

Readings

- Press et al., Numerical Recipes, Chapter 15 (Modeling of Data)
- Nocedal and Wright, Numerical Optimization, Chapter 10 (Nonlinear Least-Squares Problems, pp. 250-273)
- Shewchuk, J. R. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
- Bathe and Wilson, Numerical Methods in Finite Element Analysis, pp.695-717 (sec. 8.1-8.2) and pp.979-987 (sec. 12.2)
- Golub and VanLoan, Matrix Computations. Chapters 4, 5, 10
- Nocedal and Wright, Numerical Optimization. Chapters 4 and 5.
- Triggs et al., Bundle Adjustment - A modern synthesis. Workshop on Vision Algorithms, 1999.

Outline

Sparse matrix techniques

- simple application (structure from motion)
- sparse matrix storage (skyline)
- direct solution: LDL $^{\top}$ with minimal fill-in
- larger application (surface/image fitting)
- iterative solution: gradient descent
- conjugate gradient
- preconditioning

4/30/2004
NLS and Sparse Matrix Techniques

Triangulation - a simple example

Problem: Given some image points $\left\{\left(u_{i}, v_{i}\right)\right\}$ in correspondence across two or more images (taken from calibrated cameras \mathbf{c}_{j}), compute the 3D location \mathbf{X}

Image formation equations

$$
\begin{aligned}
& \hline\left[\begin{array}{c}
X_{c} \\
Y_{C} \\
Z_{C}
\end{array}\right]=[\mathbf{R}]_{3 \times 3}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]+\mathrm{t} \\
& {\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \sim\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & u_{c} \\
0 & f & v_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{C} \\
Z_{c}
\end{array}\right]} \\
& \text { NLS and Sparse Matrix Techniques }
\end{aligned}
$$

Simplified model
Let $\boldsymbol{R}=\boldsymbol{I}$ (known rotation), $f=1, Y=v_{j}=0$ (flatland)

$$
u_{j}=\frac{X-x_{j}}{Z-z_{j}}
$$

How do we solve this set of equations (constraints) to find the best (X, Z) ?

Linear regression

Overconstrained set of linear equations
$X-u_{j} Z=x_{j}-u_{j} z_{j}$
$\mathbf{J x}=\mathbf{r}$
where
$J_{j 0}=1, J_{j 1}=-u_{j}$
is the Jacobian and
$r_{j}=x_{j}-u_{j} z_{j}$
is the residual
4/30/200
LS and Sparse Matrix Techniques
10

Normal Equations

How do we solve $\boldsymbol{J} \boldsymbol{x}=\boldsymbol{r}$?
Least squares: $\arg \min _{x}\|J x-r\|^{2}$

$$
\begin{aligned}
& E=\|J x-r\|^{2}=(J x-r)^{\top}(J x-r) \\
& =x^{\top} J^{\top} J x-2 x^{\top} J^{\top} r-r^{\top} r \\
& \partial \mathrm{E} / \partial \mathrm{x}=2\left(\mathrm{~J}^{\top} \mathrm{J}\right) \mathrm{x}-2 \mathrm{~J}^{\top} \mathrm{r}=0 \\
& \left(J^{\top} J\right) x=J^{\top} r \quad \text { normal equations } \\
& \mathrm{A} x=\mathrm{b} \\
& \text { " (A is Hessian) } \\
& \text { pseudoinverse }
\end{aligned}
$$

LDL${ }^{\top}$ factorization

Factor $\mathrm{A}=\mathrm{LDL}^{\top}$, where L is lower triangular with 1 s on diagonal, D is diagonal
How?
L is formed from columns of Gaussian elimination
Perform (similar) forward and backward elimination/substitution
$\operatorname{LDL}^{\top} x=b, D L^{\top} x=L^{-1} b, L^{\top} x=D^{-1} L^{-1} b$, $\mathrm{x}=\mathrm{L}^{-\top} \mathrm{D}^{-1} \mathrm{~L}^{-1} \mathrm{~b}$

4/30/2004
NLS and Sparse Matrix Techniques

LDL ${ }^{\top}$ factorization - details		
8.2.1 Introduction to Gauss EliminationWe propose to introduce the Gauss solution procedure by studying the solution of theequations $K U=\mathbf{R}$ derived in Example 3.27 with the parameters $L=5, E I=1 ;$ i.e.,		
	$\left[\begin{array}{ll} {\left[x_{0}\right.} \\ 0 \end{array}\right]$	
	eis x mand ation	
seaz		в

LDL' factorization - details			
elements of S ; i.e., $\mathcal{L}_{\sim}=s_{0}$. Substituting for S into (8.14) and noting that K is symmetric and the decomposition is unique, we obtain $\overline{\mathbf{S}}=\mathbf{L}^{\delta}$, and bence,			
	$\mathrm{K}=$ LDL ${ }^{\text {d }}$	(8.16)	
It is this L.DL ${ }^{\gamma}$ decomposition of K that can be used effectively to obtain the solution of the equations in (8.1) in the following two steps:			
	$\mathbf{L V}$ - R	(8.17)	
	$\mathbf{v}=\mathbf{L}_{-2}^{-2}, \ldots . . \mathbf{L}_{j}^{-1} \mathbf{L}_{-}^{-1} \mathbf{R}$	(8.19)	
and in (8.18) the solution U is obtained by a back-stetstitution.			
	$\mathrm{V}^{\prime} \mathrm{U}=\mathrm{D}^{-1} \mathrm{~V}$	(820)	
In the implementation the vector \mathbf{V} is frequently calculated at the same time as the matrices L^{-1} are established. This was done in the example solution of the simply supported beam in Section 8.2.1.			
It should be noted that in practice the matrix multiplications to obtain L in (8.15) and \mathbf{V} in (8.19) are not formally carried out, bet that L and V are established by directly modifying \mathbf{K} and \mathbf{R}. This is discussed further in the nett section, in which the computer implementation of the solution procedare is presented. However, before proxecding. consider the example in Section 8.2.1 for the derivation of the matrices defined above.			
4/30/2004	NLS and Sparse Matrix Techniques		21

LDL ${ }^{\top}$ and Cholesky

Variant: Cholesky: $\mathrm{A}=\mathrm{GG}^{\top}$, where $\mathrm{G}=\mathrm{LD}^{1 / 2}$ (involves scalar $\sqrt{ }$)
Advantages: more stable than Gaussian elimination
Disadvantage: less stable than QR: (cond. \#) ${ }^{2}$ Complexity: $(m+n / 3) n^{2}$ flops

QR decomposition

Alternative solution for $J x=r$
Find an orthogonal matrix Q s.t.
$J=Q R, \quad$ where R is upper triangular

$$
\Sigma \text { is diagonal (singular values) }
$$

$Q R x=r$
$R x=Q^{\top} r \quad$ solve for x using back subst.
Q is usu. computed using Householder matrices, $Q=Q_{1} \ldots Q_{m}, Q_{j}=I-\beta v_{j} v_{j}^{\top}$
Advantages: sensitivity \propto condition number Complexity: $2 n^{2}(m-n / 3)$ flops
4/30/2004

SVD

Most stable way to solve system $\mathrm{Jx}=\mathrm{r}$.

$$
J=U^{\top} \Sigma V, \quad \text { where } U \text { and } V \text { are orthogonal }
$$

Advantage: most stable (very ill conditioned problems)
Disadvantage: slowest (iterative solution)

Properly weighted model

We want to minimize errors in the measured quantities

$$
u_{j}=\frac{X-x_{j}}{Z-z_{j}}
$$

Closer cameras (smaller denominators) have more weight / influence.
Weight each "linearized" equation by current denominator?

Optimal estimation

Feature measurement equations
$u_{j}=f\left(X, Z ; x_{j}, z_{j}\right)+n_{j}=\widehat{u}_{j}+n_{j}, \quad n_{j} \sim N\left(0, \sigma_{j}^{2}\right)$
Likelihood of (X, Z) given $\left\{u_{i}, X_{j}, z_{j}\right\}$

$$
\begin{aligned}
L & =\prod_{j} p\left(u_{j} \mid \widehat{u}_{j}\right) \\
& =\prod_{j} e^{-\left(u_{j}-\hat{u}_{j}\right)^{2} / \sigma_{j}^{2}}
\end{aligned}
$$

Non-linear least squares

Log likelihood of (x, z) given $\left\{u_{i}, x_{j}, z_{j}\right\}$

$$
E=-\log L=\sum_{j}\left(u_{j}-\hat{u}_{j}\right)^{2} / \sigma_{j}^{2}
$$

How do we minimize E ?
Non-linear regression (least squares), because
\hat{u}_{i} are non-linear functions of $\left\{u_{i}, x_{j}, z_{j}\right\}$

Levenberg-Marquardt

Iterative non-linear least squares

- Linearize measurement equations

$$
\widehat{u}_{j}=f\left(X, Z ; x_{j}, z_{j}\right)+\frac{\partial f_{j}}{\partial X} \Delta X+\frac{\partial f_{j}}{\partial Z} \Delta Z+\cdots
$$

- Substitute into log-likelihood equation: quadratic cost function in ($\Delta x, \Delta z$)

$$
\sum_{j} \sigma_{j}^{-2}\left(\hat{u}_{j}-u_{j}+\frac{\partial f_{j}}{\partial X} \Delta X+\frac{\partial f_{j}}{\partial Z} \Delta Z\right)^{2}
$$

Levenberg-Marquardt

What if it doesn't converge?

- Multiply diagonal by $(1+\lambda)$, increase λ until it does
- Halve the step size (my favorite)
- Use line search
- Other trust region methods [Nocedal \& Wright]

Robust regression

Data often have outliers (bad measurements)

- Use robust penalty applied to each set of joint measurements

$$
\sum \sigma_{i}^{-2} \rho\left(u_{i}-u_{i}\right)
$$

[Black \& Rangarajan, IJCV'96]

- For extremely bad data, use random sampling [RANSAC, Fischler \& Bolles, CACM'81]

Levenberg-Marquardt

Linear regression (sub-)problem:

$$
\mathbf{J}_{j} \cdot(\Delta X, \Delta Z)=r_{j}
$$

with

$$
\begin{aligned}
\mathrm{J}_{j} & =\sigma^{-2}\left(\frac{\partial f_{j}}{\partial X}, \frac{\partial f_{j}}{\partial Z}\right), \\
& =\frac{\sigma^{-2}}{Z-z_{j}}\left(1,-\frac{X-x_{j}}{Z-z_{j}}\right) \\
r_{j} & =\sigma^{-2}\left(u_{j}-\widehat{u}_{j}\right)
\end{aligned}
$$

Similar to weighted regression, but not quite.

Levenberg-Marquardt

Other issues:

- Uncertainty analysis: covariance $\Sigma=\mathrm{A}^{-1}$
- Is maximum likelihood the best idea?
- How to start in vicinity of global minimum?
- What about outliers?

Structure from motion

Given many points in correspondence across several images, $\left\{\left(u_{i j}, v_{i j}\right)\right\}$, simultaneously compute the 3D location \mathbf{X}_{i} and camera (or motion) parameters ($\mathbf{K}, \mathbf{R}_{j} ; \mathbf{t}_{j}$)

$$
\begin{aligned}
\hat{u}_{i j} & =f\left(\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}\right. \\
\hat{v}_{i j} & =g\left(\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}\right)
\end{aligned}
$$

Two main variants: calibrated, and uncalibrated (sometimes associated with Euclidean and projective reconstructions)

Simplified model

Again, $\mathbf{R}=\mathbf{I}$ (known rotation),
$\mathrm{f}=1, \mathrm{Z}=\mathrm{v}_{\mathrm{j}}=0$ (flatland)

$$
u_{i j}=\frac{X_{i}-x_{j}}{Z_{i}-z_{j}}
$$

This time, we have to solve for all of the parameters $\left\{\left(X_{i}, Z_{i}\right),\left(x_{j}, z_{j}\right)\right\}$.

Bundle Adjustment

Simultaneous adjustment of bundles of rays (photogrammetry)

$$
\begin{aligned}
& \hat{u}_{i j}=f\left(\overline{\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}}\right. \\
& \hat{v}_{i j}=g\left(\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}\right)
\end{aligned}
$$

What makes this non-linear minimization hard?

- many more parameters: potentially slow
- poorer conditioning (high correlation)
- potentially lots of outliers
- gauge (coordinate) freedom

Lots of parameters: sparsity

$$
\begin{aligned}
\hat{u}_{i j} & =f\left(\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}\right) \\
\hat{v}_{i j} & =g\left(\mathbf{K}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{x}_{i}\right)
\end{aligned}
$$

Only a few entries in Jacobian are non-zero

Sparse matrices-common shapes
Banded (tridiagonal), arrowhead, multi-banded

Computational complexity: $O\left(n b^{2}\right)$
Application to computer vision:

- snakes (tri-diagonal)
- surface interpolation (multi-banded)
- deformable models (sparse)

Sparse matrices - variable reordering
Triggs et al. - Bundle Adjustment

-

Two-dimensional problems
Surface interpolation and Poisson blending

4/30/2004
NLS and Sparse Matrix Techniques

One-dimensional example

Simplified 1-D height/slope interpolation

$$
\begin{aligned}
E(f) & =\sum_{i} w_{i}\left(f_{i}-g_{i}\right)^{2}+v_{i}\left(f_{i+1}-f_{i}-h_{i}\right)^{2} \\
A_{i, i} & =w_{i}+2 v_{i}, \quad A_{i, i \pm 1}=-v_{i} \\
b_{i} & =w_{i} g_{i}+v_{i}\left(h_{i+1}-h_{i}\right) v_{i-1}\left(h_{i}-h_{i-1}\right)
\end{aligned}
$$

tri-diagonal system (generalized snakes)

Iterative techniques

Gauss-Seidel and Jacobi
 Gradient descent
 Conjugate gradient
 Non-linear conjugate gradient
 Preconditioning

... see Shewchuck's TR

Iterative vs. direct

Direct better for 1D problems and relatively sparse general structures

- SfM where \#points >> \#frames

Iterative better for 2D problems

- More amenable to parallel (GPU?) implementation
- Preconditioning helps a lot (next lecture)

Direct solution of 2D problems

Multi-banded Hessian

[. : fill-in

Computational complexity: $n \times m$ image $O\left(n m m^{2}\right)$
.. too slow!

Conjugate gradient

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition $1 \frac{1}{4}$
Jonathan Richard Shewchuk:
August 4, 1994
... see Shewchuck's TR for rest of notes ...

4/30/2004
NLS and Sparse Matrix Techniques

Monday's lecture (Applications)
Preconditioning

- Hierarchical basis functions (wavelets)
- 2D applications:
interpolation, shape-from-shading, HDR, Poisson blending,
others (rotoscoping?)

Monday's lecture (Applications)

Structure from motion

- Alternative parameterizations (objectcentered)
- Conditioning and linearization problems
- Ambiguities and uncertainties
- New research: map correlation

