SIFT

Presented by Xu Miao April 20, 2005

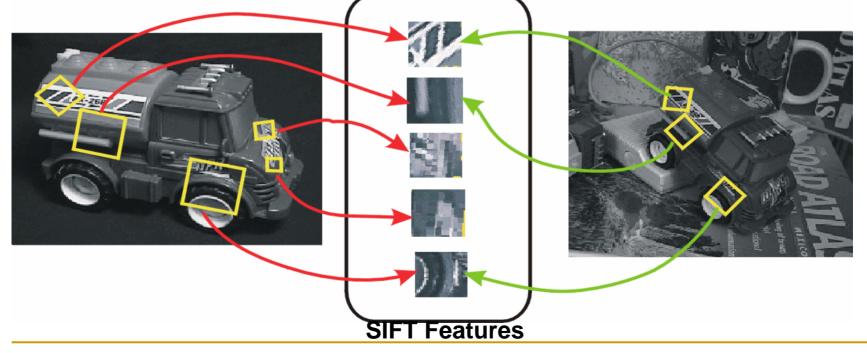
Outline

Motivation of SIFT

- Scale-space function
- Local extrema detection
- Detection sampling
- Keypoint localization
- Orientation assignment
- Keypoint descriptor
- Comparison of Harris-Laplacian and SIFT
- Image matching

Motivation of SIFT (copy from 576 slides)

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale. and other imaging parameters



Motivation of SIFT

--Advantages of local features (copy)

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- **Efficiency:** close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

More motivation... (copy)

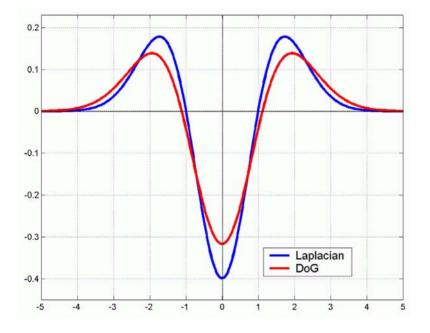
- Feature points are used also for:
 - Image alignment (homography, fundamental matrix)
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
 - □ ... other

- Scale-space function
 - The only reasonable one:

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y),$$

□ Laplacian of Gaussian kernel is a good choice of scale invariance $L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$

Difference of Gaussian kernel is a close approximate to scale $D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$ $= L(x, y, k\sigma) - L(x, y, \sigma).$



 Gaussian is an ad hoc solution of heat diffusion equation

 $\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G.$

Hence

 $G(x,y,k\sigma)-G(x,y,\sigma)\approx (k-1)\sigma^2\nabla^2G.$

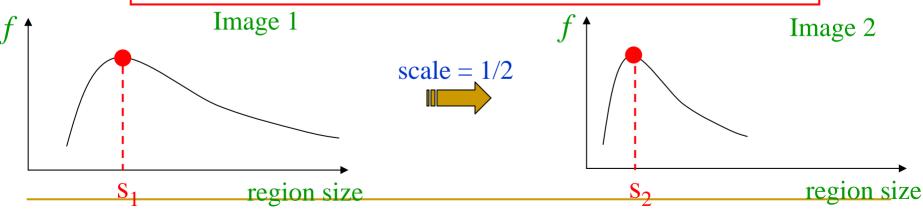
k is not necessarily very small in practice

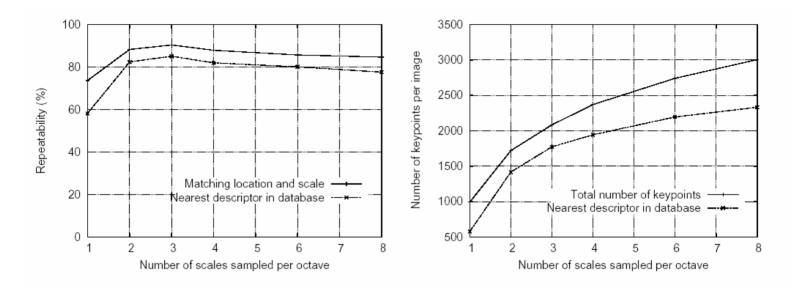
Scale Invariant Detection (Copy)

Common approach:

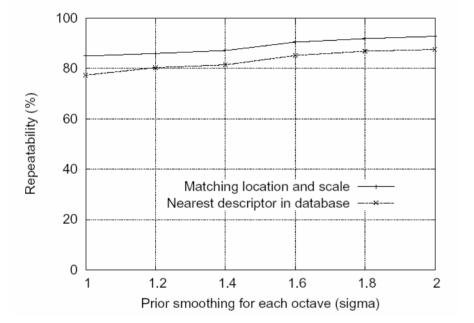
Take a local maximum of this function (convolution of kernel and image)
Observation: region size, for which the maximum is achieved, should be *invariant* to image scale.

Important: this scale invariant region size is found in each image independently!





- Sampling in scale for efficiency
 - How many scales should be used per octave? S=?
 - More scales evaluated, more keypoints found
 - S < 3, stable keypoints increased too
 - S > 3, stable keypoints decreased
 - S = 3, maximum stable keypoints found



- Pre-smooth before extrema detection is equivalent to spatial sampling
 - Sigma is higher, # of stable keypoints is larger
 - Lower sampling frequency preferred?
 - To utilize the information smoothed off, first double the original image, which also increases the stable kepoints found by 4

- Detailed keypoint determination
 - Sub-pixel and sub-scale location scale determination
 - Ratio of principal curvature to reject edges and flats (detect corners?)

 Sub-pixel and sub-scale location scale determination

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\mathbf{x} = (x, y, \sigma)^T$$

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}.$$

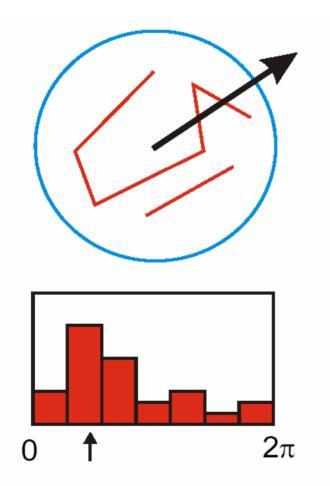
- Reject flats:
 - \Box $|D(\hat{\mathbf{x}})| < 0.03$
- Reject edges:

$$\begin{split} \mathbf{H} &= \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \\ \mathrm{Tr}(\mathbf{H}) &= D_{xx} + D_{yy} = \alpha + \beta, \\ \mathrm{Det}(\mathbf{H}) &= D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta. \\ \frac{\mathrm{Tr}(\mathbf{H})^2}{\mathrm{Det}(\mathbf{H})} &= \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r}, \\ \mathbf{r} < \mathbf{10} \end{split}$$

- □ r < 10
- Is it Harris corner detector?



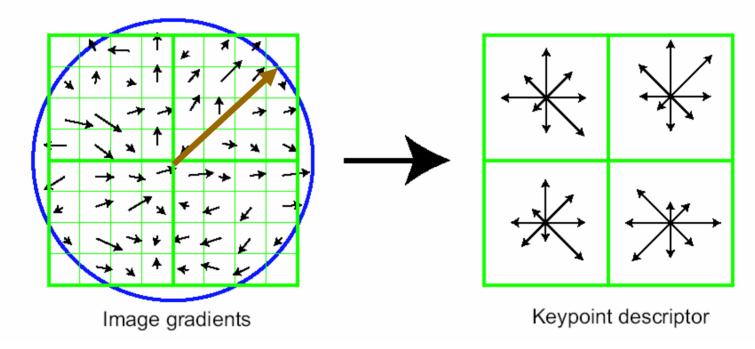
Orientation assignment



- Create histogram of local gradient directions at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies
 stable 2D coordinates
 (x, y, scale, orientation)

Keypoint descriptor

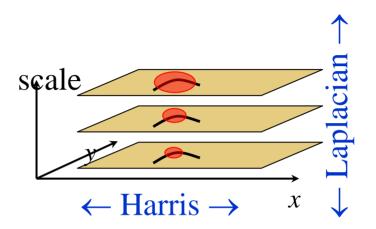
Invariant to other changes (Complex Cell)



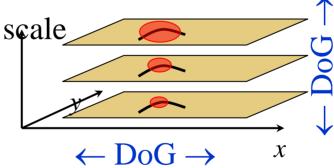
In experiment, 4x4 arrays of 8 bin histogram is used, in total of 128 features for one keypoint

Scale Invariant Detectors (copy)

- Harris-Laplacian¹ Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale



- SIFT (Lowe)² Find local maximum of:
 - Difference of Gaussians in space and scale



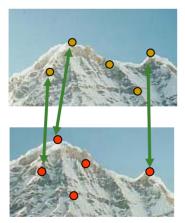
¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 200

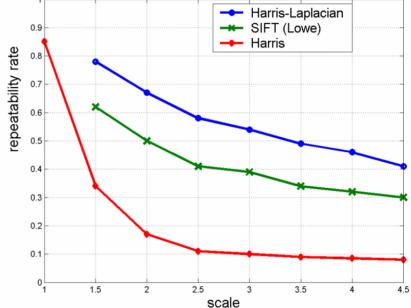
Scale Invariant Detectors(copy)

Experimental evaluation of detectors w.r.t. scale change

Repeatability rate:

correspondences
possible correspondences





K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

Comparison with Harrison-Laplacian

Affine-invariant comparison

- Translation-invariant local features
- Rotation-invariant
 - Harrison-Laplacian
 PCA
 - SIFT
 - Orientation
- Shear-invariant
 - Harrison-Laplacian
 - Eigen values
 - SIFT
 - No

Within 50 degree of viewpoint, SIFT is better than HL, after 70 degree, HL is better.

Comparison with Harrison-Laplacian

- Computational time:
 - SIFT is few floating point calculation
 - HL uses iterative calculation which costs much more

Object recognition by SIFT keypoint matching

- Efficient nearest neighbor algorithm
 - Best-Bin-First (modification of k-d tree)
- Hough transformation to cluster features into 3feature groups
- Solving affine parameters by pseudo-inversion to verify the matching model
- Final decision is made by Bayesian approach

$$p = dlrs$$

$$P(f|\neg m) = \sum_{j=k}^{n} \binom{n}{j} p^{j} (1-p)^{n-j}$$

$$P(m|f) \approx \frac{P(m)}{P(m) + P(f|\neg m)}$$

