes for (B,C) -> (4,5), (B,C) -> (6,7) pose detection

etc. 18 20
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Theory Behind Geometric Hashing

* A model M isaan ordered set of feature points.

1 2
s:> 4 M = <PL,P2,P3,P4,P5,P6,P7,P8>
6

 An affine basis is any subset E={€00,e01,e10}
of noncollinear points of M.

« For basis E, any point x T M can be represented in

affine coordinates(x,h). e0lt . x=(xh)
X = X(e10 — e00) + h (e01-e00) + €00 el0

e00 21

Affine Transform

If X isrepresented in affine coordinates (x,h).
X = X(€10 — e00) + h(e01- e00) + e00

and we apply affine transform T to point x, we get
Tx = x(Tel0—Te00) + h(Te01-Te00) + Te00

In both cases, x has the same coordinates (x,h).

22
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Example

original object transformed object

£ i

Te

L™

Te W

Offline Preprocessing

For each model M

{
Extract feature point set FM

for each noncollinear triple E of FM (basis)
for each other point x of FM

calculate (x,h) for x with respect to E
store (M,E) in hash table H at index (x,h)
}

24
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Hash Table

list of model /
basis pairs

X » | M1, E1
M2, E2

Mn, En

25

E1 .. Em

Online Recognition .

initializeaccumulator A to all zero H
extract feature points from image Mk
for each basistripleF  /* onebasis*/
for each other point v /* each image point */
(M,E)->T

calculate (x,h) for v with respect to F
retrievelist L from hash table at index (x,h)
for each pair (M,E) of L

AME] =AME] +1

find peaksin accumulator array A
for each peak (M,E) in A
caculateand try toverify T': F=TE

26
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2D Object Recognition Paradigms

» We can formalize the recognition problem as finding
amapping from model structures to image structures.

« Then we can look at different paradigms for solving it.

- interpretation tree search
- discrete relaxation

- relational distance

- continuous relaxation

27

Formalism

* A part (unit) isastructure in the scene,
such as aregion or segment or corner.

* A label isasymbol assigned to identify the part.

* An N-ary relation isaset of N-tuples defined over a
set of parts or a set of labels.

» An assignment is a mapping from partsto labels.

28
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eye €2 !
¥ circler>{ o“a circles
head arcl

smile

What are the relationships?

What is the best assignment
of model labels to image features? 2

Consistent Labeling Definition

Given:

1. aset of unitsP

2. aset of labels for those units L
3. arelation RP over set P

4. arelation RL over set L

A consistent labeling f isamapping f: P -> L satisfying
if (pi, pj) T RP, then (f(pi), f(pi)) T RL

which means that a consistent labeling preserves relationships.
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Abstract Example

binary relation RP

P={1,23}
RP={1,2),(2,1),(2.3)}

binary relation RL

L ={ab,c,d,e}

RL ={(ac),(c.a),(ch),
(c.d).(e.c).(ed)}

[ One consistent labeling is{(1,a),(2,).(3,d)|

House Example

%1 5gh, (55T
E “h k)

b, (SaSil, (%akal. SkSc], 5k
S Sk (STSREL (STRI, |5 50, 1Rg 500 (5g %) (5.5

CR-E R

iS8n}

mapt |

b IS S}, (S SA), (S5
15858 (58551, &1 8

5E54), &bkl

RPand RL are
connection relations.

LR TR T Ty ]

e

15 4k 1, (5RAl), S=5m) |

ETSIL (BT B 1), SEEID

1h, 1550, 1550
AN

f(S)=9§ f(SH=Sn  f(S7)=sy  f(SL0)=Sf

f(S2)=Sa
f(S3)=Sh

f(S5)=Si
f(S6)=Sk

f(S8) =S
f(S9)=Sd

f(S11)=Sh

32
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1. Interpretation Tree

 Aninterpretation tree is atree that represents all
assignments of labelsto parts.

« Each path from the root node to aleaf represents
a (partial) assignment of labels to parts.

* Every path terminates as either

1. acomplete consistent labeling
2. afailed partial assignment

33

Interpretation Tree Example

(2,b) (2,0)
X 6////r\\\\\‘
@21 rP| (3b) (3.d) (€X2)
(ab)i RL
oK  OK X "
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Tree Search Algorithm

pracednrs Irberpreintion. Tes Sard (L 8¢, Bg J)

P = st
Sy ausk | i I

This search
has

Al it exponential
o complexity!

But we

doit for
small enough
problems.

35

2. Discrete Relaxation

« Discrete relaxation is an alternative to (or addition to)
the interpretation tree search.

» Relaxation is an iterative technique with polynomial
time complexity.

» Relaxation uses local constraintsat each iteration.

« |t can be implemented on parallel machines.

36




How Discrete Relaxation Works 3. Relational Distance Matching

1. Each unit is assigned a set of initial possible [abels. * A fully consistent labeling is unredlistic.

» An image may have missing and extra features;
required relationships may not always hold.

2. All relations are checked to seeif some pairs of labels
areimpossible for certain pairs of units.

« Instead of looking for a consistent labeling,

we can look for the best mapping fromPto L,
the one that preserves the most relationships.

[1}—{2] [aF—1b

3. Inconsistent labels are removed from the label sets.

4. If any labels have been filtered out
then another passis executed
else the relaxation part is done.

5. If there is more than one labeling left, atree search
can be used to find each of them.

37 39
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Example of Discrete Relaxation Preliminary Definitions

Def: A relational description DPis a sequence of
relations over a set of primitives P.

RP RL

pfierm
X

e Let DA ={R1,...,RI} bearelational description over A.
*Let DB ={S1,...,SI} bearelational description over B.

e Let f beal-1, onto mapping from A to B.
g
« For any relation R, the composition R°f is given by
Thereisno label in Pj’slabel set that is connected to
L2inPi'slabel set. L2isinconsistent and filtered out. R°f ={(b1,...,bn) | (a1,...,an) isin R and f(ai)=(hi), i=1,n}

38 40
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Example of Composition

R Rof

| R°f is an isomorphic copy of R with nodes renamed by f. | “

Relational Distance Definition

Let DA be arelational description over set A,
DB be arelational description over set B,
andf:A->B.

e The structural error of f for Ri inDA and Si inDB is
Eis(f):|Ri°f-Si |+]|Sief '1-Ri|

* Thetotal error of f with respect to DA and DB is
o
E(f)=& Es(f)
i=1
e Therelational distance GD(DA,DB) isgiven by

GD(DA,DB) = min E(f)
f: A® B,f1-1andonto 42
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Example

e
3[4

What is the best mapping?

What isthe error of the best mapping?

43

Example
Let f ={(1,8),(2,b),(3,c),(4,d)}

-
[s8—[4]

|Rf- S|

i (@b)(b,c)(c,d)(d,b)} - { (ab)(b,c)(c.b)(d.b)} |
Kcdi=1

S°f - RI=H(12(23)(32(4.2)} - {(12)(23)34)(4.2}|
={B2}=1

E(f) = 1+1=2

44
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Variations

« Different weights on different relations
« Normalize error by dividing by total possible

« Attributed relational distance for attributed relations

* Penalizing for NIL mappings

45

4. Continuous Relaxation

* In discrete relaxation, alabel for aunit is either possible or not.
* |n continuous relaxation, each (unit, label) pair has a probability.
« Every label for unit i hasaprior probability.

* A set of compatibility coefficients C = {cij} givestheinfluence
that the label of unit i has on the label of unit j.

* The relationship R is replaced by a set of unit/label compatibilities
whererij(l,I") isthe compatibility of label | for part i with
label 1" for part j.

* An iterative process updates the probability of each label for
each unit in terms of its previous probability and the compati bilities
of its current labels and those of other units that influence it.
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