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Abstract

We describe an approach to object and scene retrieval
which searches for and localizes all the occurrences of a
user outlined object in a video. The object is represented by
a set of viewpoint invariant region descriptors so that recog-
nition can proceed successfully despite changes in view-
point, illumination and partial occlusion. The temporal
continuity of the video within a shot is used to track the
regions in order to reject unstable regions and reduce the
effects of noise in the descriptors.
The analogy with text retrieval is in the implementation

where matches on descriptors are pre-computed (using vec-
tor quantization), and inverted file systems and document
rankings are used. The result is that retrieval is immediate,
returning a ranked list of key frames/shots in the manner of
Google.
The method is illustrated for matching on two full length

feature films.

1. Introduction
The aim of this work is to retrieve those key frames and

shots of a video containing a particular object with the ease,

speed and accuracy with which Google retrieves text docu-

ments (web pages) containing particular words. This paper

investigates whether a text retrieval approach can be suc-

cessfully employed for object recognition.

Identifying an (identical) object in a database of images

is now reaching some maturity. It is still a challenging prob-

lem because an object’s visual appearance may be very dif-

ferent due to viewpoint and lighting, and it may be partially

occluded, but successful methods now exist. Typically an

object is represented by a set of overlapping regions each

represented by a vector computed from the region’s appear-

ance. The region segmentation and descriptors are built

with a controlled degree of invariance to viewpoint and illu-

mination conditions. Similar descriptors are computed for

all images in the database. Recognition of a particular ob-

ject proceeds by nearest neighbour matching of the descrip-

tor vectors, followed by disambiguating using local spa-

tial coherence (such as neighbourhoods, ordering, or spatial

layout), or global relationships (such as epipolar geometry).

Examples include [5, 6, 8, 11, 13, 12, 14, 16, 17].

We explore whether this type of approach to recognition

can be recast as text retrieval. In essence this requires a

visual analogy of a word, and here we provide this by vector

quantizing the descriptor vectors. However, it will be seen

that pursuing the analogy with text retrieval is more than

a simple optimization over different vector quantizations.

There are many lessons and rules of thumb that have been

learnt and developed in the text retrieval literature and it is

worth ascertaining if these also can be employed in visual

retrieval.

The benefits of this approach is that matches are effec-

tively pre-computed so that at run-time frames and shots

containing any particular object can be retrieved with no-

delay. This means that any object occurring in the video

(and conjunctions of objects) can be retrieved even though

there was no explicit interest in these objects when de-

scriptors were built for the video. However, we must also

determine whether this vector quantized retrieval misses

any matches that would have been obtained if the former

method of nearest neighbour matching had been used.

Review of text retrieval: Text retrieval systems generally
employ a number of standard steps [1]. The documents

are first parsed into words. Second the words are repre-

sented by their stems, for example ‘walk’, ‘walking’ and

‘walks’ would be represented by the stem ‘walk’. Third a

stop list is used to reject very common words, such as ‘the’

and ‘an’, which occur in most documents and are therefore

not discriminating for a particular document. The remain-

ing words are then assigned a unique identifier, and each

document is represented by a vector with components given

by the frequency of occurrence of the words the document

contains. In addition the components are weighted in vari-

ous ways (described in more detail in section 4), and in the

case of Google the weighting of a web page depends on the

number of web pages linking to that particular page [3]. All

of the above steps are carried out in advance of actual re-

trieval, and the set of vectors representing all the documents

in a corpus are organized as an inverted file [18] to facilitate
efficient retrieval. An inverted file is structured like an ideal

book index. It has an entry for each word in the corpus fol-

lowed by a list of all the documents (and position in that

1

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



document) in which the word occurs.

A text is retrieved by computing its vector of word

frequencies and returning the documents with the closest

(measured by angles) vectors. In addition the match on the

ordering and separation of the words may be used to rank

the returned documents.

Paper outline: Here we explore visual analogies of each
of these steps. Section 2 describes the visual descriptors

used. Section 3 then describes their vector quantization

into visual ‘words’, and section 4 weighting and indexing

for the vector model. These ideas are then evaluated on a

ground truth set of frames in section 5. Finally, a stop list

and ranking (by a match on spatial layout) are introduced in

section 6, and used to evaluate object retrieval throughout

two feature films: ‘Run Lola Run’ (‘Lola Rennt’) [Tykwer,

1999], and ‘Groundhog Day’ [Ramis, 1993].

Although previous work has borrowed ideas from the

text retrieval literature for image retrieval from databases

(e.g. [15] used the weighting and inverted file schemes) to

the best of our knowledge this is the first systematic appli-

cation of these ideas to object retrieval in videos.

2. Viewpoint invariant description
Two types of viewpoint covariant regions are computed for

each frame. The first is constructed by elliptical shape adap-

tation about an interest point. The method involves itera-

tively determining the ellipse centre, scale and shape. The

scale is determined by the local extremum (across scale) of

a Laplacian, and the shape by maximizing intensity gradient

isotropy over the elliptical region [2, 4]. The implementa-

tion details are given in [8, 13]. This region type is referred

to as Shape Adapted (SA).

The second type of region is constructed by selecting ar-

eas from an intensity watershed image segmentation. The

regions are those for which the area is approximately sta-

tionary as the intensity threshold is varied. The implemen-

tation details are given in [7]. This region type is referred to

as Maximally Stable (MS).

Two types of regions are employed because they detect

different image areas and thus provide complementary rep-

resentations of a frame. The SA regions tend to be centered

on corner like features, and the MS regions correspond to

blobs of high contrast with respect to their surroundings

such as a dark window on a gray wall. Both types of re-

gions are represented by ellipses. These are computed at

twice the originally detected region size in order for the im-

age appearance to be more discriminating. For a 720
�
576

pixel video frame the number of regions computed is typi-

cally 1600. An example is shown in Figure 1.

Each elliptical affine invariant region is represented by

a 128-dimensional vector using the SIFT descriptor devel-

Figure 1: Top row: Two frames showing the same scene from

very different camera viewpoints (from the film ‘Run Lola Run’).

Middle row: frames with detected affine invariant regions super-

imposed. ‘Maximally Stable’ (MS) regions are in yellow. ‘Shape

Adapted’ (SA) regions are in cyan. Bottom row: Final matched

regions after indexing and spatial consensus. Note that the corre-

spondences define the scene overlap between the two frames.

oped by Lowe [5]. In [9] this descriptor was shown to be su-

perior to others used in the literature, such as the response of

a set of steerable filters [8] or orthogonal filters [13], and we

have also found SIFT to be superior (by comparing scene

retrieval results against ground truth as in section 5.1). The

reason for this superior performance is that SIFT, unlike the

other descriptors, is designed to be invariant to a shift of a

few pixels in the region position, and this localization er-

ror is one that often occurs. Combining the SIFT descriptor

with affine covariant regions gives region description vec-

tors which are invariant to affine transformations of the im-

age. Note, both region detection and the description is com-

puted on monochrome versions of the frames, colour infor-

mation is not currently used in this work.

To reduce noise and reject unstable regions, information

is aggregated over a sequence of frames. The regions de-

tected in each frame of the video are tracked using a simple

constant velocity dynamical model and correlation. Any re-

gion which does not survive for more than three frames is

rejected. Each region of the track can be regarded as an
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independent measurement of a common scene region (the

pre-image of the detected region), and the estimate of the

descriptor for this scene region is computed by averaging

the descriptors throughout the track. This gives a measur-

able improvement in the signal to noise of the descriptors

(which again has been demonstrated using the ground truth

tests of section 5.1).

3. Building a visual vocabulary
The objective here is to vector quantize the descriptors into

clusters which will be the visual ‘words’ for text retrieval.

Then when a new frame of the movie is observed each de-

scriptor of the frame is assigned to the nearest cluster, and

this immediately generates matches for all frames through-

out the movie. The vocabulary is constructed from a sub-

part of the movie, and its matching accuracy and expressive

power are evaluated on the remainder of the movie, as de-

scribed in the following sections.

The vector quantization is carried out here by K-means

clustering, though other methods (K-medoids, histogram

binning, etc) are certainly possible.

3.1. Implementation
Regions are tracked through contiguous frames, and a mean

vector descriptor x̄i computed for each of the i regions. To
reject unstable regions the 10% of tracks with the largest

diagonal covariance matrix are rejected. This generates an

average of about 1000 regions per frame.

Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a gargan-

tuan task. Instead a subset of 48 shots is selected (these

shots are discussed in more detail in section 5.1) cover-

ing about 10k frames which represent about 10% of all the

frames in the movie. Even with this reduction there are still

200K averaged track descriptors that must be clustered.

To determine the distance function for clustering the Ma-

halanobis distance is computed as follows: it is assumed

that the covariance Σ is the same for all tracks, and this
is computed by estimating from all the available data, i.e.
all descriptors for all tracks in the 48 shots. The Maha-

lanobis distance enables the more noisy components of the

128–vector to be weighted down, and also decorrelates the

components. Empirically there is a small degree of correla-

tion. The distance function between two descriptors (repre-

sented by their mean track descriptors) x̄1, x̄2, is then given
by d

�
x̄1 � x̄2 � � � �

x̄1 � x̄2 � 	 � 
 1 �
x̄1 � x̄2 � . As is standard,

the descriptor space is affine transformed by the square root

of Σ so that Euclidean distance may be used.
About 6k clusters are used for Shape Adapted regions,

and about 10k clusters for Maximally Stable regions. The

ratio of the number of clusters for each type is chosen to be

approximately the same as the ratio of detected descriptors

(a)

(b)

Figure 2: Samples from the clusters corresponding to a single vi-

sual word. (a) Two examples of clusters of Shape Adapted regions.

(b) Two examples of clusters of Maximally Stable regions.

of each type. The number of clusters is chosen empirically

to maximize retrieval results on the ground truth set of sec-

tion 5.1. The K-means algorithm is run several times with

random initial assignments of points as cluster centres, and

the best result used.

Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-

sual word. The clustered regions reflect the properties of

the SIFT descriptors which penalize variations amongst re-

gions less than cross-correlation. This is because SIFT em-

phasizes orientation of gradients, rather than the position of

a particular intensity within the region.

The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent

regions of the scene. Consequently, they may be thought

of as different vocabularies for describing the same scene,

and thus should have their own word sets, in the same way

as one vocabulary might describe architectural features and

another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of

word frequencies. However, it is usual to apply a weighting

to the components of this vector [1], rather than use the fre-

quency vector directly for indexing. Here we describe the

standard weighting that is employed, and then the visual

analogy of document retrieval to frame retrieval.
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The standard weighting is known as ‘term frequency–

inverse document frequency’, tf-idf, and is computed as
follows. Suppose there is a vocabulary of k words,
then each document is represented by a k-vector Vd ��
t1 � � � � � ti � � � � � tk � � � of weighted word frequencies with com-
ponents

ti � nidnd log Nni
where nid is the number of occurrences of word i in doc-
ument d, nd is the total number of words in the document
d, ni is the number of occurrences of term i in the whole
database and N is the number of documents in the whole
database. The weighting is a product of two terms: the

word frequency nid 	 nd , and the inverse document frequency
logN 	 ni. The intuition is that word frequency weights
words occurring often in a particular document, and thus de-

scribe it well, whilst the inverse document frequency down-

weights words that appear often in the database.

At the retrieval stage documents are ranked by their nor-

malized scalar product (cosine of angle) between the query

vectorVq and all document vectors Vd in the database.
In our case the query vector is given by the visual words

contained in a user specified sub-part of a frame, and the

other frames are ranked according to the similarity of their

weighted vectors to this query vector. Various weighting

models are evaluated in the following section.

5. Experimental evaluation of scene
matching using visual words

Here the objective is to match scene locations within a

closed world of shots [12]. The method is evaluated on 164

frames from 48 shots taken at 19 different 3D locations in

the movie Run Lola Run. We have between 4-9 frames from

each location. Examples of three frames from each of four

different locations are shown in figure 3a. There are signif-

icant viewpoint changes over the triplets of frames shown

for the same location. Each frame of the triplet is from a

different (and distant in time) shot in the movie.

In the retrieval tests the entire frame is used as a query

region. The retrieval performance is measured over all 164

frames using each in turn as a query region. The correct re-

trieval consists of all the other frames which show the same

location, and this ground truth is determined by hand for the

complete 164 frame set.

The retrieval performance is measured using the average

normalized rank of relevant images [10] given by

Rank � 1

NNrel

�
Nrel

∑
i � 1Ri 
 Nrel �

Nrel � 1 �
2 �

where Nrel is the number of relevant images for particular
query image, N is the size of the image set, and Ri is the

rank of the ith relevant image. In essence


Rank is zero if all

Nrel images are returned first. The


Rank measure lies in the

range 0 to 1, with 0 � 5 corresponding to random retrieval.
5.1. Ground truth image set results
Figure 3b shows the average normalized rank using each

image of the data set as a query image with the tf-idfweight-
ing described in section 4. The benefit in having two feature

types is evident. The combination of both clearly gives bet-

ter performance than either one alone. The performance of

each feature type varies for different frames or locations.

For example, in frames 46-49 MS regions perform better,

and conversely for frames 126-127 SA regions are superior.

The retrieval ranking is perfect for 17 of the 19 locations,

even those with significant viewpoint changes. The ranking

results are less impressive for images 61-70 and 119-121,

though even in these cases the frame matches are not missed

just low ranked. This is due to a lack of regions in the over-

lapping part of the scene, see figure 4. This is not a problem

of vector quantization (the regions that are in common are

correctly matched), but due to few features being detected

for this type of scene (pavement texture). We return to this

point in section 7.

Table 1 shows the mean of the


Rank measure computed

from all 164 images for three standard text retrieval term

weighting methods [1]. The tf-idf weighting outperforms
both the binary weights (i.e. the vector components are one

if the image contains the descriptor, zero otherwise) and

term frequency weights (the components are the frequency

of word occurrence). The differences are not very signifi-

cant for the ranks averaged over the whole ground truth set.

However, for particular frames (e.g. 49) the difference can

be as high as 0.1.

The average precision recall curve for all frames is

shown in figure 3c. For each frame as a query, we have

computed precision as the number of relevant images (i.e.

of the same location) relative to the total number of frames

retrieved, and recall as the number of correctly retrieved

frames relative to the number of relevant frames. Again the

benefit of combining the two feature types is clear.

These retrieval results demonstrate that there is no loss

of performance in using vector quantization (visual words)

compared to direct nearest neighbour (or ε-nearest neigh-
bour) matching of invariants [12].

This ground truth set is also used to learn the system pa-

rameters including: the number of cluster centres; the mini-

mum tracking length for stable features; and the proportion

of unstable descriptors to reject based on their covariance.

6. Object retrieval
In this section we evaluate searching for objects throughout

the entire movie. The object of interest is specified by the
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Figure 3: Ground truth data. (a) Each row shows a frame from
three different shots of the same location in the ground truth data

set. (b) Average normalized rank for location matching on the

ground truth set. (c) Average Precision-Recall curve for location

matching on the ground truth set.

binary tf tf-idf
SA 0.0265 0.0275 0.0209

MS 0.0237 0.0208 0.0196

SA+MS 0.0165 0.0153 0.0132

Table 1: The mean of the �Rank measure computed from all 164
images of the ground truth set for different term weighting meth-

ods.

Figure 4: Top: Frames 61 and 64 from the ground truth data set. A

poor ranking score is obtained for this pair. Bottom: superimposed

detected affine invariant regions. The careful reader will note that,

due to the very different viewpoints, only two of the 564 (left) and

533 (right) regions correspond between frames.

user as a sub-part of any frame.

A feature length film typically has 100K-150K frames.

To reduce complexity one keyframe is used per second of

the video. Descriptors are computed for stable regions in

each keyframe and the mean values are computed using two

frames either side of the keyframe. The descriptors are vec-

tor quantized using the centres clustered from the ground

truth set.

Here we are also evaluating the expressiveness of the vi-

sual vocabulary since frames outside the ground truth set

contain new objects and scenes, and their detected regions

have not been included in forming the clusters.

6.1. Stop list
Using a stop list analogy the most frequent visual words

that occur in almost all images are suppressed. Figure 5

shows the frequency of visual words over all the keyframes

of Lola. The top 5% and bottom 10% are stopped. In our

case the very common words are due to large clusters of

over 3K points. The stop list boundaries were determined

empirically to reduce the number of mismatches and size of

the inverted file while keeping sufficient visual vocabulary.
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Figures 6 show the benefit of imposing a stop list – the

very common visual words occur at many places in the im-

age and are responsible for mis-matches. Most of these are

removed once the stop list is applied. The removal of the

remaining mis-matches is described next.

6.2. Spatial consistency
Google increases the ranking for documents where the

searched for words appear close together in the retrieved

texts (measured by word order). This analogy is especially

relevant for querying objects by a subpart of the image,

where matched covariant regions in the retrieved frames

should have a similar spatial arrangement [12, 14] (e.g.

compactness) to those of the outlined region in the query

image. The idea is implemented here by first retrieving

frames using the weighted frequency vector alone, and then

re-ranking them based on a measure of spatial consistency.

Spatial consistency can be measured quite loosely sim-

ply by requiring that neighbouring matches in the query re-

gion lie in a surrounding area in the retrieved frame. It can

also be measured very strictly by requiring that neighbour-

ing matches have the same spatial layout in the query re-

gion and retrieved frame. In our case the matched regions

provide the affine transformation between the query and re-

trieved image so a point to point map is available for this

strict measure.

We have found that the best performance is obtained in

the middle of this possible range of measures. A search

area is defined by the 15 nearest neighbours of each match,

and each region which also matches within this area casts a

vote for that frame. Matches with no support are rejected.

The total number of votes determines the rank of the frame.

This works very well as is demonstrated in the last row of

figure 6, which shows the spatial consistency rejection of in-

correct matches. The object retrieval examples of figures 7

to 9 employ this ranking measure and amply demonstrate

its usefulness.

Other measures which take account of the affine map-

ping between images may be required in some situations,

but this involves a greater computational expense.

6.3. Object retrieval
Implementation – use of inverted files: In a classical file
structure all words are stored in the document they appear

in. An inverted file structure has an entry (hit list) for each

word where all occurrences of the word in all documents

are stored. In our case the inverted file has an entry for each

visual word, which stores all the matches, i.e. occurrences

of the same word in all frames. The document vector is

very sparse and use of an inverted file makes the retrieval

very fast. Querying a database of 4k frames takes about 0.1

second with a Matlab implementation on a 2GHz pentium.
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Figure 5: Frequency of MS visual words among all 3768

keyframes of Run Lola Run (a) before, and (b) after, application

of a stoplist.

Figure 6: Matching stages. Top row: (left) Query region and

(right) its close-up. Second row: Original word matches. Third

row: matches after using stop-list, Last row: Final set of matches

after filtering on spatial consistency.
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Example queries: Figures 7 and 8 show results of two
object queries for the movie ‘Run Lola Run’, and figure 9

shows the result of an object query on the film ‘Ground-

hog day’. Both movies contain about 4K keyframes. Both

the actual frames returned and their ranking are excellent –

as far as it is possible to tell, no frames containing the ob-

ject are missed (no false negatives), and the highly ranked

frames all do contain the object (good precision).

The object query results do demonstrate the expressive

power of the visual vocabulary. The visual words learnt for

Lola are used unchanged for the Groundhog Day retrieval.

7. Summary and Conclusions

The analogy with text retrieval really has demonstrated

its worth: we have immediate run-time object retrieval

throughout a movie database, despite significant viewpoint

changes in many frames. The object is specified as a sub-

part of an image, and this has proved sufficient for quasi-

planar rigid objects.

There are, of course, improvements that can be made

mainly to overcome problems in the visual processing. Low

rankings are currently due to a lack of visual descriptors for

some scene types. However, the framework allows other ex-

isting affine co-variant regions to be added (they will define

an extended visual vocabulary), for example those of [17].

Another improvement would be to define the object of in-

terest over more than a single frame to allow for search on

all its visual aspects.

The text retrieval analogy also raises interesting ques-

tions for future work. In text retrieval systems the tex-

tual vocabulary is not static, growing as new documents are

added to the collection. Similarly, we do not claim that our

vector quantization is universal for all images. So far we

have learnt vector quantizations sufficient for two movies,

but ways of upgrading the visual vocabulary will need to be

found. One could think of learning visual vocabularies for

different scene types (e.g. city scape vs a forest).

Finally, we now have the intriguing possibility of follow-

ing other successes of the text retrieval community, such as

latent semantic indexing to find content, and automatic clus-

tering to find the principal objects that occur throughout the

movie.
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Figure 7: Object query example I. First row: (left) frame with
user specified query region (a poster) in yellow, and (right) close

up of the query region. The four remaining rows show (left) the

1st, 12th, 16th, and 20th retrieved frames with the identified re-

gion of interest shown in yellow, and (right) a close up of the im-

age with matched elliptical regions superimposed. In this case 20

keyframes were retrieved: six from the same shot as the query

image, the rest from different shots at later points in the movie.

All retrieved frames contain the specified object. Note the poster

appears on various billboards throughout the movie (and Berlin).
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Figure 8: Object query example II. Run Lola Run. First row:
(left) query region, and (right) its close up. Next rows: The 9th,

16th and 25th retrieved frames (left) and object close-ups (right)

with matched regions. 33 keyframes were retrieved. 31 contained

the object. The two incorrect frames were ranked 29 and 30.

Figure 9: Object query example III. Groundhog Day. First row:
(left) query region, and (right) its close up. Next rows: The 12th,

35th and 50th retrieved frames (left) and object close-ups with

matched regions (right). 73 keyframes were retrieved of which 53

contained the object. The first incorrect frame was ranked 27th.
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