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Overview

e Motivation
® Geodesics and generalized geodesics

e Comparing point clouds
°* Meshless geometric subdivision
e The future and concluding remarks




Motivation

Implicit surfaces
* Facilitate fundamental computations

* Natural representation for many algorithms (e.g., medical imaging)

* Part of the computation very often (distance functions)

Point clouds
* Natural representation for 3D scanners

* Natural representation for manifold learning

Dimensionality independent
Pure geometry (no artificial meshes, etc)




Joint with Facundo Memoli




Motivation: A Few Examples




otivation: A Few Examples (cont.)




Motivation: What is a Geodesic?

ds(p,x) =inf j g(C)ds
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Background: Distance and Geodesic
Computation via Dijkstra

°* Complexity: O(n log n)

* Advantage: Works in any
dimension and with any
geometry (graphs)

®* Problems:
* Not consistent
* Unorganized points?
* Noise?

* Implicit surfaces?
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Background: Distance Functions as
Hamilton-Jacobi Equations

° g = weight on the hyper -surface
°* The g-weighted distance function between

two points p and x on the hyper -surface S
IS:







Background: Computing Distance
Functions as Hamilton-Jacobi
Equations

e Solved in O(nlog n) by Tsitsiklis , by

Sethian, and by Helmsen, only for
Euclidean spaces and Cartesian grids

* Solved only for acute 3D triangulations by
Kimmel and Sethian




A real time




The Problem

* How to compute Iintrinsic distances and
geodesics for

* General dimensions
* Implicit surfaces

* Unorganized noisy points (hyper-surfaces just given
by examples)




Our Approach

e \We have to solve




Basic Idea
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Basic idea

1/2
h general
g g :
‘d —ds| - <h local analytic

h”,y>1 "smart" metric




Why Is this good?




Implicit Form Representation

S=level —setof W: R" - R={x:¥Y(x)=0}

Figure from G. Turk




Data extension

e Embed M:

M={x:W(x) =0}

e Extend | outside M:

%+§gn(w) (Ol My) =0
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Unorganized points
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Unorganized points




Randomly sampled manifolds
(with noise)




Examples (VRML)

isualization Toolkit - CpenGL




Examples

| Wisualization Toolkit - OpenGL




Intrinsic Voronoi of Point Clouds




Intermezzo:
de Silva, Tenenbaum, et al...







Intermezzo:
Tenenbaum, de Silva, et al...

¢ Main Problem:
* Doesn’t address noisy examples/measurements:

VAR e v e G




e M

Error increases with the number of samples!
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Intermezzo:
de Silva, Tenenbaum, et al...

* Problems:
* Doesn’t address noisy examples/measurements:

* Only convex surfaces
* Uses Dijkestra (back to non consistency)

* Doesn’t work for implicit surface representations
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Generalized geodesics:
Harmonic maps

° Find a smooth map from two manifolds
(M,g) and (N,h) such that




Examples

e M is an Euclidean space and N the real line

0°C

(C)<0O,C,0,C>=0
ot




Color Image Enhancement
(with B. Tang and V. Caselles)




Implicit surfaces

e Domain and target are implicitly
represented: Simple Cartesian numerics

oC .
o5 div (P.,0C)+ (




Example: Chroma denoising on a
surface (with Bertalmio, Cheng, Osher)

. origina




Example: Direction denoising
(with Bertalmio, Cheng, Osher)
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Texture mapping denoising




Texture mapping denoising




Examples
(with Betalmio, Cheng, Osher)




Vector field visualization (e.g.,

principal directions)
(with Bertalmio, Cheng, Osher)




Concluding remarks

* A general computational framework for
distance functions, geodesics, and
generalized geodesics

e Implicit hyper -surfaces and un -organized
points




Joint with Facundo Memoli




What i1s and Motivation

e Comparing point
clouds
* Dimension independent

Geometric

Bending (isometric)
Invariant

Supported by theory and
computational framework




The Gromov-Hausdorff Distance

e Hausdorff distance

JAN
d%(X,Y) = max(sup d(z,Y), sup d(y, X))
Y

reX -

e Gromov -Hausdorff distance

JAN
dgn(X,Y) = inf d4(X,Y)
Z, 1,9

f. X —2Z,9.Y — Z isometric embeddings




Key guestion

e How to estimate the
Gromov -Housdorff
distance from noisy
samples of the metric
space




First step: Working with point clouds

Let X and Y be compact metric spaces, X,
an r-covering of X and Y, an r’-covering of

Y, )| <r+7r

* Consequence: Working with point clouds
“Is possible”




How we compute the distance?

N 1
dI<X7Y) = min _max §‘dX(33z733])—dY(y7rz,y7r])|

mE€Pn 1<t,5<n

dgn(X,Y) <d7(X,Y)

dgr(X,Y) < Rx + Ry +dz(X,Y)

* Consequence: If we see a small pairwise
distance, the objects are iIsometric




The need for a probabillistic

framework

Let (X,dy) and (Y,dy) be any pair of given

compact metric spaces and let n = dgn (X, Y).

Also, let N)(g:’;) = {x1,...,zn} be given. Then,

given o > 0 there exist points {y¢,...,yn} CY
uch that

L dr(NED {yg,. 98 < (n+ o)

2. By ({v%, .., uahr+2(n+a)) =

3. dy(y;",y7) =2 s —2(n+a) for i # j.



The need for a probabillistic
framework (cont.)

®* The problem is well posed

* No reason for the y’s to be given:

dz(N)(fj), N(r )y 4 dI(NYTnS)a N(r )
0 —|—sma|l(r,7~)

* \We need probabilistic bounds!




The probabilistic framework

e Bottleneck distance between two samples of the same
space:

AN
d4(Z,Z") = min maxdy(z, 2~ ) > d7(Z,Z')
7T€7Dn k‘ k

e Using concepts from intrinsic ~ Voronoi diagrams and
coupon collector theorem we have:




The probabilistic framework

(cont.)

Let (Z,d~>) be a smooth compact submanifold

of IRY. Given a covering Nér,’rf) of Z and a
Nnumber p € (0,1), there exists a positive in-
teger m = mnp(p) such that if Z,, = {zp}7 1

IS a segquence of z.2z.d. points sampled uniformly
from Z, with probability p one can find a set of
n different indices {71,...,2n}t C {1,...,m} with

dg(Né?;’nS)a {Zila R Z’Ln}) = r




The probabilistic framework
(cont.)

Let X and Y compact submanifolds of R,
Let N)(g:’fb) be a covering of X with separa-
tion s such that for some positive constant c,
s — 2dgn(X,Y) > c¢. Then, given any num-
ber p € (0,1), there exists a positive integer
m = mp(p) such that if Yy, = {yx}7, IS a se-
quence of z.2.d. points sampled uniformly from
Y, we can find, with probability at least p, a set
of n different indices {i{,...,in} C {1,...,m}
such that

dI(N)((T’S)a {yi17 s 7yzn}) <3 dQ'H(Xa Y) +r

NL



Computational considerations

e Bounds on the number of sample points
needed

° Covers of Y found using farthest point
sampling.
* Geodesic distances for pointson X and Y

¢ Select matching points of X and Y
following our theory




Examples
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What i1s and Motivation

e Mesh based subdivision
* Refinement (add points and edges)

* Averaging

e Mesh not really geometric




What is and Motivation (cont.)

Point ¢
Point c
Point ¢

0]U[0
0]U[0

oud

s are natural for 3D scanners
s are the “true” geometry
s are dimensionality independent

All operations are geometric




Main Steps

Intrinsic point cloud simplification
Intrinsic proximity information
Geodesic centroid computation

Intrinsic subdivision scheme




Intrinsic point cloud
simplification

Follows Meonning &
Dodgson

Based on progressive
farthest point sampling

Computed based on
Intrinsic VVoronoil
diagram (uses distance
on point clouds)

Guaranteed bounds on
distance between
samples




Intrinsic proximity information

e “Replaces” (non -
geometric) connectivity In
mesh techniques

Given by neighbors from
the intrinsic  Voronoi

Easily updated when the
point cloud is refined
(using geodesics on point
clouds)




Geodesic centroid computation




Geodesic centroid computation




Intrinsic subdivision scheme

°* Geometric averaging rule: Replace the
point by the geodesic centroid of its
Intrinsic neighborhood

¢ Refinement rule: For each neighbor, insert
the geodesic centroid of the joint
neighborhood
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Quantitative study in the paper







Conclusions

e Work with implicit surfaces and point clouds!!!
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Sulcll extraction on meshes

(with A. Bartesaghi)

Follows Kimmel-Sethian




