A Hierarchical Multiple Classifier Learning
Algorithm *

Yu-Yu Chou
Numerical Technologies, Inc.
70 West Plumeria Drive,
San Jose, CA 95134, U.SA.
yuyu@numeritech.com

Linda G. Shapiro
University of Washington
Department of Computer Science and Engineering
Box 352350, Seattle, WA 98195, U.SA.
shapiro@cs.washington.edu

November 13, 2000

*Thisresearch was partially supported by the Washington Technology Center and NeoPath, Inc (now
TriPath Imaging Inc).

A Hierarchical Multiple Classifier Learning Algorithm

Abstract

This paper addresses the classification problem for applications with exten-
sive amounts of data and complex features. The learning system developed uti-
lizes a hierarchical multiple classifier scheme and is flexible, efficient, highly
accurate and of low cost. The system has several novel features: 1) It uses a
graph-theoretic clustering algorithm to group the training data into possibly over-
lapping clusters that each represent a dense region in the data space. 2) Compo-
nent classifiers trained on these dense regions are specialists whose probabilistic
outputs are gated inputs to a superclassifier. Only those classifiers whose training
clusters are most related to an unknown data instance send their outputs to the
superclassifier. 3) Sub-class labeling is used to improve the classification of su-
perclasses. The learning system achieves the goals of reducing the training cost
and increasing the prediction accuracy compared to other multiple classifier al-
gorithms. The system was tested on three large sets of data, two from the medical
diagnosis domain and one from a forest cover classification problem. The results
are superior to those obtained by several other learning algorithms.

Originality and Contribution

In this paper, we describe a hierarchical multiple-classifier classification scheme. A
new way to group the training data using a graph theoretic clustering algorithm is

proposed. With the new partitioning mechanism, each data cluster represents a dense

region in the data space. Classifiers trained on these dense regions are better able
to distinguish local variations in the data. Furthermore, the individual clusters are

much easier to manage in terms of computation time and system resources. Since the

clusters are not mutually exclusive, borderline data can simultaneously train different

classifiers with different class distributions, providing more information for global de-
cision making performed by the second stage classifiers.

The architecture of our hierarchical classifier feeds the results of the most relevant
component classifiers to a superclassifier through a gating network. The soft clusters
also provide a unique way to control the switches in the gating network. The clustering
criteria are used as a pre-filter to determine which classifiers should be applied for an
unknown data instance. This not only reduces the training time for the second stage
classifiers but also improves the quality of their decisions.

Another novel idea is the use of sub-classes to aid in the classification of the main
classes. Contrary to conventional wisdom that more information only adds complexity
to the design of a classifier, the additional knowledge employed in our architecture al-
lows the component classifiers to establish better local decision boundaries and hence
to achieve higher accuracy.

Our system has proved successful on a practical medical application as well as on
another data set with similar characteristics - enormous amounts of data with com-
plicated features. The framework provides a flexible and efficient way to investigate
classification problems with similar scales. Different basic classification algorithms
can be adapted to enhance the performance depending on the characteristics of the
problems. Difficult problems can be broken into pieces to accelerate the processing
time without sacrificing performance. The extra feature reduction ability and error
instance incorporation can further reduce the computation cost or improve the perfor-
mance.

1 Introduction

The use of machine learning techniques in medical diagnosis applications is common.

The automation of pre-screening for cervical cancer [21] [9] [28] [31] is one of the

examples. An automated system allows the reduction of clinical costs for a manual

examination and eliminates the technician’s subjective bias. However, it is a very

complicated and difficult task. Many issues need to be taken into considerations when
designing a system. These include the calibration of hardware, the reliability of image

processing routines, the definition and extraction of object features, and the specificity
and sensitivity of classifiers. Furthermore, many of the design considerations are mu-
tually exclusive. For example, a system should have a high sensitivity of detection, so

that it can respond to the presence of a very small amount of abnormal cells; on the

other hand, an over-sensitive system may cause many false-alarms, which ultimately

increase the cost. Therefore, any system design will contain some trade-offs and com-

promises.

A current system used for automatic pre-screening for cervical cancer examination
developed by NeoPath Inc. [31] uses multiple-level probabilistic decision trees to clas-
sify the data. The decision trees are hand-carved by the designers and the parameters
are fine-tuned to achieve the best performance. It is a tedious job that requires exten-
sive man-power just for a single set of data. The use of machine learning techniques is
expected to achieve the following goals:

e Accelerate the training process.
e Automate the training procedure and reduce human interaction.

e Enhance the classification accuracy.

There are several distinguishing characteristics of the data set which affect the
classification task greatly:

1. The amount of data is tremendous; each slide can contain thousands of cells. For
each laboratory, the number of slides can easily exceed 1,000 per day.

2. Each data instance (cell) is described by a set of sophisticated features. There
are more than 300 features for each instance in the current system.

3. There are many different sources of noise existing in the data set. The noise can
be induced by technicians’ operating differences, focus problems, variations in
specimen collection, and other aspects of the data collection procedure.

The aforementioned characteristics make the training and classification task diffi-
cult. The problem for stand-alone classification algorithms such as decision trees [32]

4

[17] and rule-based induction algorithm [7] is that they tended to over-fit the training
data and thus produced very poor results on the test data; while neural networks [15]
produced less satisfying results than current hand-tuned classifiers yet required a great
amount of system resources and training time. Another difficulty lies in the nature
of the complicated classes in the problem. There are three levels of classes. Table 1
shows the first two levels of classes, and 142 different classes are associated with the
third level. The large number of classes make the decision boundaries complicated,
erratic and unstable for standard algorithms.

Multiple classifier learning algorithms have been widely utilized in various ma-
chine learning problems [24] [25] [20] [2] [29]. A lot of research has been concen-
trated on the construction of a good ensemble of classifiers. The output of an ensemble
is usually more accurate than the output of its component classifiers provided that 1)
the error rate for each component classifier is less than 50% and 2) the errors among
the component classifiers have no correlations or small correlations [16] [1].

The pattern recognition (classification) / learning methodology described in this
paper is a hierarchical multiple classifier mechanism. It is summarized in the block di-
agram of Figure 1. The system includes a training phase and a classification phase. In
the training phase, the data are clustered into sub-populations, and statistical informa-
tion for each cluster is computed. The data are then relabeled with the sub-class labels,
and a set of component classifiers are constructed for each sub-population. A reduced
feature set is produced according to the initial results from the component classifiers
that can be used to refine their construction if necessary. A set of identified error in-
stances can be obtained to further refine the training process. After the component
classifiers are built, they are applied to the entire data set to produce a new set of data
with the additional classifications as new features. The new data set can be considered
as a non-linear transformation of the original data set or as a cross-validation data set.
A super-classifier is constructed from the new data set and the cluster information com-
puted previously. The process can be repeated for another layer of super-classifiers,
recursively. In the classification phase, the process is similar to the training phase. For
an unknown data instance, the component classifiers are applied to it to produce the
input data for the super-classifier. The final result is produced by the super-classifier
according to both the input feature vector and the cluster information.

The survey paper by Dietterich [10] described various algorithms and techniques
for multiple classifiers. They can roughly be divided into the following categories:

e Manipulating the training data by sub-sampling or substitution so that each com-
ponent classifier is trained on a data set with a different class distribution [5]
[14] [33]. Our data clustering is related to this approach, but it differs in that the
amount of data used to train each component classifier is substantially less than
that of other algorithms. The training cost does not increase proportionally as

the number of classifiers increases. Furthermore, the cluster information in our
approach serves an additional purpose in the construction of the super-classifier.

e Manipulating the input features to produce training data with different feature
subsets [19].

e Manipulating the target function by grouping classes to produce different train-
ing data sets [11]. Our approach also manipulates the target function, but in quite
a different way. Instead of grouping the classes, our approach attempts to break
classes into finer sub-classes. The effect of this approach is discussed in a later
section.

e Incorporating randomness into the construction of classifiers.

Multiple classifiers also differ in the methods they use to combine the outputs of
their component classifiers. The methods in the literature can be classified as un-
weighted voting, weighting voting and gating networks. We will compare our system
with some of the popular algorithms such as bagging, boosting, the EM algorithm, and
others in a later section.

2 Data Characteristics and Preparation

Our work was motivated by the need to automate the development of classifiers for
complex medical diagnosis problems with large numbers of features. Our benchmark
problem was the classification of cervical smears as normal, abnormal, or artifact,
and our goal was to meet or exceed the accuracy of an existent system developed by
NeoPath, Inc. The architecture of the Neopath system for automated cervical smear
screening is illustrated in Figure 2. The processes of image acquisition, segmentation,
feature computation and ROI (region of interest) extraction are all completed at the
hardware level. The single-cell classification algorithm is the most important one and
so is the focus of our study. For training purposes, the extracted cells have been marked
by experts with their corresponding classifications.

We used two data sets provided by NeoPath to train and test our classifiers. Al-
though in a normal laboratory environment, the majority of the cells examined are nor-
mal, classifiers trained for data with this type of class distribution have difficulty locat-
ing the abnormalities. The decision boundaries are often skewed or over-generalized
to accommodate the descriptions of the majority data, thus ignoring the real focus of
the problem. The purpose of pap smear screening is to locate the abnormality among
the cells. To enhance the classifiers’ responses to the abnormal cells, the training data
were intentionally prepared with more abnormal instances. In the two data sets, the
ratio of abnormal cells to normal cells are about 2:1 and 3:1, respectively.

2.1 Subclass Labeling

One of the characteristics of the data sets is that there are three levels of classes for
target classification. This is quite helpful in designing the component classifiers. The
classes of the first two levels are shown in Table 1. Although there are 16 different clas-
sifications in the second level, only some of them occur with high enough frequency
to be recorded. Table 2 shows the distribution of classes in two sets of data. The un-
listed second level classes have no recorded data instances, or the number is negligible.

The objective of the classifiers is to derive the decision boundaries to separate data
instances from different classes. For a complicated or noisy data set, the decision
boundaries are also very complicated. All of the classification algorithms derive the
decision boundaries with the goal of minimizing the misclassification rate of the train-
ing data. They also need to keep the decision boundaries smooth (generalized) enough
to avoid over-fitting the training data. When data are noisy or complicated and the tar-
get consists of only a few classes, the decision boundaries are usually over-generalized
and favor classes with larger number of data instances. With the existence of sub-
classes, the estimated boundaries can be fit closer to the true boundaries, improving
the classification accuracy.

For data sets without multiple levels of classes, the sub-class processing is still
applicable with additional steps. A graph theoretic clustering algorithm (described in
section 3.1.3) can be utilized to produce sub-classes. For data instances of the same
class, the graph theoretic clustering algorithm is used to partition the instances into
clusters. Each cluster is then assigned a new sub-class label and the classifier can be
trained on these new classes. In order to improve the classification accuracy, an im-
portant issue is that each sub-class should contain enough instances for the training
algorithms. The number of instances of our data as shown in Table 2 is large enough
for general learning algorithms such as decision trees or neural networks. However,
instances belonging to smaller sub-classes can be treated as exceptions. In this case,
an instance-based learning (IBL) algorithm such as the £-Nearest Neighbor algorithm
can be utilized as a filter to detect these exceptions prior to the execution of the other
classification algorithms.

2.2 Feature Dimension Reduction

There have been extensive research efforts on the subject of feature subset selection
[22] [26] [3]. Due to the advancement of hardware technology and computational abil-
ity, more and more features can be exploited to solve difficult classification problems.
A large feature set can provide more information on the description of the problem.
However, it also draws two concerns: 1) irrelevant features can lead to false decision
boundaries by learning algorithms; and 2) irrelevant features and/or highly-correlated

features increase the cost of computation without improving the results. Hence the fea-
ture reduction process is important not only for reducing the computational expenses
but also for increasing the output accuracy.

There are several questions that need to be answered in the process of feature subset
selection:

e How many features are necessary to fully describe a data set?
e How can the quality of a feature be measured?
e Isthe cost of the extra feature selection process justifiable? Is it worth the effort?

Unfortunately there are no simple nor absolute answers to these questions, especially
for difficult problems. Usually we rely on heuristic rules to judge the answers to these
questions. Some common techniques include greedy search by removing features one
at a time; replacement of data with their descriptive statistics; principal components
analysis; and the use of classification algorithms in the feature selection process. Here
we suggest a heuristic approach based on the application of neural networks.

An important characteristic of neural networks is that by examining the values
of weights, we can perform an input feature relevance test to determine which input
features are more important. The features with higher summed weights often have a
much greater impact on determining the outcome of a classification than those with
lower weights. The2equation to calculate the input relevance (R;) for the sth input fea-

X, wi

tureis R; = SIRTA where w;; is the weight between input node 7 and hidden node
i 7 7 g
VE

In our hierarchical structure, each component classifier is trained on a subset of
the original training data (see section 3.1), therefore the data size is easily manageable
even for neural networks. For each component classifier, a set of features is selected
according to their input relevance with respect to either the number of desired features
or the pre-set thresholds. A final feature subset is produced from these feature sets
either by intersection, union or weighted average.

Since the training of component classifiers in our approach is less resource-demanding,
we can afford to use all the features available in the data set. Furthermore, in our hi-
erarchical mechanism, the component classifiers can be treated as non-linear transfor-
mations. Each classifier corresponds to a different transformation. A data instance is
transformed into a smaller dimension (the number of total sub-classes) by choosing
one or some of these transformations. The super-classifier is then trained on these
transformed data.

3 Hierarchical Multiple Classifier Mechanism

The construction of multiple classifier algorithms has been an active research topic in
supervised learning for the past decade. In supervised learning, a set of training exam-
ples of the form (x1,41), ... , (Xm, ¥m) iS given to a classifier algorithm to solve for an
unknown function y = f(x). Each (x;, y;) pair represents an instance in the data space.
The vector x; records the features extracted from instance i; x; = (i1, Zi2, - - - , Tin)-
The y values are drawn from a set of discrete classes (1,2,..., K). Consider the
complete data set (including training data, test data, and unseen data) as a hypothesis
space; in the case of classification, the unknown f can be treated as a union of all the
decision boundaries. These decision boundaries divide the hypothesis space into some
disjoint regions in which each region belongs to one of the output classes. A classifier
IS an attempt to approximate the unknown function (decision boundaries) to describe
the relationship between the input features and the output classes.

Different classifier algorithms approximate the unknown decision boundaries with
different principles. Some algorithms are excellent at characterizing the details of the
training data but are very sensitive to the noise. Some algorithms are less sensitive to
noisy data but may over-simplify the decision boundaries. Therefore the errors gen-
erated by different algorithms may contribute to different parts of the training data.
This scenario may also be achieved by the same algorithm with different settings. The
use of multiple classifiers takes advantage of this characteristic and reduces the errors
generated by a single classifier.

The hierarchical multiple classifier mechanism described in this paper consists of
two major parts: 1) the construction of component classifiers; and 2) the combination
scheme. Figure 3 shows the construction of component classifiers. The training data
are first partitioned into various data clusters, each data cluster representing a sub-
population of the original training data. The class distribution of a data cluster is dif-
ferent from that of the original training data. Instead of utilizing the original classes as
the target outputs, we assign the sub-classes as the target outputs of each data cluster;
the component classifiers are trained to learn the decision boundaries between these
sub-classes. The label “Level Il Classes” in the figure refers to the assignment of sub-
classes, which are { Ascus, LSIL, HSIL, Cancer, Repair, Normal, Artifact } in the pap
smear data. A similar label “Level | Classes” in Figure 4 refers to the original classes:
{ Abnormal, Normal, Artifact }. For each data cluster, the mean and the variance of
the features of its members are computed and stored along with the member instances.

Figure 4 illustrates the combination scheme. After the component classifiers {C1,
C2, ..., CN} are constructed for each data cluster, the component classifiers are tested
on the entire data set, with the unseen instances acting as the cross-validation set. Each
component classifier generates a probabilistic output; they are combined as the input
data for the next level classifier (super-classifier). A ranking of the data clusters is gen-

erated for each data instance. The rank is assigned according to the distance between

the data instance and the centroid of a data cluster. The highest rank is assigned to the

data cluster whose centroid is the closest to the data instance, and the lowest rank is

assigned to the farthest one. These ranks are utilized to control the combination of out-

puts of the component classifiers. An additional error classifier CE which is trained on
the error instances generated from the other component classifiers can also be added
to produce additional data for the super-classifier. In training the super-classifier, ei-
ther the original classes “Level | Classes” or the sub-classes “Level 11 Classes” can be

assigned as the target.

3.1 Ensembles Construction

As discussed in Section 1, there are four main approaches for constructing the compo-

nent classifiers: manipulating the training data, manipulating the input features, manip-
ulating the target function, and incorporating randomness into the algorithms. For the

feature subset approach, the relevant features are usually identified by a feature selec-
tion process. If a component classifier is constructed without all the relevant features,
the accuracy of this classifier is likely to decrease. The less relevant the features used,
the lower the classification accuracy. If the component classifiers are constructed with
all the relevant features and with different sets of irrelevant features, the errors from

different classifiers are most likely to be highly correlated, since the irrelevant features
contribute nothing to the classification. Therefore it is not a very effective approach.
The same can be said for the approach to incorporate randomness into the construction

of classifiers. The training cost (time) won’t be reduced by the injected randomness but
will increase substantially. Furthermore the diversity of component classifiers induced
by the randomness is limited. We believe that among the four general approaches,

sub-sampling the training data and manipulating the target function are better ways to

build the component classifiers for complicated mega-data. Our hierarchical system
was developed based on these two principles.

There are many different ways to partition the training data. We tried three differ-
ent methods: random partitioning, K-means clustering, and graph-theoretic clustering.

3.1.1 Random Partitioning

Randomly drawing sub-samples is a common approach in algorithms like bagging [5].
One characteristic associated with this type of algorithm is the use of repetitions of
data instances in each sub-sample. In a problem with voluminous training examples,
this is quite a burden in computational cost as well as system resources. In our study,
we randomly divided the training data set into m disjoint subsets. The result from our
super-classifier showed no significant difference compared to the bagging algorithm,

10

while each partition was quite manageable in terms of memory requirements and CPU
time.

One problem with using the random partition is that we have no control over or
knowledge about the strength of the trained classifiers. Each classifier may be excel-
lent for discriminating a sub-region of the entire hypothesis space; however, a data
example is likely to be outside the scope of most of the classifiers. The erroneous clas-
sification contributed by most of the component classifiers will affect the decision of
the super-classifier and the final results.

3.1.2 K-Means Clustering

By clustering similar data instances together, we can have a better realization of the
characteristics of each group of data. This realization is helpful in the construction of
the super-classifier. We modified an algorithm proposed in [18], which is based on the
K-means and maximin-distance algorithms, to perform the clustering task.

Let a data instance = be represented by an n-dimensional feature vector { a;(z),
as(x), ..., a,(x)) where a,.(z) denotes the value of the rth feature of instance x. All of
the data instances can be considered as points inside the corresponding n-dimensional
feature space. The principle of the clustering algorithm is to group similar data points
together in terms of their Euclidean distances. The clustering algorithm can be sum-
marized in the following steps:

1. Select two data instances which are as far away as possible from each other in
the feature space as follows

e Randomly select one instance s.

e Find a data instance a which is furthest from s.

e Find a data instance b which is furthest from a.

e The instances a and b are the cluster centers of the initial guess.

2. Assign the remaining data instances to the closest cluster center.
3. Recalculate the cluster centers by averaging the data instances in each cluster..

4. Compute the distance of each data instance to its nearest cluster center, and
record the maximum of these distances, d,,., and the corresponding data in-
stance X.

5. Determine whether a new cluster center is necessary as follows:

o calculate the average distance d,,, between the existing cluster centers.

11

e if d,,q, IS greater than d,, /2, the instance X is assigned as a new cluster
center and the process repeats from Step 2.

6. To avoid the data being broken into many small clusters, an additional constraint
for the number of allowed clusters is set and the process is stopped when the
constraint is met.

A notable characteristic in the process is that the data are clustered based only
on the feature vectors. The class distribution is not taken into account in the process.
Therefore, each cluster of data represents a region in the feature space. The component
classifier trained for the specific data cluster has higher discriminant ability for data in
this neighborhood than the data far away from the cluster. It is an advantage we utilize
in the combining strategies.

3.1.3 Graph-Theoretic Clustering

The aforementioned random-partition and K-means-variant clustering processes are
both “hard-partition” methodologies for clustering the data; that is, each data instance
only belongs to one cluster and there is no overlaps among the clusters. This is a dis-
advantage for even a slightly noisy data set, since the noisy data instances will distort
the decision boundaries, and the distortion cannot be recovered during the combination
(super-classifier) process.

The third method we tried was a “soft-partition” clustering algorithm based on
graph theory. In “soft-partitions” the data instances are allowed to appear in more than
one cluster; therefore the boundaries between clusters are not rigidly defined but rather
blurred. Notice that the boundaries referred to here are not decision boundaries but the
dividing paths in the feature space to separate group of data points.

The graph theoretic clustering algorithm [34] used in this work was originally de-
veloped for the decomposition of polygonal shapes represented by graphs whose nodes
correspond to sampled points along the boundaries of the shapes and whose links rep-
resent the relationships between pairs of nodes. Figure 5 (a) shows an example of a
simple polygonal shape and (b) shows its corresponding graph in which two nodes are
connected by an edge if the corresponding two points are visible to each other through
the shape. In the example, there are three compact sub-graphs related to the three re-
gions in the polygon.

The goal of the clustering algorithm is to find the clusters (compact sub-graphs)
according to certain well-defined parameters. A cluster is a maximal chain of highly
compact, highly connected nodes. A conditional density function is defined to describe
the neighborhood condition of a given node. The conditional density D(X |Y") of node

12

X given node Y is defined as the number of nodes in the neighborhood of Y which
have X as a neighbor. Since the relations between nodes are symmetric, D(X|Y)
is actually the number of neighbor nodes common to both node X and Y, that is,
D(X|Y) = D(Y|X) = #(neighborhood(_X') N neighborhood(Y")). Large groups of
nodes with loose relations can be found by using the density function. For each node
X € S, apotential region Z(X, K) isdefined by Z(X, K) = {Y € S|D(Y|X) > K}
where K is an integer. Small values of K leads to large and loose regions around the
node X; large values of K lead to small and tight regions. A region large enough
to contain a cluster and yet remain dense must satisfy Z(X) = Z(X, M) where
M =max{K|#Z(X,K) > K}.

The concept of a dense region is defined to identify possible clusters. A dense
region is a set of nodes and related links that satisfy the following conditions:

1. The nodes in a dense region should associate / have relationships with a large
enough number of nodes in the same dense region.

2. A dense region should be highly compact.
3. A dense region should have a minimal number of nodes.

A parameter association is defined for the first condition. Let Sbeasetand R C Sx S
be a binary relation on S. For any node N in a subset B of S, the association A(N|B)
of node NV to subset B is defined as the ratio of the number of nodes in B that are neigh-
bors of N to the total number of nodes in B, that is A(N|B) = ’Wt"”:‘;’w. For
any subset B of S, a parameter compactness is defined for the second condition. It is
defined as the average association of the nodes of B that C'(B) = #1—3 Y nep AN|B).
Three thresholds minassociation, mincompactness, and minsize are given for each con-

dition. For a set of nodes B C S to be considered as a dense region, it has to satisfy
e B={N € Z(X)|A(N|Z(X)) > minassociation} for some X € S;
e C(B) > mincompactness;
e #B > minsize.

Table 3 lists the neighborhood of each nodes for the example graph in Figure 5(b),
Table 4 lists the conditional density and Table 5 lists the M, Z(N), and C(Z(N)) for
each node N in the graph, respectively.

For the thresholds minassociation = 0.5, mincompactness = 0.8, and minsize =
3, the dense regions in Figure 5 are {1, 2, 10, 11, 12}, {3, 4, 9, 10}, {4, 5, 6, 7}, {4, 5,
6, 7, 8}, and {4, 6, 7, 8}. An additional parameter is defined to allow the merging of
dense regions with high percentage of overlapping nodes. Given a threshold minover-
lap, a pair of dense regions (D1, Dy) are merged if #(D; N Dy)/# D1 > minoverlap

13

or #(D1NDy)/#Dy > minoverlap. The merging process is repeated iteratively until
no more merging is allowed. By specifying minoverlap = 0.7, the five dense regions
are merged and the final clusters are {1, 2, 10, 11, 12}, {3, 4, 9, 10}, {4, 5, 6, 7, 8}.

The graph-theoretic clustering algorithm allows a flexible clustering process. By
specifying the four thresholding parameters minassociation, mincompactness, minsize,
and minoverlap, one can control the compactness, interrelatedness, size, and number of
clusters. It also allows the clusters to share common data points. Our implementation
allows the user to specify the desired number of clusters by automatically updating the
minsize parameter. It is also possible to update other parameters to achieve the same
effect but this is less desirable.

To apply the graph-theoretic clustering algorithm to partition the data instances
into clusters, we represent each data instance in the training set as a data point (node)
in the feature space. The next step is to generate the adjacency graph for the data based
on the predefined relation. Let X be a set of training instances and g(x;) denote the
value of the [th feature of instance x;, for features with continuous value, we define
the parameter closeness between two instances x; and x; with respect to feature [as

| (x:) — ()|
max’(q;(X)) — min’(¢;(X))

where max’ and min’ are the maximal and minimal functions excluding the values of
outliers in X. A binary feature relation F'R;(x;, x;) exists for the data instances x; and
x; With respect to feature [is defined as

Close,(x;,x;) =

discrete :
1 if a(x;) = ai(x),
FRi(x;,x;) = _
13, %) {0 otherwise.
) _ (1)
continuous :
1 f 2)< y
FR(x:,x;) = [C’loisel(x x;) <6
0 otherwise.

where ¢ is the maximal range for two feature values considered to be close. For data
instances x; and x;, a binary relation R; ; is defined as

1 if ZFRI(XZ';X') ZN,
R;; = ! ! 2)

0 otherwise.

where N is the minimal number of features that have to satisfy the binary feature
relation criterion. The clustering algorithm proceeds after the adjacency graph is com-
puted. Like the two clustering algorithms mentioned before, the graph-theoretic clus-
tering is based solely on the feature vectors. The advantage of this clustering algorithm

14

is that it allows the borderline data instances to be trained for different component clas-

sifiers. Therefore the decision boundaries won’t be skewed by a specific component
classifier in the combining stage. Some of the data instances may not be included in
any of the clusters generated by the graph-theoretic clustering algorithm due to the

lack of sufficient relations. After the clusters are generated, these data instances will
be added into the closest clusters according to the Euclidean distance between the in-

stance and the centroid of the cluster.

3.2 Combining Classifiers

The component classifiers are trained to learn the decision boundaries in each data
cluster. Since we assign the sub-classes as the outputs, these decision boundaries are

more detailed and specific than the ones generated for the original classes. The next
step is to utilize the information we gathered, namely the decision boundaries, to form

the final classification. Approaches that simply average the decision boundaries are
described in section 3.2.1. A better approach that performs piece-wise smoothing on

the combined boundaries is described in section 3.2.2. In section 3.2.3 we show that

the decision boundaries can be selected effectively and intelligently to form the final
decisions due to our unique data partitioning process.

3.2.1 Unweighted and Weighted Voting

The simplest way to utilize the results from multiple classifiers is by a voting pro-
cess called the committee method. In the unweighted scheme, every classifier’s out-
put is treated equally and the final classification is simply based on a majority vote.
If the classifiers are able to produce class-probability estimates other than a simple
classification, an average class probability can be used to decide the outcome. Let
P(fc, (x;) = k) denote the probability of data instance x; classified as class & by
the component classifier ¢, where k£ € 1,..., K; the average class probability is

M
P(f(xi) = k) = 5 > P(fc.(x;) = k). The final classification for x is then the
m=1
class with the highest average class probability.
For the weighted scheme, the output of each classifier is treated differently. A

common method for weight selection is to assign the weights to be proportional to the
accuracy of each individual classifier. Therefore the previous equation can be modi-

M
fied to become P(f(x) = k) = > W, P(fc, (x:) = k). where W, is the weight

m=1
for the output of classifier m. Other approaches to obtain the weights include applying
learning algorithms to the outputs of component classifiers. A naive Bayes classifier

15

can be used to learn the weights according to Bayes’ Theorem.

3.2.2 Stacking Cross Validation

Instead of a simple voting procedure for the results from each classifier, an alternative
approach is to train a second stage classifier (super-classifier) on the results. Unlike the
weighted voting procedure, in which the weights are adjusted according to the over-

all accuracy of each classifier, a super-classifier can adjust the weights dynamically.
Each classifier will have higher weights for the instances it correctly predicted than
for those on which it failed. Furthermore, our near-disjoint sub-data set partitioning

provides an easy and effective method for cross-validation. The entire data can act as a

big cross-validation set for each component classifier, since only a small portion of the
data set has been seen by each classifier. This will reduce the over-fitting effect during
the training stage.

The super-classifier approach can be recursively applied; that is, different learning
algorithms or different settings can be utilized to learn the super-classifier. We can
have a set of super-classifiers just as we have a set of component classifiers. Therefore
we can have another stage, with a new super-classifier trained in the same way. How-
ever, in our experiments, the results usually stabilized after three levels of classifiers.

3.2.3 Gating Networks

In this section we describe the novel concepts for training the second-stage classifiers.
Recall that the component classifiers are trained on the sub-data sets. Each sub-data set
is a cluster of data in the feature space. A classifier trained on a particular region has
higher discriminant ability on the data instances closer to the region than those that are
far away from the region. Therefore it is natural to take into consideration the location
of each data instance with respect to the data clusters.

In the data clustering process, we calculated some information about the clusters as
well as the whole data set. The information includes the minimal and maximal values
of each feature, the member instances of each cluster, and the means and variances of
every features in each cluster. With this information, we can calculate a normalized
distance between a data instance and the centroid of a cluster. Let D = {D,,|m =
1...M} denote a set of M data clusters and X = {x;|i = 1... N} denote a set of N
training instances with L features for each instance. The distance between cluster D,,

16

and instance x; is

L
=1
continuous: fd; = (mem:l_al(xi) 2 A3)
h range;
where _
H f m = i),
discrete: fdy =40 ' Memi ay(x;)
1 otherwise.

In the equation, me,,; denotes the mean of feature [of cluster D,,, a;(x;) denotes the
Ith feature value of instance x;, and range, = max’(a;(X)) — min’(a;(X)) denotes
the value ranges of feature / excluding the outliers.

From the normalized distances we compute a rank for each instance with respect
to the clusters and the corresponding weights, which are inversely proportional to the
distances. Both pieces of information are useful while training the super-classifier. In
the previous section we described how different super-classifiers (second-stage clas-
sifiers) can be combined in the same way that we combine the component classifiers.
By changing the content of the input data, we can train different super-classifiers for
further incorporation. The rank is used to choose the input data from the outputs of
the component classifiers and the strength of input data can be adjusted by the corre-
sponding weights. Therefore we can learn different super-classifiers by changing the
number of component classifiers used to generate the input data and the incorporation
of weights. A parameter & is used to determine the number of component classifiers
utilized in the super-classifier training. The rank works as a gating switch as shown in
Figure 4.

An important characteristic in this combination scheme is that different classifi-
cation categories are used for different stages of learning. Usually a learning algo-
rithm treats a multi-class problem as a recursive two-class problem. Since the decision
boundaries can be very easily and reliably detected for a two-class problem, the learn-
ing algorithm can focus on finding the best dividing boundaries first, then break the
data into separate regions and repeat the process. The advantage of this methodology
is the simplicity and efficiency in dealing with a complicated problem. However, in the
complex problem we studied, that methodology did not improve the accuracy of the
overall system. Often the decision boundaries can be very accurately determined for
the training data, but the same boundaries perform very badly for the test data. While
we can adjust the learning algorithm not to over-fit on the training data, the truth is that
usually the accuracy of both the training and test sets are sacrificed.

In our methodology, instead of simplifying the problem into a recursive two-class
problem, we introduce the concept of sub-class relabeling. While it may seem that

17

we have complicated the problem, in reality we can compensate for the shortcom-
ings of the two-class methodology by keeping complicated decision boundaries and
not degrading the performance on the test data. A presumption for the sub-class re-
labeling process is that there must exist a certain amount of data instances for each
sub-class. We can consider the sub-class output as an intermediate representation for a
data instance in a sense similar to the output of the hidden nodes in a back-propagation
neural network. The function of the super-classifier can be considered as a piece-wise
smoothing process to connect the boundaries constructed by different component clas-
sifiers. In our results we will demonstrate that the use of sub-class relabeling improves
the classification accuracy for both the training data and the test data.

3.3 Error Instances Manipulation

One way to improve classification accuracy is to emphasize the learning process on dif-
ficult cases. In this work the difficult cases are data instances that are incorrectly clas-
sified by the component classifiers. They are also referred to as the error data set. Let
C1,Cy, ..., Cy beasetof M component classifiers. An error function is defined for a

L if fo, (xi) # vi s
0 otherwise.
where y; is the correct class for x;. The error data set can then be defined as E =

M
{xi| DErr(x;) > T, i € 1,...,N} where T is a thresholdand 1 < T < M.

By adjrﬁstling the threshold we can change our scope for the difficult instances. When
T = 1 the error set is the largest; since an instance is included in the error set if any

one of the component classifiers misclassifies it. The set is smallest when T" = M; that
is, an instance is included only if none of the component classifiers can classify it cor-
rectly. If more than half of the component classifiers can correctly classify an instance,

it is also likely to be correctly classified by the super-classifier, hence T = M /2 is a
good choice of the threshold.

data instance x; with respect to the classifier G,, as Err(x;) =

There are two ways to utilize the error data set. The first approach is to construct
a classifier specifically tailored for the misclassified data instances. The learned clas-
sifier (; can then be treated as one of the component classifiers in the process of
super-classifier construction. If we are able to identify instances that are prone to be
misclassified, the addition of an error classifier will certainly have great improvement
on the overall accuracy. Since we don’t have this knowledge, the improvement may
not be as significant. In the next section, we will discuss the approach for identifying
the possible erroneous data instances.

The second approach for utilizing the error data set is to inject the error instances
into the original data clusters. Each error instance is repeated multiple times in the

18

data cluster to which it belongs. It forces a component classifier to adapt its decision
boundaries to accommodate the erroneous instances. There is no need to update the
corresponding cluster centroid since the number of additional instances is small com-
pared to the number of total instances in the cluster. Related to this approach is a
learning algorithm called boosting [14].

3.4 Error Instance Detection

An important aspect in the classification task is that when applying a classifier to an
unknown instance, the classifier simply gives an answer. Although the answers given
by some classifiers can be interpreted probabilistically, the associated probabilities are
usually produced according to the statistics of the training data to reflect the overall

accuracy hypotheses. For example, for decision tree algorithms, the probability asso-

ciated with the output class produced by the classifier can be the classification accuracy
of the corresponding leaf node that gives the class estimate. For neural networks, the

probability associated with an output class indicates the degree of confidence for an
unknown instance with which it believes that the unknown instance belongs to that

class according to the training data. Usually, we have no way to judge if the output of

an unseen example given by a classifier is correct or not.

There are several reasons that we would like to know how a classifier responds to
an unknown example. We are interested not only in the classification output given by
the classifier, but also in how confident we can be about the given output. The most
obvious reason is to improve the performance of the classifier. If we can determine
which types of examples the classifier predicts more accurately, we can apply the clas-
sifier only on examples that are likely to be correctly classified; thus its accuracy will
increase. For data examples that do not respond well to a particular classifier, we can
either build another classifier specifically for this type of examples or have human ex-
perts perform the classification task. This is particularly useful in medical diagnosis
problems where high-confidence diagnoses are important.

The thrust of this section is to have an additional classifier to try to identify the
instances which might be misclassified by the original classifier. We call this type
of instances the suspicious instances. The process is illustrated in Figure 6. For the
training data, the original classifiers (denoted as Super Classifier 1 in the figure) will
categorize them as either correctly classified or incorrectly classified (Error Instances
in the figure). Each set is assigned with a new label and an Error Instance Detection
classifier is trained based on the new assigned classes. The ideal situation is that the
Error Instance Detection classifier will identify an unknown data instance as belong-
ing to one of two sets: one which can be correctly classified by the Super Classifier 1
with high confidence and the other which cannot be classified with high confidence.
In the figure, they are denoted as “Training Group A’ and “Training Group B” where

19

“Training Group A” is the set that is most likely be correctly classified by the orig-

inal classifiers. For “Training Group B,” we can construct another set of classifiers
(denoted as super-classifier 2) to fit the data. The purpose of the Error Instance Detec-
tion classifier is to model the behavior of the original set of classifiers. For the testing
part, the test data are first classified by the Error Instance Detection classifier into two
groups, like the training data. One will be evaluated by Super Classifier 1 and the other

will be either evaluated by Super Classifier 2 or by experts.

4 System Evaluation

To demonstrate our system’s performance, we applied our methodology on the two
data sets received from NeoPath in addition to a forest cover type data set from the
UCI Knowledge Discovery in Databases Archive and originally from Colorado State
University [4]. We denote them as NeoPath-1, NeoPath-2, and ForestCover respec-
tively.

In data sets NeoPath-1 and NeoPath-2, data instances were acquired with either
manually focused or automatically focused lens settings. The number of manual focus
instances, auto focus instances, and extracted features are <15405, 3720, 323> for
NeoPath-1 and <20569, 3776, 291> for NeoPath-2. As mentioned in Section 2, the
data were prepared with the intention of correctly identifying the abnormal cases from
a much larger pool of normal cases. Therefore, there are many more abnormal in-
stances than normal instances in the data set, and most of the abnormal instances were
acquired by manually focusing the lens. Since manual focusing produces better im-
ages, the extracted instances are less noisy. Two terminologies are used to describe the
expected results, namely sensitivity - the percentage of abnormal cases classified as ab-
normal; and specificity - the percentage of normal cases classified as normal. Naturally
the goal for the classifier is to achieve a high sensitivity and a high specificity simulta-
neously. The manually-focused examples are responsible for the sensitivity aspect of
the designed classifiers, while the automatically focused instances are responsible for
the specificity aspect.

4.1 NeoPath-1

The data set was first randomly divided into two groups: the training set and the test
set. The class distributions for both the training set and test set were kept similar to
the original class distribution. For each class, 60% of the instances were selected as
training data and the remaining 40% as test data. The statistics of the data instance
numbers are listed in Table 6.

20

Since the data set already has sub-classes, we adapted the inherent subclasses as
the target outputs for the component classifiers. To construct the component classifiers,
we have to cluster the training data first. A relational graph is constructed according to
the aforementioned methodology for the training data. The graph-theoretic clustering
algorithm is very time-consuming, if there are too many nodes (data instances) in the
graph. The computation of the conditional density is on the order of O(n?®) where n
is the number of nodes in the graph. To reduce the computational cost, we randomly
selected 10% of the training data as the bootstrap set. The graph-theoretic clustering
algorithm was applied to this bootstrap set. After the initial clusters were generated,
the remaining training data instances were assigned to the closest cluster according to
the normalized distance defined in Equation 3. For each cluster, we apply different
learning algorithms including neural networks (NevProp), decision trees (C4.5), rule
induction (CN2), and a hybrid method (RISE) [12] and selected the back-propagation
neural network (NevProp) which had the best results as our backbone algorithm. The
decision tree classifier C4.5 was also used occasionally for comparison purposes. In
addition to the sensitivity and the specificity measurements, the accuracy of each ab-
normal sub-category was calculated.

Table 8 shows the performance of the component classifiers for a 10-cluster parti-
tion. The table shows the accuracy percentages of applying the component classifiers
on both the training and test data sets. The numbers inside the parentheses in the first
column are the number of data instances on which the classifier was trained. Table 9
shows the results for the same partition, but trained by the C4.5 decision tree classifiers.

The parameters of the graph-theoretic clustering algorithm allowed us to specify
the desired number of clusters. After the clusters were generated, the training data
were partitioned and each subset used to train a classifier. After the component clas-
sifiers were trained, a second stage super-classifier was trained on the outputs of the
component classifiers. Table 10 and Table 11 show the results of super-classifiers with
different settings. In the table, the notation “X-X" is used to indicate the formation
of component classifiers and super-classifier where X € {S,O}. S indicates that the
classifier was trained with the sub-classes as the target function; O means that the clas-
sifier was trained with the original classes as the target function. The first X shows
the class category of the component classifiers, while the second X shows that of the
super-classifier.

Figure 7 shows the comparisons between our results and NeoPath’s results. Our
results come from our automatically derived hierarchical classifiers, while NeoPath’s
results come from their proprietary classifiers which were trained with extensive inter-
actions and fine-tunings by the human experts. The specificity and sensitivity measure-
ments are calculated over the entire data set, including the training data and test data
for comparison reasons. The dashed lines in the figure indicate the results obtained
by NeoPath’s classifiers. Figure 7 (a) shows the performance for various second stage

21

super-classifiers; (b) shows the results for injecting the error instance into the data
clusters. The error instances, which were obtained according to the settings mentioned
in section 3.3, were added to the closest n data clusters and the component classifiers
were retrained. The results from several different clustering settings are shown. In
fact, the results for 5, 10, and 14 clusters are not much different. However, when the
number of clusters grows to 20, there is a significant decrease in specificity. The reason
for this phenomenon is that the number of Normal instances is far less than the num-
ber of Abnormal instances, so each of these clusters has only a few Normal examples.
The decision boundaries for Abnormal instances can be properly induced, while the
boundaries for Normal instances cannot, due to the lack of examples.

In the NeoPath system, the classifier first performs feature analysis procedures to
compute the statistics of features and then selects a subset of features to train the clas-
sifier. However, the process is not fully automatic and requires extensive interactions
with human experts. The number of subset features they used is 74, compared to the
fullest set of 323. We have mentioned before that our component classifiers can also
be used to perform feature selection tasks. In Figure 9, we show the results of our
classifiers by using the full set of features, NeoPath’s subset of features, and the subset
of features selected by the component classifiers. We set the number of features se-
lected by the component classifiers equal to that of NeoPath’s. When using the same
subset of features, our classifiers have almost identical results to NeoPath’s. How-
ever, the subset of features selected by our component classifiers performs better than
NeoPath’s subset of features. And it is clear that the full set of features provides more
information and therefore increases the classifier accuracy.

4.2 NeoPath-2

The second data set from NeoPath is similar to the first data set with a slightly different
feature set. It is labeled in the same fashion as the first data set. The statistics of this
set are listed in Table 7. We applied the same percentages to sample the training set
and test set as we did for set 1. The training set is again clustered into 10 clusters. Fig-
ure 10 shows the results from the second stage and the third stage super-classifiers. The
weighted rank and the unweighted rank versions are shown in the figure. The weighted
version is slightly better than the unweighted version, although the difference is small.
The dashed lines again indicate the results from NeoPath’s classifiers. Figure 11 shows
results from different clustering settings and Figure 12 shows the results for different
feature subset settings. More of the results refer to [6]

22

4.3 ForestCover

The forest cover data set contains 581,012 instances, each with 54 features. The paper

describing this work specifies that the first 11,340 records were used for the training
set, the successive 3,780 records were used for validation, and the remaining 565,892

records were used for testing. The performance cited in the paper indicates 70% accu-

racy for backpropagation and 58% accuracy for linear discriminant analysis. The back-

propagation network, NeuNet Pro, is a commercial neural network software package

[8]. An evaluation version can be obtained from http://www.cormactech.com/neunet.

The network was trained on a randomly-selected sample of 32,000 records of randomly-
shuffled data and produced an accuracy of 68% on the remainder. We applied the C4.5

decision tree algorithm on the training set and adjusted the parameters according to

the performance on the validation set, producing an accuracy of 63.64%. The same

approach with the NevProp program produced an accuracy of only 23.96%. For the

hierarchical multiple classifiers, we again partitioned the training data into 10 clusters.
The component classifiers were trained based on the C4.5 algorithm. The validation
data was incorporated in the training of the super-classifier. This produced an accuracy
of 70.81% on the test data.

4.4 Error Instance Detection

We did not want to construct the Error Instance Detection classifier from the original
input data due to the amount of data. Our hierarchical structures provide a remedy to

this problem. The Error Instance Detection classifier is trained based on the outputs
of the component classifiers. The super-classifier can be thought of as an arbitrator to
decide the final outcome based on the outputs of the component classifiers. Since its
decision is solely based on the outputs of component classifiers, it is natural for the Er-
ror Instance Detection classifier to use the outputs of the component classifiers as well.

Table 13 shows preliminary results on the NeoPath-1 data set. The original super-
classifier 1 executed with an accuracy of 83.35% and 73.14% for the training data
and test data respectively. The Error Instance Detection classifier separates both the
training data and the test data into two groups: A and B. Group A is supposed to be
correctly classifier by super-classifier 1, while group B is the error instance set. From
the table, it can be seen that the classification accuracy of super-classifier 1 increases
for the data in group A. Although the overall accuracy for data in group B by super-
classifier 2 also increases, the accuracy for the test data alone is not as good as with
the original classifier. This suggests that either super-classifier 2 is over-trained or that
some other solution, such as expert inspection, is needed to correctly classify the error
instances.

23

4.5 Discussion

The purpose of the component classifiers is to specialize within a region of the data
space. However, each component classifier should also maintain proper accuracy for
data out of its range. Table 8 shows that although each component classifier was trained
with a much smaller number of instances than the entire training set, the overall accu-
racy is acceptable. It can also be seen that most of the component classifiers do a better
job of identifying the Abnormal instances, since most of the sensitivity measurements
are higher than the specificity measurements. However, a classifier with extremely high
sensitivity is not necessary a good thing if its specificity is very low. In this case, the
classifier is just biased to favor the Abnormal instances. Table 9 (using C4.5 instead of
NevProp) shows a similar trend to that of Table 8, but the decision tree results are not
as good as those from the neural nets.

Table 10 and Table 11 record the results of the super-classifiers. Table 10 shows
results in which the target function for both component- and super-classifiers was the
sub-class label (S-S), while Table 11 shows results in which the target function for the
component classifiers was the sub-class label and the target function for the superclas-
sifier was the main class label (S-O). The most noticeable feature is that both of the sen-
sitivity and the specificity measurements are much higher than those of the component
classifiers. This shows that the super-classifier is actually performing the classification
task. The accuracy achieved on the training set is expected to be much higher than for
the test set. When sub-classes are used as the target function for the super-classifier,
the Normal instances are better recognized than the Abnormal instances. This can be
explained by the behavior of the classification algorithms. For any type of classifiers,
the accuracy of a particular target class is affected by the number of training instances
associated with that class. The more training instances a classifier has, the better it can
predict for that class. Table 6 shows that there are 7,435 Abnormal instances and 4,100
Normal instances in the training set. There are 5 sub-classes for the Abnormal class,
but only 2 for the Normal class. Therefore, the average number of training instances
for each sub-class of the Normal class is higher than that of the Abnormal class. Since
our component classifiers and super-classifier are trained for the sub-classes output in
Table 10, this super-classifier performs better on the Normal instances. Table 6 also
shows that the number of training instances for the sub-classes Repair and Cancer are
about the same, but the results show a much better accuracy on recognizing Cancer
than Repair. The reason is that a Repair cell is on the border of Normal and Abnormal.
Damage to a cell can be caused by inflammation, atrophy with inflammation, radiation,
intrauterine contraceptive device, or other reasons [27]. Although the inflammation-
caused repair can be treated as normal, the radiation-caused repair is not. Therefore
the Repair instances are categorized as Abnormal for further examination.

From Table 11 we can see that the accuracy of sensitivity increases quite a bit while
still maintaining a good specificity accuracy. This demonstrates that the use of differ-

24

ent target functions in different stages alleviates the uneven class distribution problem
mentioned in the previous paragraph. We prefer the super-classifiers in this setting for
several reasons. The purpose of the screening process is to identify possible abnor-
malities in a pap smear. A high sensitivity is necessary to better protect the examinee,
since the sample will be further examined. However, to keep the cost down, a high
specificity is necessary to avoid unnecessarily re-examination. Therefore the classi-
fiers with the settings of Table 11 are superior to those of Table 10. Both tables show
mixed results with the addition of error classifiers.

Figure 7 shows the comparison of different results. In the 4 regions divided by
the dashed lines, the upper-right region is our goal. In sub-figure (a), two of the set-
tings perform better than NeoPath’s results. Generally, the classifiers with different
target functions in different stages perform better and are close to or exceed the perfor-
mance of NeoPath’s classifiers. Sub-figure (b) shows the results of injecting the error
instances into the original clusters and retraining the component classifiers. The error
instances were added to the closest n clusters. Different second and third stage super-
classifiers were constructed based on the newly trained component classifiers, and the
best results are illustrated in the figure. Generally, they are all pretty good results.
Some are better than the original super-classifier without the error instances injection.
As n gets larger, the error instances lose their effect on the component classifiers. Since
many of the error instances may be outside the range of a component classifier, they
can decrease the component classifier’s discriminating ability and the overall accuracy.

Figure 10 shows the results for the second NeoPath data set. In sub-figure (a) we
compared the second stage super-classifiers. When using the weighted rank, where the
output of component classifiers are not only selected by rank, but also are weighted
according to the distance between the instance and the centroid of the corresponding
data cluster, the weighted version is better than the unweighted version. Sub-figure
(b) shows similar results for the third stage super-classifiers. It can be seen that in this
data set, our automatically-derived classifiers perform much better than the original
classifier. The accuracy of both the sensitivity and specificity increases by more than 5
percents.

Figure 11 shows the effect of different clusters on data set NeoPath-2. For the
3-cluster setting, while each component classifier has more training data, it loses the
characteristic of specializing the decisions in a compact region. Therefore the accuracy
is not as good as the other two settings. Figure 12 also shows the effect of different
sets of features on data set NeoPath-2. The full set of features provides the best results,
but our classifiers also perform better than the original classifier with a reduced set of
features. The weighted rank setting increases the accuracy, especially for the smaller
set of features.

To demonstrate the consistency of the classification accuracy, we selected the NeoPath-

25

2 data set and performed the hierarchical learning algorithm for 25 repetitions. In each

repetition, a different random number was used to generate the training set and test set.

In the clustering stage, the parameters were set so that 10 clusters were obtained for

each training set. The parameters for the construction of component classifiers were
identical for each repetition and so were the parameters for the construction of super-

classifier. The super-classifier was constructed with £ = 3 and unweighted distances.
Table 14 shows the mean, variance, maximum and minimum values of these 25 ex-

periments for test set classification accuracy, overall sensitivity and overall specificity.
Figure 13 shows the spread of these 25 experiments.

5 Comparisons

In this section, we will compare the results of our classifiers with different clustering
algorithms and the results of other multiple classifier algorithms.

5.1 Clustering

Three different clustering methods were used to construct the component classifiers,
namely the random partition clustering, the K-means variant, and the graph-theoretic
clustering algorithm. The experiment was evaluated on the NeoPath-2 data set. The
parameters of each algorithm were set so that each algorithm generated 10 clusters
for the training data. The average number of instances for each cluster is 1,467 for
both the random partitioning and the K-means clustering algorithm, and 1,572 for the
graph-theoretic clustering algorithm.

Figure 14 shows the results for the test data set from the three different clustering
algorithms. The component classifiers were trained with a full set of 291 features.
There were 7,007 abnormal instances and 2,666 normal instances in the test set. The
figure shows that for overall accuracy, the graph-theoretic clustering is better than the
other two algorithms. It is worth noting that the performance of the random partition-
ing is slightly better than the K-means clustering algorithm. The reason is that for the
K-means clustering algorithm, each iteration will generate a new cluster by splitting
the clusters previously generated. The clusters generated in later iterations may not
have enough instances for the component classifiers to make a meaningful prediction.
The fact that it is a “hard” clustering algorithm also prevents the borderline instances
from being learned by more than one component classifier, thus reducing the accuracy
of component classifiers and the super-classifiers.

Figure 15 shows the results for the same test data set in which the component
classifiers are trained on a subset of 74 features. Again the graph-theoretic clustering

26

produces the best results among the three algorithms. However, in this experiment
the K-means algorithm performs better than the random partitioning algorithm. This
shows that the reduced feature data have a bigger impact on the random partitioning
algorithm than on the K-means clustering algorithm.

5.2 Multiple Classifiers

We also compare our results with two popular multiple-classifier algorithms Bagging
and Boosting that had been demonstrated with very good performance on various data

sets. The Bagging algorithm works according to the principle of manipulating the

training data with sub-sampling. The Boosting algorithm [14] also manipulates the

training data but in a different way. It emphasizes the training on the instances that are

difficult to learn, that is, the instances that tend to be incorrectly classified. We applied
the AdaBoost.M1 algorithm to construct the ensemble of classifiers.

For each replication of Bagging or each iteration of Boosting, the number of train-
ing instances is greater than or equal to that of the original training set. The memory
required to carry out the training process of one replication or one iteration by NevProp
exceeds what our system can provide (128M main memory and 128M swap memory).
To accommodate the limitation of our system’s resource and NevProp, we used only
the 74 features provided by NeoPath in the experiments.

Figure 16 shows the results of Bagging, Boosting and our Hierarchical algorithms.
There are 10 replications (bags) for the Bagging algorithm with an average of 63% of
the original training instances kept in each replication. The Boosting algorithm con-
verges after 6 iterations (error rate is greater than 0.5 after the 7th iteration); therefore,
the final results are calculated according to the 6 classifiers constructed in 6 iterations.
The figure shows that our approach performs better than the other two algorithms, fur-
thermore, our algorithm requires much less time to train the classifiers. Figure 17
shows the sensitivity-specificity plot of multiple-classifier algorithms and stand-alone
algorithms for comparison. The figure shows the measurements on the test data and
overall data (including the training data). For stand-alone algorithms, the high sensitiv-
ity measurements on the overall data are caused by over-fitting the training data. The
classification accuracies for the abnormal instances in the test data are Hierarchical >
Bagging > Boosting, while the accuracies for normal instances are Boosting > Bag-
ging > Hierarchical. Since there are about five times more abnormal instances than
normal instances, the overall accuracies for the test data are Hierarchical > Bagging
> Boosting. For more comparison results, refer to [6].

27

6 Conclusions

The multiple-classifier approach has been demonstrated to have equal or superior per-
formance when compared to stand-alone classifiers. Usually the use of multiple clas-
sifiers means the increased consumption of system resources and longer training time.
For complicated problems or problems with large amounts of data, this may pose some
concerns or difficulties in the construction of classifiers.

In this paper, we described a hierarchical multiple-classifier classification scheme,
which preserves the strength of the multiple-classifier approach and also manages to
reduce some of the problems faced by other multiple-classifier algorithms. In our
scheme, the system resource requirements are reduced (only a portion of the training
data is needed for each component classifier) and so is the training time. From the re-
sults of the NeoPath data, it can be seen that our approach produces better performance
than other multiple-classifier algorithms and the classifier produced by NeoPath’s ex-
perts. Our approach also provides various parameters which allow the users to adjust
the classifiers’ behaviors to fit their needs. It is also possible to distribute the training
of component classifiers into a network for parallel processing to further reduce the
training time.

The cluster-based partition for training data is a key factor in designing the compo-
nent classifiers. The graph-theoretic clustering algorithm we adapted shows very good
results on NeoPath’s data compared to the K-means-variant clustering algorithm. For
different classification problems, other clustering algorithms may need to be investi-
gated for better or faster clustering results. The main classification algorithms used in
our study were the NevProp neural net and the C4.5 decision tree. Learning algorithms
such as Vector Support Machines [35], Radial-Based Functions [13], Genetic Algo-
rithms [30], and others may provide better performance for different applications. Our
approach trains the super-classifier to incorporate the results given by the component
classifiers, independent of their individual classification techniques. Other algorithms
such as Bayesian networks and Expectation-Maximization algorithms [23] can also be
used to combine the outputs of the component classifiers and may provide advanta-
geous results for different applications.

Judging from the results, our classification scheme shows a promising performance
with relatively low cost on the system resources and the required human interaction.

References

[1] Ali, K. M. and Pazzani, M. J. Error Reduction Through Learning Multiple De-
scriptions. Machine Learning, 24(3):173-202, Sep 1996.

28

[2] Alimoglu, F. and Alpaydin, E. Combining Multiple Representations and Classi-
fiers for Pen-based Handwritten Digit Recognition. In Proceedings of the Fourth
International Conference on Document Analysis and Recognition, volume 2,
pages 637-640, Aug 1997.

[3] Almuallim, H. and Dietterich, T. G. Learning Boolean Concepts in the Presence
of Many Irrelevant Features. Artificial Intelligence, 69(1-2):279-305, Sep 1994.

[4] Blackard, J. A. Forest Covertype data. ftp://kdd.ics.uci.edu/databases/
covertype/covertype.data.gz, 1996. Remote Sensing and GIS Program, Depart-
ment of Forest Sciences, College of Natural Resources, Colorado State Univer-
sity.

[5] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123-140, Aug 1996.

[6] Chou, Y. Hierarchical Multiple Classifier Learning System. PhD thesis, Univer-
sity of Washington, 1999.

[7] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning,
3(4):261-283, 1989.

[8] CorMac Technologies Inc. NeuNet Pro v2.1 for Windows.
http://www.cormactech.com/neunet/, 1999.

[9] Davis, D. T., Hwang, J. N., and Lee, J. S. J. Improved network inversion
technique for query learning application to automated cytology screening. In
Computer-Based Medical Systems. Proceedings of the Fourth Annual IEEE Sym-
posium, pages 313-320, 1991.

[10] Dietterich, T. G. Machine-Learning Research: Four Current Directions. Al Mag-
azine, 18(4):97-136, 1997.

[11] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-
Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263-286,
1995.

[12] Domingos, P. Rule Induction and Instance-Based Learning: A Unified Approach.
In Proceedings of the Fourteenth International Joint Conference on Artificial In-
telligence, volume 2, pages 1226-1232. International Joint Conferences on Arti-
ficial Intelligence, IJCAI-95, Aug 1995.

[13] Dybowski, R. Classification of incomplete feature vectors by radial basis func-
tion networks. Pattern Recognition Letters, 19:1257-1264, 1998.

[14] Freund, Y.and Schapire, R. E. Experiments with a New Boosting Algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning,
pages 148-156, 1996.

29

[15] Goodman, P., Rosen, D., Egbert, D., Carlson, D., Hallett, J, and Ju, W. Nevprop
version 3. http://www.scs.unr.edu/~cbmr/, 1998.

[16] Hansen, L. and Salamon, P. Neural Network Ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(10):993-1001, Oct 1990.

[17] Haralick, R. M. and Shapiro, L. G. Computer and Robot Vision, volume 1, pages
137-138. Addison Wesley, 1992.

[18] Heng, M. H. Image Retrieval using Color and Texture. Technical Report, De-
partment of Computer Science, University of Washington, 1996.

[19] Ho, T. K. The Random Subspace Method for Constructing Decision Forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832—
844, Aug 1998.

[20] Hu, Y. H., Knoblock, T., and Park, J. M. Nonlinear Committee Pattern Classi-
fication. In Proceedings of the 1997 IEEE Signal Processing Society Workshop,
pages 568-577, Sep 1997.

[21] Hwang, J. N. and Lin, E. Mixture of discriminative learning experts of constant
sensitivity for automated cytology screening. In Proceedings of the 1997 IEEE
Signal Processing Society Workshop, pages 152-161, 1997.

[22] John, G. H., Kohavi, R., and Pfleger, K. Irrelevant Features and the Subset Selec-
tion Problem. In Machine Learning: Proceedings of the Eleventh International
Conference, pages 121-129, 1994,

[23] Jordan, M. I. and Xu, L. Convergence results for the EM Approach to Mixtures
of Experts Architectures. Neural Networks, 8(9):1409-1431, 1996.

[24] Kaynak, C. and Alpaydin, E. Multistage Classification by Cascaded Classifiers.
In Proceedings of the 1997 IEEE International Symposium on Intelligent Control,
pages 95-100, Jul 1997.

[25] Kim, J., Seo, K., and Chung, K. A Systematic Approach to Classifier Selec-
tion on Combining Multiple Classifiers for Handwritten Digit Recognition. In
Proceedings of the Fourth International Conference on Document Analysis and
Recognition, volume 2, pages 459-462, Aug 1997.

[26] Koller, D. and Sahami, M. Toward Optimal Feature Selection. In Machine Learn-
ing: Proceedings of the Thirteenth International Conference, pages 284-292,
1996.

[27] Kurman, R. J. and Solomon, D. The Bethesda System for Reporting Cervi-
cal/Vaginal Cytologic Diagnoses. Springer, 1994.

30

[28] Lee, J. S. J., Bannister, W. 1., Kuan, L. C., Bartels, P. H., and Nelson, A. C. A
Processing Strategy for Automated Papanicolaou Smear Screening. Analytical
and Quantitative Cytology and Histology, 14(5):415-425, Oct 1992.

[29] Maclin, R. and Shavlik, J. W. Combining the Predictions of Multiple Classifiers:
Using Competitive Learning to Initialize Neural Networks. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, volume 1,
pages 524-530, Aug 1995.

[30] Mitchell, T. M. Machine Learning, pages 249-270. McGraw-Hill, 1997.

[31] Patten, Jr., S. F, Lee, J. S. J., and Nelson, A. C. Neopath, Inc. NeoPath AutoPap
300 Automatic Pap Screener System. Acta Cytologica, 40(1):45-52, Jan-Feb
1996.

[32] Quinlan, J. R. C4.5 Programs for Machine Learning. Morgan Kaufmann, 1993.

[33] Schapire. R. E. Using Output Codes to Boost Multiclass Learning Problems. In
Proceedings of the Fourteenth International Conference on Machine Learning,
pages 313-321, 1997.

[34] Shapiro, L. G. and Haralick, R. M. Decomposition of Two-Dimensional Shapes
by Graph-Theoretic Clustering. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 1(1):10-20, Jan 1979.

[35] Vapnik, V. N. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

31

List of Figures

1 Ablock diagram of developed approaches in this paper. 33
2 The architecture of NeoPath’s AutoPap system 33
3 Ablock diagram of data clustering and component classifier training. 34
4 Ablock diagram of the combination scheme. 34
5 Asimple example of a decomposable polygonal shape. 35
6 A block diagram for the error instances detection process. 35
7 Comparison for different settings of super-classifiers on NeoPath-1. . 36
8 Comparison for different numbers of clusters on NeoPath-1. 37
9 Comparison for different attribute subsets on NeoPath-1. 37
10 Comparison for different settings of super-classifiers on NeoPath-2. . 38
11 Comparison for different number of clusters settings on NeoPath-2. . 39
12 Comparison for different attribute subsets on NeoPath-2. 39
13 Spread of 25 repetition experiments on NeoPath-2. 40
14 Classification accuracy of the test data set for three different clustering
algorithms with a full set of 291 features. 40
15 Classification accuracy of the test data set for three different clustering
algorithms with a subset of 74 features. 41
16 Classification accuracy of the test data set for three different multiple-
classifier algorithms with a subset of 74 features. 41
17 Comparison for different algorithms on NeoPath-2. 42
List of Tables
1 Class definitions for the firsttwo levels. 42
2 Class distributions. 43
3 Neighborhood nodes for the graph in Figure5(b). 43
4 Conditional densities for the graph of Figure5(b). 43
5 Thevaluesof M, Z(M),and C(Z(M)). 44
6 Data instances statistics of the NeoPath-1 dataset. 44
7 Data instances statistics of the NeoPath-2 dataset. 44
8 Accuracy percentage of component classifiers with NevProp. 45
9 Accuracy percentage of component classifiers with C4.5. 46
10 Accuracy percentage of super-classifiers with NevProp. 47
11 Accuracy percentage of super-classifiers with NevProp. 48
12 Performances of various algorithms for the forest cover type data. . . 48
13 Results of error detection classifier for NeoPath-1 49
14 Results of repetition experiments for NeoPath-2 49

32

TRAINING PHASE

TRAINING DATA

TEST DATA

SUPERCLASSIFIER | |
CONSTRUCTION

|
!
|
|
!
|
|
!
|
|
DATA CLUSTER ! ENSEMBLE
CLUSTERING INFO ! CLASSIFIERS
!
|
|
!
|
!
SUBCLASS ——=| SUPERCLASSIFIER

LABELING !
|
-»| ERROR |
! | INSTANCES !

! 1 ! RESULTS
ENSEMBLE — | !
CONSTRUCTION [~~~ "7~ | !

|

' | FEATURE 3
“™| SELECTION |
|
- I
----=| CROSS-VALIDATION !
! I
| !
! |
! I
! I
| !
! |
! I
! I
| |
|
|
!
|

Figure 1: A block diagram of developed approaches in this paper.

20x processing

Stripe Detection

4x Image

!

Image Segmentation

Feature Computation

FOV ranking

Single Cell Algorithm

Focus Check

Group Algorithm

'
I
I
I
I
I
I
I
I
I
I
I
i
I
;f ---B 20x Results
I
I
I
I
I
I
I
I
I
I
I
I
I
I

= Thick Group Algorithm

Figure 2: The architecture of NeoPath’s AutoPap system

33

TRAINING DATA

\/

Level Il
| CLUSTER'NG} ------ > CLUSTER INFO
Classes ALGORITHM

D1 D2 LA A DN
DATA CLUSTERS
\/ \/ \/
[Cl] [CZ] LA lCNl
COMPONENT
CLASSIFIERS

Figure 3: A block diagram of data clustering and component classifier training.

Level I TRAINING DATA .| CLUSTER | RANK
Classes (TEST DATA) > INFO v
ERROR
INSTANCES
L L
Y l Y Y Y

Le) ‘
[/ (o

Level | NEW DATA

Classes

Optional / Alternative

SUPER-CLASSIFIER

Figure 4: A block diagram of the combination scheme.

34

P1 P2 P3 P5 P6

P10 Pa
_J
P12 P11 PO P8 P7
(a) simple polygonal shape

(b) corresponding relational graph

Figure 5: A simple example of a decomposable polygonal shape.

Error Instances Detection
Training Stage

Test Stage
Training 3 Test
Data : Data

Assign Super Assign Error Instance
New Classifier 1 New Detection Classifier
Classes Classes
Correct Error Test Test
Instances Instances Group A Group B
Error Instance Super Super
Detection Classifier Classifier 1 Classifier 2

Training Training Super
Group A Group B Classifier 2

Figure 6: A block diagram for the error instances detection process.

35

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Performance of Super—classifier Alone

% 100 T T T
% H—¥K k=3,S-S
s K —¥K k=5,S-S
<< k=7,S-S
Q H—¥ k=10, S-S
B 90 - O—0O k=3,S8-0 |
= C—O k=5,8-0 (@]
g k=7,S-0O
S O—©O k=10, S-0 (G9)
w©
S
o 80 [* —
j
2 e
5 *
D
g
§ 70 |- 1
=
=
B
(% 60 | | |
60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)
(a) Second stage super-classifi ers

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Performance of Super—classifier with Injected Erroneous Instances

% 100 T T T
1S
<]
=
S
<
@
B8 90 - i
2 **O
o
%]
™
£
_% 80 B
<<
k=]
‘é’, H¥—K n=2
%. H*—K n=3
n=4

E 70 - H—3¥ n=5]
= GO n=6
= OO n=7
= n=8
E= SO n=9
(% 60 L L L

60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)
(b) Erroneousinstances injection

Figure 7: Comparison for different settings of super-classifiers on NeoPath-1.

36

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Different Clusters Settings

% 100 T
1S
S
=
S
<C
@
E 90 - % ¥ B
8 *
[&)
%)
<
S
e 80 - B
S
<C
k=]
‘é’, —K 5 Clusters
= S—K 10 Clusters
§ 14 Clusters
E 70 - S—3K 20 Clusters B
=
=
B
(% 60 L L L
60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)

Figure 8: Comparison for different numbers of clusters on NeoPath-1.

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Different Feature Subsets

)
[y
o
o

90 x

80 - q

S¢—¥K Full set features
S¢——¥ Neopath 74 features
Comp. classifiers —selected 74 features

Sensitivity (Percentage of Abnormals classified as Abnormal

60

60 70 80 90 100
Specificity (Percentage of Normals classified as Normal)

Figure 9: Comparison for different attribute subsets on NeoPath-1.

37

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Second Stage Super—classifier

% 100 T T T
e
S
=
S
<C
@
E 90 ~ - B
L *
%)
™
S
e 80 - B
S
<C
B
% H—K k=3
*g *—K k=5
k=7
z 70 K3 k=10 7
= GC—O k = 3, weighted rank
= O—©O k=5, weighted rank
= k = 7, weighted rank
B O—©O k=10, weighted rank
(% 60 L L L
60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)
(a) Second stage super-classifi ers

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Third Stage Super—classifier

= 100 T T T
e
S
o
o
<C
&8
B 90 *HB |
S
(%]
=
£
2 80 i
e)
<C
k=)
%’ ¥ k=3,5,10
= k=3,7, 10
§ H—F k=3,5,7, 10
T 70 r OO k=3, 5, 10, weighted rank
= k =3, 7, 10, weighted rank
= O—O k=3,5,7, 10, weighted rank
= 4
@
(§ 60 L |)
60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)
(b) third stage super-classifi er

Figure 10: Comparison for different settings of super-classifiers on NeoPath-2.

38

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Different Clusters Settings

)
[y
o
o

90 *

80 - q

—K 3 Clusters
S—K 10 Clusters

11 Clusters
70 - —

Sensitivity (Percentage of Abnormals classified as Abnormal

60 70 80 90 100
Specificity (Percentage of Normals classified as Normal)

60

Figure 11: Comparison for different number of clusters settings on NeoPath-2.

Sensitivity vs Specificity Plot (Algorithm: NevProp)

Different feature subsets

)
[y
o
o

90 Ko b

80 - q

S¢—¥K Full set features

}——¥ Full set features, with weighted rank
NeoPath 74 features

70 - }——¥ NeoPath 74 features, with weighted rank |

Sensitivity (Percentage of Abnormals classified as Abnormal

60

60 70 80 90 100
Specificity (Percentage of Normals classified as Normal)

Figure 12: Comparison for different attribute subsets on NeoPath-2.

39

Sensitivity vs Specificity Plot

Spread of Repetition Experiments

= 9°
e
S
2 X—>X Each Repetition Experiment
@ GO—© Mean Value
3
8 oo | §
[&=]
% ><>< X
E O R e
2 x X
s
< >
k=]
[<1)
fg’ 85 - —
%
=
=
5

80 L L

70 75 80 85

Specificity (Percentage of Normals classified as Normal)

Figure 13: Spread of 25 repetition experiments on NeoPath-2.

Comparison of different clustering algorithm

Classification Accuracy

1007 g1.8 18 1 82.7 77.98£ 80. 1
80 + . [| 65. 66. 6

60

40

20

0- Random K-means Graph-Theoretic

[1 Abnormal [Normal Overall

Figure 14: Classification accuracy of the test data set for three different clustering
algorithms with a full set of 291 features.

40

Comparison of different clustering algorithm

Classification Accuracy

100 -
81. 1 76. 9 83.9 78. 7 84.4 79 4

] . | | 64. 9

Random K-means Graph-Theoretic

[1 Abnormal [Normal Overall

Figure 15: Classification accuracy of the test data set for three different clustering
algorithms with a subset of 74 features.

Comparison of different multiple-classifier algorithm

Classification Accuracy

1007 81.9 79. 4
70.9

801 4
A

60

40-

204

0- . . " "
Bagging Boosting Hierarchical
[1 Abnormal M Normal Overall

Figure 16: Classification accuracy of the test data set for three different multiple-
classifier algorithms with a subset of 74 features.

41

Sensitivity vs Specificity Plot

Comparison of Various Algorithms

= 100 , : :
1S
S
=
-2 90 7
Y
g *L @)
; * S
B3 so % |
=}
%)
™
1S
2 70 - J¥— Bagging Test 4
'<C£ J¢—k Boosting Test
— Hierarchical Test
o J¢—k NevProp Test
& 60 C4.5 Test i
% O—©O Bagging Overall
=} O—© Boosting Overall
EE Hierarchical Overall
E 50 - O—© NevProp Overall i
= C4.5 Overall
27
(§ 40 1 1 1 L L
40 50 60 70 80 90 100

Specificity (Percentage of Normals classified as Normal)

Figure 17: Comparison for different algorithms on NeoPath-2.

Table 1: Class definitions for the first two levels.

First Second
Squamous
Glandular
Normal Other

Normal Epithelial

Cellular Changes (Repair)

Atypical Squamous (Ascus)

Low-grade Squamous Intraepithelial Lesions (LSIL)
Abnormal High-grade Squamous Intraepithelial Lesions (HSIL)
Squamous Carcinoma (Cancer)

Atypical Glandular

Adenocarcinoma

Malignant NOS

Mixed Abnormal Cells

Cellular Artifact

Artifact Non cellular Artifact

Focus Artifact

42

Table 2: Class distributions.

First Second | NeoPath-1 | NeoPath-2
Ascus 2625 5024

LSIL 2732 3443

Abnormal HSIL 3968 3229
Cancer 1533 3516

Repair 1477 2404

Normal 5040 3775
Artifact 1750 2954

Table 3: Neighborhood nodes for the graph in Figure 5 (b).

Node | Neighborhood of Node
1 1,2,10,11,12
2 1,2,10,11,12
3 134,910
4 13,4,56,7,8,9 10
5 |4,56,7
6 |4,56,738
7 4,5,6,7,8
8 |4,6,7,8
9 134,910
10 [1,2,3,4,910,11,12
11 | 1,2,10,11,12
12 |11,2,10,11,12

Table 4: Conditional densities for the graph of Figure 5 (b).

D(X]Y)

S
h<

5

6

[EEN
o
[N
[N
[EEN
N

O OO N O WDN K L_—

e
N~ O

GO O kP OOOORF - OOk
G O1T O kP OOOORFr OO

PRARMNRPRRPRPRPERPDMNDMNRERW

PR RPN OORONERERDN

corRrRrRrWARAARMRPLOO

COoORRPDMOUDMUUOFR OO

OORFRRFRPMNUGOIMMNOUIEF OON
OCOFRPRRPDADMDPMWNARLOOO®
P RPRDMNDMNRPRPRPRERPERDMDNRERO

oo pr~rkFRPEFPPFPEFEPBRBDSOO O
O O1T 01T, OO OO K-k 01Ol
OO Ol OO0 OO = 01 o

SN
w

Table 5: The values of M, Z(M), and C(Z(M)).

Node N M Z(N) C(Z(N))
1 5 1,2 10,11, 12 1.00
2 5 1,210, 11,12 1.00
3 4 3,4,9,10 1.00
4 4 34,506,789 10 0.59
5 4 4567 1.00
6 4 456,78 0.92
7 4 456,78 0.92
8 4 4,678 1.00
9 4 3,4,910 1.00
10 5 1,2,10,11,12 1.00
11 5 1,2,10,11,12 1.00
12 5 1,2,10,11,12 1.00

Table 6: Data instances statistics of the NeoPath-1 data set.

| Set | Focus || Abnormal | Normal® || Repair | Ascus | LSIL | HSIL | Cancer

Train | Manual 7380 1882 840 | 2388 | 1577 | 1642 933
Auto. 55 2218 53 2 0 0 0
Test | Manual 4860 1283 545 | 1577 | 1048 | 1090 600
Auto. 40 1407 39 1 0 0 0
All | Manual 12240 3165 1385 | 3965 | 2625 | 2732 1533
Auto. 95 3625 92 3 0 0 0

2 |ncludes Normal and Artifact.

Table 7: Data instances statistics of the NeoPath-2 data set.

| Set | Focus || Abnormal | Normal® || Repair | Ascus | LSIL | HSIL | Cancer

Train | Manual 10526 | 1839 | 1368 | 3010 | 2069 | 1944 | 2126
Auto. 83| 2224 80 3 0 0 0
Test | Manual 6943 | 1261 | 892 | 2002 | 1374 | 1285 | 1390
Auto. 64 | 1405 64 0 0 0 0
All | Manual 17469 | 3100 | 2260 | 5021 | 3443 | 3229 | 3516
Auto. 147 | 3629 | 144 3 0 0 0

2 [t includes Normal and Artifact.

44

Table 8: Accuracy percentage of component classifiers with NevProp.

Sub-classes
Classifiers || Sensitivity | Specificity| Repair] Ascus| LSIL| HSIL| Cancer
Training Set of NeoPath-1
1(799?%) 77.2 52.8 70.1 779 | 78.7| 78.9 75.0
2 (1549) 814 58.7 75.1 82.1 | 819 | 81.0 83.6
3 (524) 75.5 47.4 70.7 75.7 | 752 | 75.9 78.8
4 (1613) 65.5 68.3 58.0 68.8 | 69.6 | 68.0 51.3
5(473) 66.4 51.9 65.8 704 | 68.0 | 64.5 55.8
6 (558) 76.1 513 || 740| 753 77.7| 783 | 722
7 (2081) 80.5 68.8 66.6 825 | 817 | 814 81.7
8 (1866) 69.9 69.4 63.9 73.0 | 725 | 69.3 62.6
9 (1871) 72.5 72.7 57.6 747 | 735 | 725 77.1
10 (887) 84.4 39.5 79.1 846 | 86.1| 87.0 79.8
Test Set of NeoPath-1

1 75.3 49.0 68.0 758 | 755 | 76.7 76.5
2 79.8 57.3 75.9 794 | 799 | 79.1 84.3
3 75.2 44.7 72.1 743 | 759 | 745 79.3
4 63.1 66.2 54.8 65.9 | 67.3| 63.8 53.8
5 65.5 51.9 63.4 66.6 | 67.5| 65.8 59.7
6 74.5 49.5 68.0 75.0 | 76.7 | 73.2 76.2
7 77.4 65.7 68.5 789 | 79.0| 76.4 77.8
8 67.4 67.3 60.1 68.3 | 71.7| 66.9 63.2
9 69.9 72.9 64.4 714 | 68.1| 68.4 74.5
10 83.3 37.1 78.9 845 | 83.8| 83.0 82.0

2 number of instances utilized to train the classifi er

45

Table 9: Accuracy percentage of component classifiers with C4.5.

Sub-classes
Classifiers || Sensitivity | Specificity| Repair] Ascus| LSIL| HSIL| Cancer
Training Set of NeoPath-1
1 69.4 54.1 63.9 69.5| 70.8 | 70.6 68.3
2 70.7 52.1 65.1 70.0 | 70.1| 70.8 77.0
3 64.6 57.6 62.6 63.8 | 65.2 | 66.4 62.7
4 79.8 43.8 73.6 80.9 | 794 | 813 81.2
5 40.9 75.7 40.3 42.1 | 39.3| 405 40.9
6 54.4 61.9 49.6 546 | 56.0 | 56.0 51.7
7 76.5 48.9 75.6 764 | 75.0| 76.6 79.8
8 50.4 77.8 48.8 50.3 | 53.3 | 49.9 46.1
9 65.8 60.6 594 | 65.0| 684 | 651 70.7
10 71.9 40.7 70.0 734 | 736 | 713 68.0
Test Set of NeoPath-1
1 66.6 511 61.5 66.5| 69.1| 66.1 66.3
2 67.7 44.3 61.5 675 | 67.7| 67.8 73.0
3 75.7 36.9 67.6 76.1 | 754 | 77.6 78.0
4 75.7 36.9 67.6 76.1 | 754 | 77.6 78.0
5 38.8 72.7 35.1 388 | 38.8| 405 38.2
6 52.4 59.2 47.8 534 | 543 | 54.9 45.3
7 714 39.9 70.5 69.8 | 711 | 70.7 77.3
8 45.4 72.9 38.5 46.3 | 47.9 | 44.7 45.2
9 62.1 56.6 584 | 608 | 60.7 | 64.2 66.5
10 70.3 37.6 67.6 710 | 715| 71.1 67.3

46

Table 10: Accuracy percentage of super-classifiers with NevProp.
Classifiers Sub-classes
formation® | &P Sens. | Spec. || Repair | Ascus | LSIL | HSIL | Cancer
Training Set of NeoPath-1

S-S 3 83.8 | 90.9 63.6 | 879 | 858 | 85.6 83.3
3+Cg® || 842 | 9038 629 | 884 | 86.2| 86.3 83.8
S-S 5 814 | 915 59.9 | 849 | 838 | 827 82.9
5+ Cg 82.0 | 91.0 605 | 86.0| 826 | 83.1 86.4
S-S 10 78.6 | 88.2 645 | 80.1| 80.8| 78.5 81.9

10+ Cg || 79.7| 86.6 644 | 817 | 817 | 79.0 83.6
S—S—-S]3,5109 | 863 91.7 723 | 879 | 88.7| 87.1 87.5

Test Set of NeoPath-1
S-S 3 73.0 | 80.5 61.3| 733 | 753 | 73.2 76.0
3+ Chg 73.4 | 79.7 618 | 732 | 76.0| 73.6 76.8
S-S 5 725 | 83.2 58.7 | 734 | 749 | 729 75.0
54+ Cg 73.1| 829 599 | 735 | 746 | 73.2 78.5
S-S 10 721 | 814 618 | 73.7| 71.8| 70.3 78.3

10+Cg || 725 | 80.5 61.3| 730| 738 | 70.6 79.3
S—-5-51| 3,510 75.0 | 78.7 635 | 758 | 76.7 | 741 79.0

a X — X: two-stage classifi ers (component classifi ers + super-classifi er); X — X — X three-stage
classifi ers (comp. + super. + super.); X € {S,0}, S: sub-classes as target classifi cation; O: origina

classes as target classifi cation ° Only the outputs from the & closest classifi ers were utilized to

construct the super-classifi er. © Theoutput of the error classifi er was utilized in the construction of the

super-classifi er aswell asthe outputsfrom the k closest classifi ers. 9 Thethird stage super-classifi er

was constructed by using the outputs of the second stage super-classifi ersasitsinput.

47

Table 11: Accuracy percentage of super-classifiers with NevProp.

Classifiers Sub-classes
formation | &k Sens. | Spec. || Repair | Ascus | LSIL | HSIL | Cancer
Training Set of NeoPath-1

S—-0 3 895 | 87.8 79.8 91.1 | 90.7 | 90.6 88.5
3+ Cg 90.7 | 87.7 80.6 92.7 | 916 | 914 90.4

S—0 5 88.9 | 88.3 80.0 89.9 | 90.2 | 895 89.2
5+ Cg 91.8 | 86.6 84.4 92.7 | 925 | 924 91.7

S—-0 10 92.0 | 823 86.0 915 | 938 | 92.0 93.7

10+Cg | 91.9| 835 854 | 921 | 93.0| 917 93.4

S—-S-0| 3,510 90.1 | 90.0 79.1| 918 | 91.2| 915 89.4

Test Set of NeoPath-1
S—-0 3 79.8 | 73.2 69.7 81.0| 81.2| 79.2 81.7
34+ Cg 80.4 | 725 723 | 80.6| 821 | 79.6 82.7
S—-0 5 80.3 | 75.1 71.1 80.5| 81.8| 79.7 83.7
5+ Cg 814 | 72.6 724 | 821 | 823 | 81.0 84.0
S—-0 10 84.1 | 68.9 75.2 849 | 84.7| 834 87.7

10+Cg | 829 | 694 71.7| 832 | 847 | 826 87.0

S—S—0] 3,510 | 796 | 741 67/5| 805| 806]| 795| 837

Table 12: Performances of various algorithms for the forest cover type data.

Algorithms Accuracy
Linear Discriminant Analysis 58%
Backpropagation 70%
NevProp 23.96%
C4.5 63.64%
NeuNet Pro SFAM 68% ¢
Hierarchical Multiple Classifier 70.81%

@ ~~ twice of the training records than the other algorithms.

48

Table 13: Results of error detection classifier for NeoPath-1

Train (11,535) Test (7,590)

Correct Error | Correct Error || Overall
Super-classifier 1|| 83.35%| 16.65% | 73.14% | 26.86% 79.29

Group A | Group B || Group A | Group B

Error Detection 9676 1859 6251 1339
Group A Train (9,676) Test (6,251) Overall
Super-classifier 1|| 98.42% \ 1.58% | 73.73% \ 26.27% 88.73
Group B Train (1,859) Test (1,339) Overall
Super-classifier 2 || 99.35% \ 0.65% | 60.87% \ 39.13% 83.24

Table 14: Results of repetition experiments for NeoPath-2

Accuracy (Test Set) | Sensitivity | Specificity
Sample Mean 79.40 88.10 77.64
Variance 0.40 0.51 1.09
Maximum 80.15 89.03 79.14
Minimum 78.70 86.61 75.06

49

