Computer Vision Basics

- Image Terminology
- Binary Operations
- Filtering
- Edge Operators

Digital Image Terminology:

0	0	0	0	1	0	0	
0			_	1	•	U	
0					93		
0			_		92		
0	0	93	93	94	92	93	
0					93		*
0	0	94	95	95	96	95	

pixel (with value 94)

its 3x3 neighborhood

region of medium intensity

resolution (7x7)

- binary image
- gray-scale (or gray-tone) image
- color image
- multi-spectral image
- range image
- labeled image

The Three Stages of Computer Vision

• low-level

• mid-level

• high-level

Low-Level

sharpening

blurring

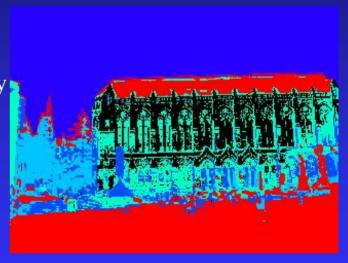
Low-Level

Canny

edge image

original image

Mid-Level

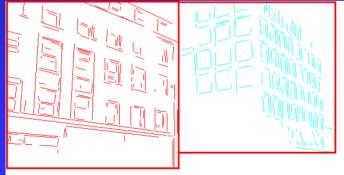


circular arcs and line segments

Mid-level

K-means clustering (followed by connected component analysis)

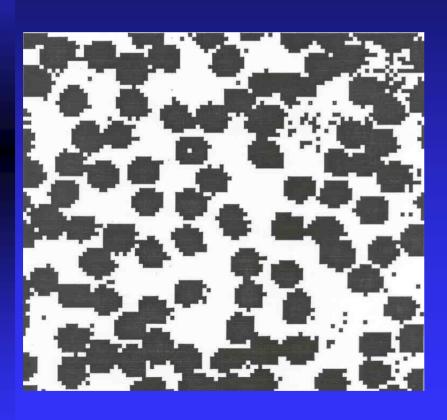
original color image


data structure regions of homogeneous color

Low- to High-Level

mid-level

high-level consistent line clusters

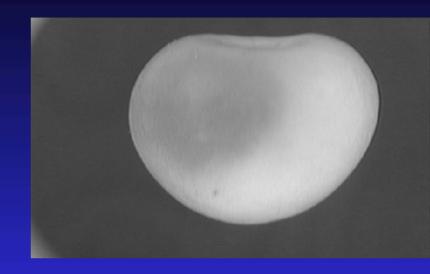

Building Recognition

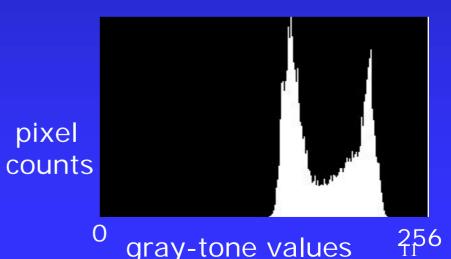
Binary Image Analysis

- used in a variety of applications: part inspection riveting fish counting document processing
- consists of a set of image analysis operations that are used to produce or process binary images, usually images of 0's and 1's.

00010010001000 00011110001000 00010010001000

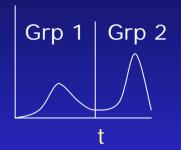
Example: red blood cell image


- Many blood cells are separate objects
- Many touch bad!
- Salt and pepper noise from thresholding
- How useable is this data?
- What operations are needed to clean it up?


Useful Operations

- 1. Thresholding a gray-tone image
- 2. Determining good thresholds
- 3. Filtering with mathematical morphology
- 4. Connected components analysis
- 5. Numeric feature extraction
 - location features
 - gray-tone features
 - shape features ...

Thresholding


- Background is black
- Healthy cherry is bright
- Bruise is medium dark
- Histogram shows two cherry regions (black background has been removed)

Automatic Thresholding: Otsu's Method

Assumption: the histogram is bimodal

Method: find the threshold t that minimizes the weighted sum of within-group variances for the two groups that result from separating the gray tones at value t.

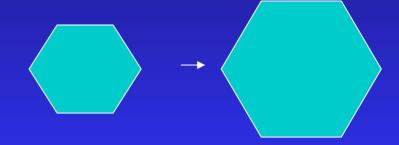
Works well if the assumption holds.

Thresholding Example

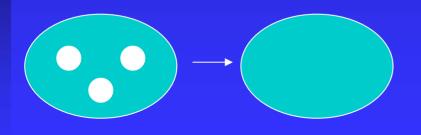
original image

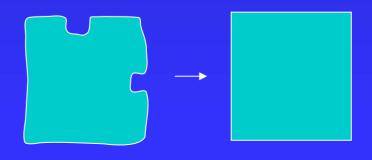
pixels above threshold

Mathematical Morphology


(Dilation, Erosion, Closing, Opening)

Dilation


Dilation expands the connected sets of 1s of a binary image.

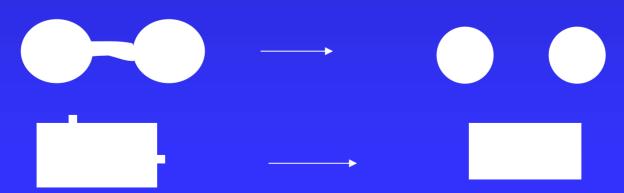

It can be used for

1. growing features

2. filling holes and gaps

• Erosion

Erosion shrinks the connected sets of 1s of a binary image.


It can be used for

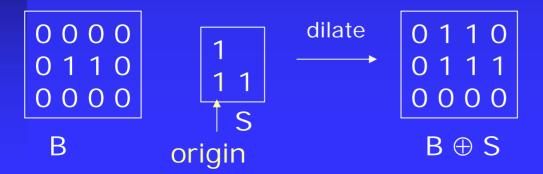
1. shrinking features

2. Removing bridges, branches and small protrusions

Structuring Elements

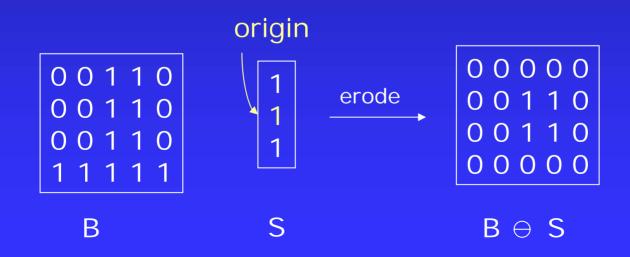
A structuring element is a shape mask used in the basic morphological operations.

They can be any shape and size that is digitally representable, and each has an origin.

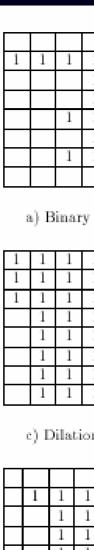


Dilation with Structuring Elements

The arguments to dilation and erosion are


- 1. a binary image B
- 2. a structuring element S

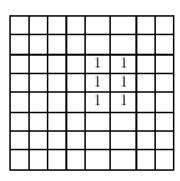
dilate(B,S) takes binary image B, places the origin of structuring element S over each 1-pixel, and ORs the structuring element S into the output image at the corresponding position.

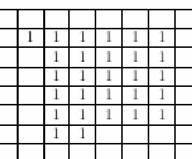

Erosion with Structuring Elements

erode(B,S) takes a binary image B, places the origin of structuring element S over every pixel position, and ORs a binary 1 into that position of the output image only if every position of S (with a 1) covers a 1 in B.

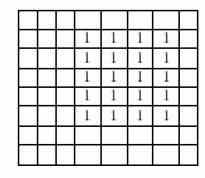
Opening and Closing

- Closing is the compound operation of dilation followed by erosion (with the same structuring element)
- Opening is the compound operation of erosion followed by dilation (with the same structuring element)

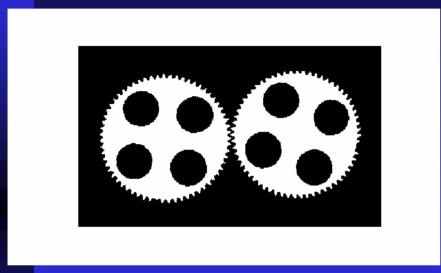

1	\neg	1	1	1	1	1	
			1	1	1	1	
			1	1	1	1	
		1	1	1	1	1	
			1	1	1	1	
		1	1				

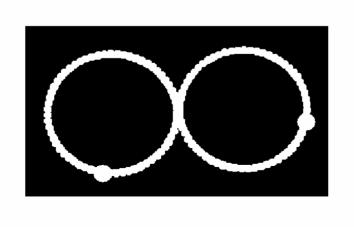

a) Binary image B

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1			


b) Structuring Element S

c) Dilation $B \oplus S$

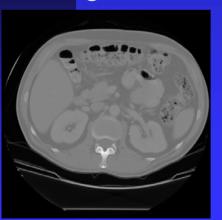

d) Erosion $B \oplus S$


e) Closing $B \bullet S$

f) Opening $B \circ S$

Application: Gear Tooth Inspection

original binary image


detected defects

Connected Components Labeling

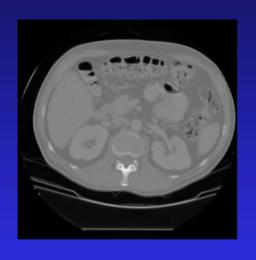
Once you have a binary image, you can identify and then analyze each connected set of pixels.

The connected components operation takes in a binary image and produces a **labeled image** in which each pixel has the integer label of either the background (0) or a component.

original

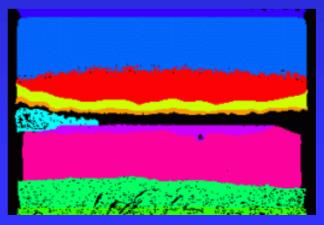
thresholded

opening+closing


components

Methods for CC Analysis

- 1. Recursive Tracking (almost never used)
- 2. Parallel Growing (needs parallel hardware)
- 3. Row-by-Row (most common)
 - a. propagate labels down to the bottom, recording equivalences
 - b. Compute equivalence classes
 - c. Replace each labeled pixel with the label of its equivalence class.


Labelings shown as Pseudo-Color

connected components of 1's from cleaned, thresholded image

connected components of cluster labels