1026

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

Blobworld: Image Segmentation Using
Expectation-Maximization and
Its Application to Image Querying

Chad Carson, Member, IEEE, Serge Belongie, Member, IEEE,
Hayit Greenspan, Member, IEEE, and Jitendra Malik, Member, IEEE

Abstract—Retrieving images from large and varied collections using image content as a key is a challenging and important problem.
We present a new image representation that provides a transformation from the raw pixel data to a small set of image regions that are
coherent in color and texture. This “Blobworld” representation is created by clustering pixels in a joint color-texture-position feature

space. The segmentation algorithm is fully automatic and has been run on a collection of 10,000 natural images. We describe a system
that uses the Blobworld representation to retrieve images from this collection. An important aspect of the system is that the user is
allowed to view the internal representation of the submitted image and the query results. Similar systems do not offer the user this view
into the workings of the system; consequently, query results from these systems can be inexplicable, despite the availability of knobs
for adjusting the similarity metrics. By finding image regions that roughly correspond to objects, we allow querying at the level of objects
rather than global image properties. We present results indicating that querying for images using Blobworld produces higher precision
than does querying using color and texture histograms of the entire image in cases where the image contains distinctive objects.

Index Terms—Segmentation and grouping, image retrieval, image querying, clustering, Expectation-Maximization.

1 INTRODUCTION

VERY large collections of images are growing ever more
common. From stock photo collections and proprietary
databases to the World Wide Web, these collections are
diverse and often poorly indexed; unfortunately, image
retrieval systems have not kept pace with the collections
they are searching. The limitations of these systems include
both the image representations they use and their methods
of accessing those representations to find images:

e While users generally want to find images containing
particular objects (“things”) [9], [13], most existing
image retrieval systems represent images based only
on their low-level features (“stuff”), with little regard
for the spatial organization of those features.

e Systems based on user querying are often unintuitive
and offer little help in understanding why certain
images were returned and how to refine the query.
Often the user knows only that he has submitted a
query for, say, a bear but in return has retrieved many
irrelevant images and very few pictures of bears.

o C. Carson is with the Computer Science Division, 387 Soda Hall #1776,
University of California at Berkeley, Berkeley, CA 94720-1776.

E-mail: carson@eecs.berkeley.edu.

e S. Belongie is with the Department of Computer Science and Engineering,
AP&M Building, Room 4832, University of California, San Diego, La Jolla,
CA 92093-0114. E-mail: sjb@cs.ucsd.edu.

o H. Greenspan is with the Department of Biomedical Engineering, Faculty
of Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978 Israel.
E-mail: hayit@eng.tau.ac.il.

o |. Malik is with the Computer Science Division, 725 Soda Hall, University
of California at Berkeley, Berkeley, CA 94720-1776.

E-mail: malik@cs.berkeley.edu.

Manuscript received 24 July 2001; revised 3 Jan. 2002; accepted 14 Feb. 2002.
Recommended for acceptance by C. Schmid.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114593.

In this paper, we present “Blobworld,” a new framework
for image retrieval based on segmentation into regions and
querying using properties of these regions. The regions
generally correspond to objects or parts of objects. While
Blobworld does not exist completely in the “thing” domain, it
recognizes the nature of images as combinations of objects,
and querying in Blobworld is more meaningful than it is with
simple “stuff” representations.

Image segmentation is a difficult problem. Segmentation
algorithms inevitably make mistakes, causing some degrada-
tion in performance of any system that uses the segmentation
results. As aresult, designers of image retrieval systems have
generally chosen to use global image properties, which donot
depend on accurate segmentation. However, segmenting an
image allows us to access the image at the level of objects. We
believe this ability is critical to image retrieval and to progress
in object recognition, in general. We have developed a
segmentation algorithm that, while imperfect, provides
segmentations that are good enough to yield improved query
performance compared to systems that use global properties.

In order to segment each image automatically, we model
the joint distribution of color, texture, and position features
with a mixture of Gaussians. We use the Expectation-
Maximization (EM) algorithm [8] to estimate the parameters
of this model; the resulting pixel-cluster memberships
provide a segmentation of the image. After the image is
segmented into regions, a description of each region’s color
and texture characteristics is produced. In a querying task, the
user can access the regions directly, in order to see the
segmentation of the query image and specify which aspects of
the image are important to the query. When query results are
returned, the user also sees the Blobworld representation of
each retrieved image; this information assists greatly in
refining the query.

0162-8828/02/$17.00 © 2002 IEEE

CARSON ET AL.: BLOBWORLD: IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

1027

extract group describe
; features ; features ; regions ;
image pixel image g region
features regions features

Fig. 1. The stages of Blobworld processing: From pixels to region descriptions.

We begin this paper by briefly discussing the current state
of image retrieval. In Sections 2 and 3, we describe the feature
extraction and segmentation algorithm. In Section 4, we
discuss the descriptors assigned to each region. In Section 5,
we present a query system based on Blobworld, as well as
results from queries in a collection of 10,000 highly varied
natural images. We conclude with a brief discussion of our
approach and some proposed directions for future work.

Portions of this work have been published in [4], [6], [7].

1.1 Related Work

The best-known image database system is IBM’s Query by
Image Content (QBIC) [10], which allows an operator to
specify various properties of a desired image. The system
then displays a selection of potential matches to those
criteria, sorted by a score of the appropriateness of the
match. Region segmentation is largely manual, but recent
versions of QBIC [2] contain simple automated segmenta-
tion facilities. Photobook [32] incorporates more sophisti-
cated representations of texture and a degree of automatic
segmentation. Other examples of systems that identify
materials using low-level image properties include Virage
[17], VisualSEEk [39], Candid [24], and Chabot [30].

Color histograms [42], [43] are commonly used in image
retrieval systems and have proven useful; however, this
global characterization lacks information about how the
color is distributed spatially. Several researchers have
attempted to overcome this limitation by incorporating
spatial information in the descriptor. Stricker and Dimai
[41] store the average color and the color covariance matrix
within each of five fuzzy image regions. Huang et al. [20]
store a “color correlogram” that encodes the spatial correla-
tion of color-bin pairs. Smith and Chang [40] store the
location of each color that is present in a sufficient amount in
regions computed using histogram backprojection.

Lipson et al. [26] retrieve images based on spatial and
photometric relationships within and across simple image
regions. Little or no segmentation is done; the regions are
derived from low-resolution images. Jacobs et al. [21] use
multiresolution wavelet decompositions to perform queries
based on iconic matching.

Some of these systems encode information about the
spatial distribution of color features, and some perform
simple automatic or manually-assisted segmentation. How-
ever, none provides the level of automatic segmentation
and user control necessary to support object queries in a
very large image collection. These approaches generally
work well in a query-by-example task when the entire scene
is distinctive and relevant; they are not suited to the task of
querying for general objects such as animals, where large
parts of the scene are irrelevant.

Our approach is most similar to Ma and Manjunath [27]
who perform retrieval based on segmented image regions.
Their segmentation algorithm includes an optional manual
region-pruning step, and the user must specify the expected
number of regions. Whether this is a pro or a con is not

clear; it is still an open question what effect the number of
regions has on system performance.

Classical object recognition techniques usually rely on
clean segmentation of the object from the rest of the image or
are designed for fixed geometric objects such as machine
parts. Neither constraint holds in the case of natural images:
the shape, size, and color of objects like tigers and airplanes
are quite variable, and segmentation is imperfect. Clearly,
classical object recognition does not apply. More recent
techniques [33] can identify specific objects drawn from a
finite (on the order of 100) collection, butno present technique
is effective at the general image analysis task, which requires
both image segmentation and image classification.

Our approach to segmentation uses the EM algorithm to
estimate the parameters of a mixture of Gaussians model of
the joint distribution of pixel color and texture features. This
approach is related to earlier work using EM and/or the
Minimum Description Length (MDL) principle to perform
segmentation based on motion [3], [44] or scaled intensities
[45]. Related approaches such as deterministic annealing
[34] and classical clustering [22] have been applied to
texture segmentation without color. Panjwani and Healey
[31] have performed segmentation using a Markov random
field color texture model.

2 FEATURE EXTRACTION

Creating the Blobworld representation of an image involves
three steps (see Fig. 1):

1. Select an appropriate scale for each pixel and extract
color, texture, and position features for that pixel at
the selected scale.

2. Group pixels into regions by modeling the distribu-
tion of pixel features with a mixture of Gaussians
using Expectation-Maximization.

3. Describe the color distribution and texture of each
region for use in a query.

Fig. 2 illustrates these steps for a sample image.

2.1 Extracting Color Features

Each image pixel has a three-dimensional color descriptor
in the L*a*b* color space. This color space is approximately
perceptually uniform; thus, distances in this space are
meaningful [47]. We smooth the color features as discussed
in Section 2.3 in order to avoid oversegmenting regions
such as tiger stripes based on local color variation;
otherwise, each stripe would become its own region.

2.2 Extracting Texture Features

Texture is a well-researched property of image regions and
many texture descriptors have been proposed, including
multiorientation filter banks [28] and the second-moment
matrix [11], [15]. We will not elaborate here on the classical
approaches to texture segmentation and classification, both

1028

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 24, NO. 8, AUGUST 2002

(e)

)

Fig. 2. Creating the Blobworld representation. (a) Original image. (b) The image after spatially variant smoothing at the selected scale. Note that the
zebra stripes have been smoothed away and replaced by gray. (c) The six components of the color/texture feature vectors. The top images represent the
three locally smoothed L*a*b* color coordinates. The bottom images represent the coordinates in texture space; from left to right, we have anisotropy,
polarity, and contrast, ranging from O (white) to 1 (black). Note that the zebra hide is highly anisotropic (oriented) and has high texture contrast. Note also
that the striped regions are roughly uniform in each of the six features. (d) The results of clustering the feature vectors into K = 2, 3,4, 5 Gaussian
clusters using EM. Pixel cluster memberships are shown as one of up to five gray levels. Application of the MDL principle suggests that the K = 4image
(third from the left) provides the best segmentation of the data. (e) The segmentation for K = 4 (as chosen by MDL) after postprocessing. (f) The
Blobworld representation of the image. Each region with an area greater than 1 percent of the total image area yields a blob.

of which are challenging and well-studied tasks. Rather, we
introduce a new perspective related to texture descriptors
and texture grouping motivated by the content-based
retrieval task.

Whereas color is a point property, texture is a local-
neighborhood property. It does not make sense to talk about
the texture of zebra stripes at a particular pixel without
specifying a neighborhood around that pixel. In order for a
texture descriptor to be useful, it must provide an adequate
description of the underlying texture parameters and it
must be computed in a neighborhood which is appropriate
to the local structure being described.

The first requirement could be met to an arbitrary degree
of satisfaction by using multiorientation filter banks such as

steerable filters; we chose a simpler method that is sufficient
for our purposes. The second requirement, which may be
thought of as the problem of scale selection, has not received
the same level of attention in the literature. This is
unfortunate, since texture descriptors computed at the
wrong scale only confuse the issue.

In this work, we introduce anovel method of scale selection
which works in tandem with a fairly simple but informative
set of texture descriptors. The scale selection method is based
onedge/bar polarity stabilization and the texture descriptors
arise from the windowed second moment matrix. Both are
derived from the gradient of the L* component, which we
denote by VI. We compute VI using the first difference
approximation along each dimension. This operation is often

CARSON ET AL.: BLOBWORLD: IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

accompanied by smoothing, but we have found this pre-
processing operation unnecessary for the images in our
collection.

To make the notion of scale concrete, we define the scale to
be the width of the Gaussian window within which the
gradient vectors of the image are pooled. The second moment
matrix for the vectors within this window, computed about
each pixel in the image, can be approximated using

Ma(xvy) = GU(‘T: y) * (VI)(VI)T7 (1)

where G,(z,y) is a separable binomial approximation to a
Gaussian smoothing kernel with variance o

At each pixel location, M,(z,y) is a 2 x 2 symmetric
positive semidefinite matrix; thus, it provides us with three
pieces of information about each pixel. Rather than working
with the raw entries in M, it is more common to deal with
its eigenstructure [5], [11]. Consider a fixed scale ¢ and pixel
location, let A; and Ay (A > A2) denote the eigenvalues of
M, at that location and let ¢ denote the argument of the
principal eigenvector of M,. When J; is large compared to
A2, the local neighborhood possesses a dominant orienta-
tion, as specified by ¢. When the eigenvalues are compar-
able, there is no preferred orientation, and when both
eigenvalues are negligible, the local neighborhood is
approximately constant.

2.2.1 Scale Selection

We may think of o as controlling the size of the integration
window around each pixel within which the outer product
of the gradient vectors is averaged. ¢ has been called the
integration scale or artificial scale by various authors [11], [15]
to distinguish it from the natural scale used in linear
smoothing of raw image intensities. Note that o = o(z,y);
the scale varies across the image."

In order to select the scale at which M, is computed, i.e.,
to determine the function o(z,y), we make use of a local
image property known as polarity.> The polarity is a
measure of the extent to which the gradient vectors in a
certain neighborhood all point in the same direction. (In the
computation of second moments, this information is lost in
the outer product operation; i.e., gradient vector directions
differing by 180° are indistinguishable.) The polarity at a
given pixel is computed with respect to the dominant
orientation ¢ in the neighborhood of that pixel. For ease of
notation, let us consider a fixed scale and pixel location.
We define polarity as

. By —E|
 E,+E_
The definitions of F, and F_ are
E. =Y Golx,y)[VI -],
vy

and

F_= ZGo(may)[VI : ﬁ]—’

T,y

1, Strictly speaking, (1) is not a convolution since o(z,y) is spatially
variant.
2. Polarity is related to the quadrature phase as discussed in [14], [16].

1029

(@)

(e)

Fig. 3. Five sample patches from a zebra image. Both (a) o = 1.5 and
(b) o = 2.5 have stripes (1D flow) of different scales and orientations,
(c) is a region of 2D texture with o = 1.5, (d) contains an edge with ¢ = 0,
and (e) is a uniform region with o = 0.

where [-], and []_ are the rectified positive and negative parts
of their argument and 7 is a unit vector perpendicular to ¢. We
can think of F, and E_ as measures of how many gradient
vectors in the window G, (z, y) are on the “positive side” and
“negative side” of the dominant orientation, respectively.
Note that p, ranges from 0 to 1. (A similar measure is used in
[25] to distinguish a flow pattern from an edge.)

The polarity p, varies as the scale o changes; its
behavior in typical image regions can be summarized as
follows (see Fig. 3):

e Edge. The presence of an edge is signaled by p,
holding values close to 1 for all o.

e Texture. In regions with 2D texture or 1D flow, p,
decays with o: as the window size increases, pixels
with gradients in multiple directions are included in
the window, so the dominance of any one orientation
decreases.

o Uniform. When a neighborhood possesses a con-
stant intensity, p, takes on arbitrary values since the
gradient vectors have negligible magnitudes and,
therefore, arbitrary angles.

The process of selecting a scale is based on the
derivative of the polarity with respect to scale. First, we
compute the polarity at every pixel in the image for
or=k/2,k=0,1,...,7, thus producing a “stack” of
polarity images across scale. Then, for each k, the polarity
image computed at scale o}, is convolved with a Gaussian
with standard deviation 20, to yield a smoothed polarity
image po,(x,y). For each pixel (z,y), we select the scale
o*(x,y) as the first value of oy(z,y) for which the
difference between values of polarity at successive scales
(Po, — Doy_,) is less than 2 percent. By this process, we are
performing a soft version of local spatial frequency
estimation, since the smoothed polarity tends to stabilize
once the scale window encompasses one approximate
period. Because we stop at o, = 3.5, the largest period we
can detect is approximately 10 pixels. Note that in
uniform regions the selected scale is not meaningful and
is set to zero. We declare a region to be uniform if its
mean contrast across scale is less than 0.1.

1030

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

(a) (b) ()

(d) (e)

Fig. 4. Windows for initializing the EM means. For a given K, each of the K initial means is found by averaging the feature vectors in one of the
K windows. On subsequent restarts, Gaussian noise is added to each mean to choose the initial EM means. (When K = 3, the two sets of windows
are used for alternate restarts.) Because the images in our collection generally follow the conventions of photographic composition, these window
arrangements tend to initialize one mean corresponding roughly to the dominant object in the image and the other means corresponding to other
objects or background regions. (a) K=2, (b) K=3, (c) K=3, (d) K=4, and (e) K=5.

Another method of scale selection that has been proposed
[15]is based on localizing extrema across scale of an invariant
of M,, such as the trace or determinant. In this algorithm,
which is applied to the problem of estimating the slant and
tilt of surfaces with tangential texture, it is necessary to
perform natural smoothing at a scale tied to the artificial
scale. We found that this extra smoothing compromised the
spatial localization ability of our scale selection method.

2.2.2 Texture Features

Once a scale o* is selected for each pixel, that pixel is
assigned three texture descriptors. The first is the polarity at
that scale, p = p,+. The other two, which are taken from M.,
are the anisotropy, defined as a=1— Xy/\;, and the
normalized texture contrast, defined as ¢ = 2v/A; + A\2.°
These are related to derived quantities reported in [15].

2.3 Combining Color, Texture, and Position
Features

The final color/texture descriptor for a given pixel consists of
six values: three for color and three for texture. The three color
components are the L*a*b* coordinates found after spatial
averaging using a Gaussian at the selected scale. The three
texture components are ac, pc, and ¢, computed at the selected
scale; the anisotropy and polarity are each modulated by the
contrast since they are meaningless in regions of low contrast.
In effect, a given textured patch in an image first has its texture
properties extracted and then is replaced by a smooth patch of
averaged color (see Fig. 2b). In this manner, the color and
texture properties in a given region are decoupled; for
example, a zebra becomes a gray horse plus stripes.

Note that, in this formulation of the color/texture
descriptor, orientation and selected scale do not appear in
the feature vector; as a result, grouping can occur across
variations in orientation and scale.

Finally, we append the (z,y) position of the pixel to the
feature vector. Including the position generally decreases
oversegmentation and leads to smoother regions. As seen in
Section 3.3, large, uniform background areas in the image are
sometimes arbitrarily split into two pieces due to the use of
position as a feature. On the whole, however, including
position yields better segmentation results than excluding it.

3 GROUPING PIXELS INTO REGIONS

Once an image has been processed using the above feature
extraction scheme, the result is a large set of feature vectors,

3.If we use a centered first difference kernel in the gradient computation,
the factor of 2 makes c range from 0 to 1.

which we may regard as points in an eight-dimensional
feature space. In order to divide these points into groups, we
make use of the Expectation-Maximization (EM) algorithm
[8] to determine the maximum likelihood parameters of a
mixture of K Gaussians in the feature space.

The EM algorithm is used for finding maximum likelihood
parameter estimates when there is missing or incomplete
data. In our case, the missing data is the Gaussian cluster to
which the points in the feature space belong. We estimate
values to fill in for the incomplete data (the “E Step”),
compute the maximume-likelihood parameter estimates using
this data (the “M Step”), and repeat until a suitable stopping
criterion is reached. In the case where EM is applied to
learning the parameters for a mixture of Gaussians, it turns
out that both steps can be combined into a single update step,
as we shall see in the following description.

Assume that we are using K Gaussians in the mixture
model. (We will return to the matter of choosing K shortly.)
The form of the probability density is as follows:

K
f(z]©) = Zaiﬁ(xlf)i),

where z is a feature vector, the «;’s represent the mixing
weights (3K, a; = 1), © represents the collection of para-
meters (ay,...,ag,61,...,0k), and f; is a multivariate
Gaussian density parameterized by 6; (i.e., y; and ¥;):

1

o—3@=m) 57 (=)
(2m)7? det ¥,/

fil|0:) =

with d = 8, the dimension of the feature space.

The first step in applying the EM algorithm to the
problem at hand is to initialize K mean vectors pi,..., g
and K covariance matrices ¥,..., Xk to represent each of
the K groups. We set the initial covariances to be the
identity matrix. We initialize the means by finding the
average feature vector in each of K windows in the image
(see Fig. 4). On subsequent restarts of the EM iteration, we
add a small amount of noise to each mean. We have found
that using this data-driven initialization yields slightly
better results than random initialization, because the initial
Gaussians better cover the occupied regions of the feature
space; however, the exact initialization is not critical to the
success of the segmentation algorithm.

The update equations take on the following form:

N

1 . old
a;mw — sz<l|$]7® ld)

J=1

CARSON ET AL.: BLOBWORLD: IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

N .
new __ ijl x]'p(l‘l‘]‘, @OZd)

' i iz, ©01)

Sl O) o 1)y~ i)
Zi\il p(ilz;, ©°1)

where N is the total number of feature vectors, i.e., the
number of pixels, and p(i|z;,©) is the probability that
Gaussian 1 fits the pixel z;, given the data ©:

o fi(;10;)

p(ilzj,0) = —g——F————.
! i anfil|On)

new __
Mre =

This update scheme allows for full covariance matrices;
variants include restricting the covariance to be diagonal or
a constant times the identity matrix. Full covariance
matrices are suited to our problem since many plausible
feature clusters require elongated covariance shapes, e.g.,
the shades of gray along the L* axis of the color space.

The above update equations are repeated until the log
likelihood

N
log £(©]X) =log [[f(x/©)
k=1
increases by less than 1 percent from one iteration to the
next. (If this does not happen within 10 iterations, a stop is
forced.) We repeat this iteration four times, adding
Gaussian noise (with ¢ =1.5) to the initial means each
time; this allows us to avoid shallow local maxima.

3.1 Model Selection

We have thus far not discussed how to choose K, the number
of mixture components. Ideally, we would like to choose that
value of K that best suits the natural number of groups
present in the image. (Note that each of these color/texture
groups may include several spatially disjoint regions in the
image.) One readily available notion of goodness of fit is the
log-likelihood. Given this indicator, we can apply the
Minimum Description Length (MDL) principle [35], [36] to
select among values of K. This can be operationalized as
follows [35], [38]: choose K to maximize

log £(©|X) — %log N,

where mg is the number of free parameters needed for a
model with K mixture components. In the case of a
Gaussian mixture with full covariance matrices, we have

d(d+1)
22

As a consequence of this principle, when models using two
values of K fit the data equally well, the simpler model will
be chosen. For our experiments, K ranges from 2 to 5.

It is important to note that we are not trying to find the
“true” K or “true” Gaussian distribution. There is no such
thing, theimages were not produced by drawing pixels froma
mixture of Gaussian distributions. Rather, we are trying to
choose clusters that allow us to segment the images
effectively.

mg = (K —1)+ Kd+ K

1031

3.2 Postprocessing

Once a model is selected, the next step is to perform spatial
grouping of those pixels belonging to the same color/
texture cluster. We first produce a K-level image which
encodes pixel-cluster memberships by replacing each pixel
with the label of the cluster for which it attains the highest
likelihood (see Fig. 2d) and running a connected-compo-
nents algorithm to find image regions. (There may be more
than K of these regions.)

While spatially averaging the color features allows us to
group, for example, black and white zebra stripes into one
region, it also causes object boundaries to be blurred in the
color-feature image. As a result, boundaries in the raw
cluster-membership image do not align exactly with
boundaries in the original image. In order to mitigate this
problem, we perform a simple postprocessing step:

1. Find the color histogram of each region (minus its
boundary) using the original pixel colors (before
smoothing).

2. For each pixel (in color bin ¢) on the boundary between
two or more regions, reassign it to the region whose
histogram value ¢ is largest. (This is the maximum
likelihood estimate of the region membership based
on the regions’ color distribution.)

We iterate this process four times. (We have found that the
boundaries from the EM clustering are rarely misaligned
with the true object boundaries by more than four pixels.)

Finally, to enforce aminimal amount of spatial smoothness

in the final segmentation, we apply a 3 x 3 maximum-vote
filter* to the output of the postprocessing step (see Fig. 2e).

The segmentation process (mostly Matlab code) takes 5 to

7 minutes per image on a 300MHz Pentium II. We process the
images offline and on multiple machines in parallel.

3.3 Segmentation Results

Figs. 5 and 6 show the final segmentation of 80 randomly
selected images. (Segmentations for all 10,000 images may
be seen at http://elib.cs.berkeley.edu/segmentation.) The
segmentation results are generally good, but several kinds
of “errors” may be seen in a few of the images:

e Large background areas may be arbitrarily split into
two regions due to the use of position in the feature
vector.

e Theregionboundaries sometimes do not follow object
boundaries exactly, even when the object boundary is
visually quite apparent. This occurs because the color
feature is averaged across object boundaries. This
problem is mitigated but not entirely eliminated by
the postprocessing described in Section 3.2.

e In some cases, the object of interest is missed, split,
or merged with other regions because it is not
visually distinct. This occurs in such cases as
camouflaged cheetahs and elephants which merge
with the background. These are not actually errors of
the segmentation algorithm, since finding the “cor-
rect” segmentation would rely on high-level seman-
tic knowledge.

4. This “filter” assigns its output value as that value that occurs most
often in the 3 x 3 window.

1032

Fig. 5. Segmentation of randomly selected images of tigers, cheetahs/
leopards/jaguars, zebras, airplanes, and bald eagles. Boundaries and
regions smaller than 1 percent of the image (which do not become
blobs) are shown in gray.

e In rare cases, a visually distinct object is simply
missed. This error occurs mainly when no initial
mean falls near the object’s feature vectors.

The first effect does not hamper query performance; over-
segmenting uniform background regionsjustyields twoblobs
with similar color and texture descriptors, and the shape of
background blobs is not important. Missing the true object
boundary simply perturbs the region’s color and texture
descriptors slightly. Missing hard-to-find objects may cause
those images not to be ranked highly in a query; however,
users are generally looking for good examples of an easily
visible object, so the practical effect on query performance is
minimal. The lasterror truly hampers performance, because it
causes good images tobe missed in the query. Fortunately, this
error occurs only rarely, less than 0.1 percent of the time, with
smaller objects more likely to be missed than larger ones.

4 DESCRIBING THE REGIONS

We store a simple description of each region’s color and
texture characteristics.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

Fig. 6. Segmentations of randomly selected images of black bears,
elephants, brown bears, polar bears, and brown horses. Boundaries and
regions smaller than 1 percent of the image (which do not become
blobs) are shown in gray.

In order to represent the color distribution of each
region, we store the color histogram of the pixels in the
region. This histogram is based on bins with width 20 in
each dimension of L*a*b* space. This spacing yields five
bins in the L* dimension and ten bins in each of the a* and
b* dimensions, for a total of 500 bins. However, not all of
these bins are valid; the gamut corresponding to 0 <
R, G, B <1 contains only 218 bins that can be filled.

To match the color of two regions, we use the quadratic
distance between their histograms x and y [18]:

&g xy) = x-y)"Ax-y),

where A = [a;;] is a symmetric matrix of weights between 0
and 1 representing the similarity between bins i and j based
on the distance between the bin centers; neighboring bins
have a weight of 0.5. This distance measure allows us to
give a high score to two regions with similar colors, even if
the colors fall in different histogram bins.

For each blob, we store the mean texture contrast and
anisotropy. The distance between two texture descriptors is

CARSON ET AL.: BLOBWORLD: IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

defined as the Euclidean distance between their respective
values of contrast and anisotropy x contrast. (Anisotropy is
modulated by contrast because it is meaningless in areas of
low contrast.) We do not include polarity in the region
description because it is generally large only along edges; it
would not help us distinguish among different kinds of
regions.

5 IMAGE RETRIEVAL BY QUERYING

In the past few years, a variety of image retrieval systems
have become available. Most of these systems operate in a
similar way: the user performs a query by choosing an
image which is somewhat similar to the desired image (or
by submitting a sketch of the desired image) and setting a
few “knobs” to specify which properties (e.g., overall color,
overall texture, composition) are important to the query.
Upon seeing the query results, the user may adjust the
knobs and submit a new query based on the original image
or one of the returned images. In a few systems, the user
may also label the retrieved images as good or bad matches
in order to provide more information to the retrieval
algorithm; this is called relevance feedback [19], [29].

Two major shortcomings of such interfaces are a lack of
user control and the absence of information about the
computer’s view of the image. Unlike with text searches, in
which the user can see the features (words) in a document,
none of the current image retrieval systems allows the user
to see exactly what the system is looking for in response to a
query. As a result, a query for a bear can return just about
anything if the query is not based on image regions, the
segmentation fails to “find” the bear in the submitted
image, or the submitted image contains other distinctive
objects. Without knowing that the input image was not
properly processed, the user can only wonder what went
wrong. In order to help the user formulate effective queries
and understand their results, as well as to minimize
disappointment due to overly optimistic expectations of
the system, we believe the system should display its
representation of the submitted and returned images and
should allow the user to specify which aspects of that
representation are relevant to the query.

5.1 Querying in Blobworld

In our system, the user composes a query by submitting an
image to the segmentation/feature extraction algorithm in
order to see its Blobworld representation, selecting the
blobs to match, and finally specifying the relative impor-
tance of the blob features. (Query performance is robust to
changes in the blob and feature weights; perturbing the
weights usually changes the query results only slightly.)

We define an “atomic query” as one which specifies a
particular blob to match (e.g., “like-blob-1”). A “compound
query” is defined as either an atomic query or a conjunction
or disjunction of compound queries (“like-blob-1
and like-blob-2”). The user may also specify two blobs
with a particular spatial relationship as an atomic query
(“like-blob-1-left-of-blob-2").

Once a compound query is specified, we score each
database image based on how closely it satisfies the
compound query. The score pu; for each atomic query
(like-blob-i) with feature vector v; is calculated as follows:

1033

1. For each blob b; in the database image (with feature
vector v;):

a. Find the Mahalanobis distance between v; and
T
Vit dij = (v; = v;) " B(vi = v;).

b. Measure the similarity between the two blobs
using y1;; = e~ 7. This score is 1 if the blobs are
identical in all relevant features; it decreases as
the match becomes less perfect.

2. Take p; = max; fi;).

The matrix X is block diagonal. The block corresponding
to the texture features is an identity matrix, weighted by the
texture weight set by the user. The block corresponding to the
color features is the A matrix used in finding the quadratic
distance, weighted by the color weight set by the user.

The compound query score for the database image is
calculated using fuzzy-logic operations [23]. For example, if
the query is “like-blob-1 and (like-blob-2 or like-blob-3),”
the overall score for the image is min{u;, max{po, p13}}. The
user can also specify a weighting o; for each atomic query. If
“like-blob-i” is part of a disjunction in the compound query,
the weighted score for atomic query i is p; = oyp;; if itisin a
conjunction, its weighted score is p; =1 — o, - (1 — p;).

We then rank the images according to overall score and
return the best matches, indicating for each image which set
of blobs provided the highest score; this information helps the
user refine the query. After reviewing the query results, the
user may change the weighting of the blob features or may
specify new blobs to match and then issue a new query.

5.1.1 Including the Background

In many cases, desired images are characterized by one
important object and a distinctive background (e.g., an
eagle in the sky). In order to facilitate such queries, we
allow the user to choose “background” rather than a second
blob. When this option is used, the score for each blob in the
database image is based on the distance between the query
blob and the database blob as well as the distance between
the color histogram of the complement of the query blob
(i.e., all pixels not in the query blob) and the complement of
the database blob. Note that this is quite different from
matching global histograms of the entire image, as we are
still looking for regions of coherent color and texture.

5.2 Results

We have performed a variety of queries using a set of
10,000 images from the commercial Corel stock photo
collection. The query system is online at http://
elib.cs.berkeley.edu/photos/blobworld. Source code for
segmentation and querying is also available at http://
dlp.cs.berkeley.edu/src/blobworld/. Sample queries are
shown in Figs. 7, 8, 9, and 10. Queries on 10,000 images
require 10 to 15 seconds for global histogram and single-
blob queries, 20 to 25 seconds for two-blob queries, and
35 to 55 seconds for blob+background queries. (The Web
server is a dual-processor 167 MHz UltraSparc.) Else-
where, we describe an indexing scheme which provides
faster retrieval with only a small reduction in precision [7].

5.3 Comparison to Global Histograms

We expected that Blobworld querying would perform well
in cases where a distinctive object is central to the query. In

1034

[hinh and.

el forsarall] calor | wime lncatkon shags
[bloh 2| wey |very [somewhat| oot | net
blah 1| semewhai | very [somewhai| mat | neE |

Fig. 7. Blobworld query for tiger images using two blobs. The overall
weights are 1.0 for the tiger blob and 0.5 for the grass blob. For both
blobs, the color weight is 1.0 and the texture weight is 0.5.

order to test this hypothesis, we performed 50 queries using
both Blobworld and global color and texture histograms.
We selected 10 object categories: airplanes, black bears,
brown bears, cheetahs, eagles, elephants, horses, polar
bears, tigers, and zebras. There were between 30 and
200 examples of each category among the 10,000 images.
We compared the Blobworld results to a ranking
algorithm that used the global color and texture histograms
of the same 10,000 images. The color histograms used the
same 218 L*a*b* bins as Blobworld, along with the same
quadratic distance as described in Section 4. For texture

Bieh and Beanire Bsgarianc:
i jmvernll) osber | texture bsostisn shape
very [very| vy | x|t
mmewhat |very smewhot| net | pat

Fig. 8. Blobworld query for zebra images using two blobs. The overall
weights are 1.0 for the zebra blob and 0.5 for the grass blob. For the
zebra blob, both color and texture weights are 1.0. For the grass blob,
the color weight is 1.0 and the texture weight is 0.5.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

Querri fram $000 imeges (il search)

Fig. 9. Blobworld query for cheetah images using one blob plus the
background. The overall weights are 1.0 for the cheetah blob and 0.5 for
the background. For the cheetah blob, both color and texture weights
are 1.0. (Only color is used for the background score.)

histograms, we discretized the two texture features (mean
contrast and anisotropy) into 21 bins each, spaced uni-
formly on the interval from 0 to 1. When using global
histograms, we found that color carried most of the useful
information; varying the texture weight made very little

difference to the query results.
For each category we tested queries using two blobs, one

blob plus background, and global histograms. In each case,
we performed a few test queries to select the weights for color
and texture and for each blob. We then queried using five new
images. (We used the same weights for each image in a
category.) In Fig. 11, we plot the average precision (the

SR AN s s s S
b fmverall] opber | sesture 5

| Gueyimme 10001 |
{3uerying from 35000 tma ges (il seanch],

Fig. 10. Blobworld query for airplane images using one blob plus the
background. The overall weights are 0.5 for the airplane blob and 1.0 for
the background. For the airplane blob, the color weight is 1.0 and the
texture weight is 0.5. (Only color is used for the background score.)

CARSON ET AL.: BLOBWORLD: IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

1035

| tigers cheetahs
1
8 -©- two blobs
o -4~ blob+background
267, ---| = global histogram
84
8.
2
0
: planes
.8 1
= J
2.6 1
B4]
a J
2 1
0 % &
1 black bears
.8
=
2.6
8 .4
a.
2
0
. clephants brown bears
.8
§
8 .4
o
2
0 2
1 polar bears brown horses
.8 1
g J
BOL]
Q
g 4 SRR R 1
2 : ce 1
0 = b g &
0 1 2 3 0 1 2 3
recall recall

Fig. 11. Precision versus recall of queries using two blobs, one blob plus background, and global histograms for 10 categories. Blobworld performs
better on queries for distinctive objects such as tigers, cheetahs, and zebras, while global histograms perform better on queries for distinctive scenes
such as airplane scenes. Queries using one blob plus the background do better than both two-blob queries and global histogram queries for eagles and
black bears, where both the object and the scene are distinctive. (Chance would yield precision ranging from 0.003 for zebras to 0.02 for airplanes.)

fraction of retrieved images which are relevant) versus recall
(the fraction of relevant images which are retrieved) for each
of the 10 categories. (The 10,000 database images were
marked as “relevant” or “not relevant” to each category—i.e.,

containing the object or not—by a human observer.)
The results indicate that the categories fall into four

groups:

Distinctive objects. The color and texture of cheetahs,
tigers, and zebras are quite distinctive, and Blobworld
performance (using either two blobs or blob-+back-
ground) is better than global histogram performance.

Distinctive scenes. For most of the airplane images, the
entire scene is distinctive (a small gray object and large

amounts of blue), but the airplane region itself has quite
a common (and variable) color and texture. Global
histograms do better than Blobworld in the airplane
category. Global histograms are also slightly better than
Blobworld on brown bear images.

Distinctive objects and scenes. Bald eagle images are
characterized by both a somewhat distinctive object and
a distinctive background. Blob+background queries per-
form much better in this category than both two-blob
and global histogram queries. (Contrast this to the
airplane case; bald eagles are much more consistent in
color than are airplanes.) Blob+background queries for
black bears also perform better than both two-blob and
global histogram queries.

1036

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

o
i
T

o
=
T

=]
b
T

precision of top 50 retrieved images
=)
W
T

0.1F A
0 1 1 |)
0.8 0.85 0.9 0.95 1
score of image ranked #50

Fig. 12. Scatterplot of precision of top 50 retrieved images versus score of image ranked in 50th place. Data are from five queries in each of ten
categories, using two blobs. The linear correlation coefficient is -0.59, indicating a strong negative correlation. The best-fitting line is shown.

Other. The two methods perform comparably on the other
categories: elephants, polar bears, and brown horses. Blobs
with the same color and texture as these objects are
common in the database, but the overall scene (a general
outdoor scene) is also common, so neither Blobworld nor
global histograms has an advantage, given that we used
only color and texture. However, histograms can be taken
no further, while Blobworld has much room left for
improvement. For example, the shapes of elephants, bears,
and horses (as well as airplanes and other objects) are
distinctive.

These results support our hypothesis that Blobworld
yields good results when querying for distinctive objects.

In addition to better query performance, Blobworld has
other advantages relative to global histograms. For example,
we have developed a sketch interface that allows a user to
construct a query by drawing several blobs and specifying
their characteristics; building a query in this way is much
more intuitive than specifying a global color histogram from
scratch. In addition, Blobworld has the potential to incorpo-
rate shape information in the region description, while global
histograms (as well as methods incorporating simple spatial
information in the color histogram) do not encode the region
information necessary to perform shape queries.

5.4 Why Are Some Queries Harder than Others?

In addition to the variation in relative performance between
Blobworld and global histograms in several categories, there
is also a variation in absolute performance among the
categories. Queries for tigers, cheetahs, zebras, bald eagles,
and brown horses are “easy” in that they yield high precision
for atleast one of the query types. Queries for elephants, black
bears, and polar bears, in contrast, are “hard”—all query
types yield low precision for these objects. Intuitively, the
latter categories are difficult because the objects and scenes

are not distinctive; there are thousands of images in the
database with gray, brown, or white blobs set in an outdoor
scene. An image in one of these categories will have a large
number of images from other categories nearby in the
description space, which will result in low query precision.

This intuition can be quantified by examining the score
of images returned near the top but not at the top of the
ranked list. Most of these images are false positives; their
scores indicate how close they are to the query image and
thus suggest how many false positives are located near the
query image. For each of the two-blob queries, we examined
the score of the image ranked 50th (as calculated by the
query algorithm) and the precision of the top 50 images
(based on ground truth). We find that queries with high
scores and, thus, many nearby neighbors, generally have
low precision. Fig. 12 shows the expected strong negative
correlation (linear correlation coefficient = -0.59) between
the score of the image ranked 50th and the precision of the
top 50 images. These results support the intuition that
“hard” queries are characterized by having many nearby
neighbors in the description space.

6 DiscussioN

The basic goal in content-based image retrieval is to bridge
the gap from the low-level image properties (“stuff”) we
can directly access to the objects (“things”) users generally
want to find in image databases; we see image retrieval
ultimately as an object recognition problem. We propose a
general approach to this problem, to proceed in three steps:

1. Group pixels into regions which are coherent in low-
level properties and which generally correspond to
objects or parts of objects.

2. Describe these regions in ways that are meaningful
to the user.

CARSON ET AL.: BLOBWORLD:

3. Access these region descriptions, either automatically
or with user intervention, to retrieve desired images.

In the current implementation, we group pixels into
regions by modeling the joint distribution of color, texture,
and position features with a mixture of Gaussians using
Expectation-Maximization and the Minimum Description
Length principle. After grouping, we describe the regions
using simple color and texture properties. Finally, we access
thesedescriptionsinaquerying framework toretrieveimages.

This approach is modular; the three stages are separate
and somewhat independent. In the future, we might replace
or improve the three modules:

1. Since any segmentation algorithm will sometimes
oversegment objects, we might include a grouping
algorithm in the system to build objects out of object
parts. For example, a zebra may be oversegmented
into trunk, legs, and head; we would like to recognize
that the stripes are similar and group the partsinto one
region. One such algorithm would use Gestalt factors
[46] such as proximity, similarity, and symmetry to
join segmented regions into groups that are likely to
correspond to complete objects. We might also use
simple object models to hypothesize groupings.

2. Our current features clearly do not encode all the
important information about the blob: a zebra is
fundamentally different from a striped awning, and
shapeis the defining feature that differentiates the two.

3. We plan to explore automatic classification of
images into categories based on the region descrip-
tions. We might also use information about the
spatial relationships among blobs for both querying
and classification. (One possibility is the body plan
approach of Forsyth and Fleck [12].)

Added complexity in the latter stages depends to some
extent on improvements in the first stage; richer shape and
configuration information will be most useful if segmenta-
tion quality improves.

Finally, some remarks on the broader implications of this
line of research to computer vision in general. It is a
common belief in the computer vision community that
general-purpose image segmentation is a hopeless goal.
This has led to two distinct responses in the content-based
querying community and the object recognition commu-
nity. Researchers interested in content-based querying have
focused on descriptors such as color histograms which can
operate in the absence of segmentation; researchers in object
recognition have either set up situations where segmenta-
tion is not an issue (e.g., putting the object on a black
background) or searched for a well-defined, specific,
geometric model or photometric template in the image.

Our belief is that segmentation, while imperfect, is an
essential first step, as the combinatorics of searching for all
possible instances of a class is intractable. A combined
architecture for segmentation and recognition is needed,
analogous to inference using Hidden Markov Models in
speech recognition. We cannot claim that our framework
provides an ultimate solution to this central problem in
computer vision. What the task does offer are a number of
desirable attributes as a testbed: a richness of imagery that
excludes “cheat” solutions, something like the right kind of
modules, and a useful and important role for learning to
capture intraclass variations. The results in this paper
provide a baseline performance on a widely available image

IMAGE SEGMENTATION USING EXPECTATION-MAXIMIZATION AND ITS APPLICATION TO IMAGE...

1037

data set that could be used for testing other proposed
approaches. Individual modules can also be tested for their
impact on overall performance.

ACKNOWLEDGMENTS

The authors would like to thank Ginger Ogle and Joyce
Gross for their contributions to the online query system and
David Forsyth, Joe Hellerstein, Ray Larson, Megan Thomas,
and Robert Wilensky for useful discussions related to this
work. This work was supported by a US National Science
Foundation Digital Library Grant (IRI 94-11334) and by
US National Science Foundation graduate fellowships for
Serge Belongie and Chad Carson.

REFERENCES

[1] Special issue on digital libraries, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 18, no. 8, Aug. 1996.

[2] J. Ashley, R. Barber, M. Flickner,]J. Hafner, D. Lee, W. Niblack,
and D. Petkovic, “Automatic and Semiautomatic Methods for
Image Annotation and Retrieval in QBIC,” SPIE Proc. Storage and
Retrieval for Image and Video Databases, pp. 24-35, 1995.

[3] S. Ayer, H. Sawhney, “Layered Representation of Motion Video
Using Robust Maximum-Likelihood Estimation of Mixture Mod-
els and MDL Encoding,” Proc. Int’l Conf. Computer Vision, pp. 777-
784, 1995.

[4] S. Belongie, C. Carson, H. Greenspan, and]J. Malik, “Color- and
Texture-Based Image Segmentation Using EM and Its Application
to Content-Based Image Retrieval,” Proc. Int'l Conf. Computer
Vision, pp. 675-682, 1998.

[5] J. Biglin, G. Granlund, and J. Wiklund, “Multidimensional
Orientation Estimation with Applications to Texture Analysis
and Optical Flow,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 13, no. 8, pp. 775-790, Aug. 1991.

[6] C.Carson, S. Belongie, H. Greenspan, and J. Malik, “Region-Based
Image Querying,” Proc. IEEE Workshop Content-Based Access of
Image and Video Libraries, 1997.

[71 C. Carson, M. Thomas, S. Belongie,].M. Hellerstein, and J. Malik,
“Blobworld: A System for Region-Based Image Indexing and
Retrieval,” Proc. Int’l Conf. Visual Information System, pp. 509-516,
1999.

[8] A.Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” . Royal Statistical Soc.,
Ser. B, vol. 39, no. 1, pp. 1-38, 1977.

[9] P. Enser, “Query Analysis in a Visual Information Retrieval
Context,” J. Document and Text Management, vol. 1, no. 1, pp. 25-52,
1993.

[10] M. Hlickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B.
Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P.
Yanker, “Query by Image and Video Content: The QBIC System,”
IEEE Computer, vol. 28, no. 9, pp. 23-32, Sept. 1995.

[11] W. Forstner, “A Framework for Low Level Feature Extraction,”
Proc. European Conf. Computer Vision, pp. 383-394, 1994.

[12] D. Forsyth and M. Fleck, “Body Plans,” Proc. IEEE Computer Soc.
Conf. Computer Vision and Pattern Recognition, pp. 678-683, 1997.

[13] D. Forsyth, J. Malik, and R. Wilensky, “Searching for Digital
Pictures,” Scientific Am., vol. 276, no. 6, pp. 72-77, June 1997.

[14] W.T. Freeman and E.H. Adelson, “The Design and Use of
Steerable Filters,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 13, no. 9, pp. 891-906, Sept. 1991.

[15] J. Garding and T. Lindeberg, “Direct Computation of Shape Cues
Using Scale-Adapted Spatial Derivative Operators,” Int’l].
Computer Vision, vol. 17, no. 2, pp. 163-191, Feb. 1996.

[16] G.H. Granlund and H. Knutsson, Signal Processing for Computer
Vision. Kluwer Academic, 1995.

[17] A. Gupta and R. Jain, “Visual information retrieval,” Comm. Assoc.
Computer Machine, vol. 40, no. 5, pp. 70-79, May 1997.

[18] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack,
“Efficient Color Histogram Indexing for Quadratic Form Distance
Functions,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 7, pp. 729-736, July 1995.

[19] D. Harman, “Relevance Feedback and Other Query Modification
Techniques,” Information Retrieval: Data Structures & Algorithms,
W.B. Frakes and R. Baeza-Yates, eds. Prentice Hall 1992.

1038

[20] J. Huang, S.R. Kumar, M. Mitra, W.-]. Zhu, and R. Zabih, “Image
Indexing Using Color Correlograms,” Proc. IEEE Computer Soc.
Conf. Computer Vision and Pattern Recognition, pp. 762-768, 1997.
C. Jacobs, A. Finkelstein, and D. Salesin, “Fast Multiresolution
Image Querying,” Proc. SIGGRAPH, pp. 277-286, 1995.

A K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation
Using Gabor Filters,” Pattern Recognition, vol. 24, no. 12, pp. 1167-
1186, 1991.

J.-S. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft
Computing. Prentice Hall 1997.

P. Kelly, M. Cannon, and D. Hush, “Query by Image Example:
The CANDID Approach,” SPIE Proc. Storage and Retrieval for Image
and Video Databases, pp. 238-248, 1995.

T. Leung and]. Malik, “Detecting, Localizing and Grouping
Repeated Scene Elements from an Image,” Proc. European Conf.
Computer Vision, pp. 546-555, 1996.

P. Lipson, E. Grimson, and P. Sinha, “Configuration Based Scene
Classification and Image Indexing,” Proc. IEEE Computer Soc. Conf.
Computer Vision and Pattern Recognition, pp. 1007-1013, 1997.

W. Ma and B. Manjunath, “NeTra: A Toolbox for Navigating
Large Image Databases,” Proc. IEEE Int'l Conf. Image Processing,
pp- 568-571, 1997.

J. Malik and P. Perona, “Preattentive Texture Discrimination with
Early Vision Mechanisms,” J. Optical Soc. Am. A, vol. 7, no. 5,
pp- 923-932, 1990.

TP. Minka and RW. Picard, “Interactive Learning Using a
‘Society of Models,”” Pattern Recognition, vol. 30, no. 4, 1997.

V. Ogle and M. Stonebraker, “Chabot: Retrieval from a Relational
Database of Images,” IEEE Computer, vol. 28, no. 9, pp. 40-48, Sept.
1995.

D. Panjwani and G. Healey, “Markov Random Field Models for
Unsupervised Segmentation of Textured Color Images,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 10,
pp- 939-954, Oct 1995.

A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Content-Based
Manipulation of Image Databases,” Int’l]. Computer Vision, vol. 18,
no. 3, pp. 233-254, 1996.

J. Ponce, A. Zisserman, and M. Hebert, “Object Representation in
Computer Vision—II,” Lecture Notes in Computer Science, No. 1144,
1996.

J. Puzicha and J.M. Buhmann, “Multiscale Annealing for Real-
Time Unsupervised Texture Segmentation,” Proc. Int’l Conf.
Computer Vision, pp. 267-273, 1998.

J. Rissanen, “Modeling by Shortest Data Description,” Automatica
vol. 14, pp. 465-471, 1978.

J. Rissanen, Stochastic Complexity in Statistical Inquiry. World
Scientific, 1989.

C. Schmid and R. Mohr, “Combining Grey Value Invariants with
Local Constraints for Object Recognition,” Proc. IEEE Computer Soc.
Conf. Computer Vision and Pattern Recognition, pp. 872-877, 1996.
G. Schwarz, “Estimating the Dimension of a Model,” Annals of
Statistics, vol. 6, pp. 461-464, 1978.

J.R. Smith and S.-F. Chang, “Single Color Extraction and Image
Query,” Proc. IEEE Int’l Conf. Image Processing, pp. 528-531, 1995.
JR. Smith and S.-F. Chang, “Tools and Techniques for Color
Image Retrieval,” SPIE Proc. Storage and Retrieval for Image and
Video Databases, vol. 2670, pp. 426-437, 1996.

M. Stricker and A. Dimai, “Spectral Covariance and Fuzzy
Regions for Image Indexing,” Machine Vision and Applications,
vol. 10, no. 2, pp. 66-73, 1997.

M. Stricker and M. Swain, “The Capacity and the Sensitivity of
Color Histogram Indexing,” Technical Report 94-05, Univ. of
Chicago, Mar. 1994.

M. Swain and D. Ballard, “Color Indexing,” Int’l]. Computer
Vision, vol. 7, no. 1, pp. 11-32, 1991.

Y. Weiss and E. Adelson, “A Unified Mixture Framework for
Motion Segmentation: Incorporating Spatial Coherence and
Estimating the Number of Models,” Proc. IEEE Computer Soc.
Conf. Computer Vision and Pattern Recognition, pp. 321-326, 1996.
W. Wells, R. Kikinis, W. Grimson, and F. Jolesz, “Adaptive
Segmentation of MRI Data,” Int’l Conf. Computer Vision, Virtual
Reality, and Robotics in Medicine, pp. 59-69, 1995.

M. Wertheimer, “Laws of Organization in Perceptual Forms,” A
Source Book of Gestalt Psychology, W.D. Ellis, ed. Harcourt Brace, 1938.
G. Wyszecki and W. Stiles, Color Science: Concepts and Methods,
Quantitative Data and Formulae, second ed. Wiley, 1982.

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(371

[38]
[39]

(40]

[41]

(42]

[43]

(44]

(43]

[40]

(47]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002

Chad Carson received the BS degree in elec-
trical engineering and the BA degree in history
(cum laude) from Rice University in 1994 and the
MS degree in electrical engineering from the
University of California at Berkeley in 1997. He
received the PhD degree in electrical engineering
and computer sciences from the University of
California at Berkeley in 1999. He was awarded
the Rice Engineering Senior Scholar Award and
the US National Science Foundation Graduate
Research Fellowship. While at Rice, he served as the editor of the campus
newspaper. His research interests include content-based image retrieval
and digital libraries. He is a member of the IEEE.

Serge Belongie received the BS degree (with
honors) in electrical engineering from the Cali-
fornia Institute of Technology in 1995 and the MS
and PhD degrees in electrical engineering and
computer sciences from the University of Cali-
fornia at Berkeley in 1997 and 2000, respectively.
While at Berkeley, his research was supported by
a US National Science Foundation Graduate
Research Fellowship and the Chancellor's Op-
portunity Predoctoral Fellowship. He is also a
cofounder of Digital Persona, Inc. and the principal architect of the Digital
Persona fingerprint recognition algorithm. He is currently an assistant
professor in the Computer Science and Engineering Department at
University of California at San Diego. His research interests include
computer vision, pattern recognition, and digital signal processing. He is a
member of the IEEE.

Hayit Greenspan received the BS and MS

degrees in electrical engineering from the Tech-

nion Israel Institute of Technology, Haifa, in 1986

and 1989, respectively, and the PhD degree in

electrical engineering from the California Institute
f of Technology, Pasadena, in 1994. She was a
postdoctoral candidate with the Computer
Science Division, University of California, Berke-
ley, from 1995 to 1997. In 1997, she joined the
BioMedical Engineering Department, Faculty of
Engineering, Tel-Aviv University, Tel-Aviv, Israel.
Her research interests include content-based image search and retrieval,
medical image processing, texture recognition, image enhancement, and
pattern recognition. She is a member of the IEEE.

Jitendra Malik received the BTech degree in
electrical engineering from Indian Institute of
Technology, Kanpur in 1980 and the PhD
degree in computer science from Stanford
University in 1986. In January 1986, he joined
the faculty of the Computer Science Division,
Department of Electrical Engineering and Com-
puter Sciences, University of California at
Berkeley, where he is currently a professor.
From 1995 to 1998, he also served as vice-chair
for graduate matters. He is a member of the cognitive science and vision
science groups at the University of California at Berkeley. His research
interests are in computer vision and computational modeling of human
vision. His work spans a range of topics in vision including image
segmentation and grouping, texture, stereopsis, object recognition,
image-based modeling and rendering, content-based image querying,
and intelligent vehicle highway systems. He has authored or coauthored
more than a hundred research papers on these topics. He received the
gold medal for the best graduating student in electrical engineering from
IIT Kanpur in 1980, a Presidential Young Investigator Award in 1989,
and the Rosenbaum fellowship for the Computer Vision Programme at
the Newton Institute of Mathematical Sciences, University of Cambridge
in 1993. He received the Diane S. McEntyre Award for Excellence in
Teaching from the Computer Science Division, University of California at
Berkeley, in 2000. He is an editor-in-chief of the International Journal of
Computer Vision. He is a member of the IEEE.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

