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Probabilistic Robotics

Key idea: Explicit representation of 
uncertainty 

(using the calculus of probability theory)

• Perception  = state estimation
• Control = utility optimization



Bayes Filters: Framework

• Given:
• Stream of observations z and action data u:

• Sensor model P(z|x).
• Action model P(x|u,x’).
• Prior probability of the system state P(x).

• Wanted: 
• Estimate of the state X of a dynamical system.
• The posterior of the state is also called Belief:
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Markov Assumption
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Underlying Assumptions
• Static world
• Independent noise
• Perfect model, no approximation errors



z = observation
u = action
x = stateBayes Filters
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Bayes Filters are Familiar!
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• Kalman filters
• Particle filters
• Hidden Markov models
• Dynamic Bayesian networks
• Partially Observable Markov Decision 

Processes (POMDPs)



Localization

“Using sensory information to locate the robot 
in its environment is the most fundamental 
problem to providing a mobile robot with 
autonomous capabilities.”                 [Cox ’91]

• Given
• Map of the environment.
• Sequence of sensor measurements.

• Wanted
• Estimate of the robot’s position.

• Problem classes
• Position tracking
• Global localization
• Kidnapped robot problem (recovery)



Bayes Filters for 
Robot Localization



Probabilistic Kinematics

• Odometry information is inherently noisy.

p(x|u,x’)

x’
u

u

x’



Proximity Measurement

• Measurement can be caused by …
• a known obstacle.
• cross-talk.
• an unexpected obstacle (people, furniture, …).
• missing all obstacles (total reflection, glass, …).

• Noise is due to uncertainty …
• in measuring distance to known obstacle.
• in position of known obstacles.
• in position of additional obstacles.
• whether obstacle is missed.



Mixture Density
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How can we determine the model parameters?



Raw Sensor Data
Measured distances for expected distance of 300 cm. 

Sonar Laser



Approximation Results

Laser

Sonar

300cm 400cm



Representations for Bayesian 
Robot Localization

Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)
• occas. global localization, recovery

• Grid-based, metric representation (’96)
• global localization, recovery

Multi-hypothesis (’00)
• multiple Kalman filters
• global localization, recovery

Particle filters (’99)
• sample-based representation
• global localization, recovery

Kalman filters (late-80s?)
• Gaussians
• approximately linear models
• position tracking

AI

Robotics



Discrete Grid Filters



Piecewise Constant 
Representation
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Grid-based Localization



Sonars and 
Occupancy Grid Map 



Tree-based Representation

Idea: Represent density using a variant of Octrees



Tree-based Representations

• Efficient in space and time
• Multi-resolution



Particle Filters



Represent belief by random samples

Estimation of non-Gaussian, nonlinear processes

Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]

Computer vision: [Isard and Blake 96, 98]

Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle Filters



Importance Sampling

Weight samples: w = f / g



Particle Filter Algorithm

draw xi
t−1 from Bel(xt−1)

draw xi
t from p(xt | xi

t−1,ut−1)

Importance factor for xi
t:
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Particle Filters



Sensor Information: Importance Sampling
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Robot Motion



Sensor Information: Importance Sampling
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Robot Motion
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Sample-based Localization (sonar)



Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization

P(z|x)

h(x)
z



Under a Light

P(z|x):Measurement z:



Next to a Light

P(z|x):Measurement z:



Elsewhere

P(z|x):Measurement z:



Global Localization Using Vision



Localization for AIBO robots



Adaptive Sampling



KLD-sampling

• Idea: 
• Assume we know the true belief.
• Represent this belief as a multinomial distribution.
• Determine number of samples such that we can guarantee 

that, with probability (1- δ), the KL-distance between the true 
posterior and the sample-based approximation is less than ε.

• Observation: 
• For fixed δ and ε, number of samples only depends on 

number k of bins with support:
3
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Example Run Sonar



Example Run Laser



Kalman Filters



Bayes Filter Reminder

•Prediction

•Correction
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Gaussians
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Gaussians and Linear Functions



Kalman Filter Updates in 1D

1)(with    
)(

)(
)( −+ΣΣ=

⎩
⎨
⎧

Σ−=Σ
−+=

= t
T
tttttt

tttt

tttttt
t QCCCK

CKI
CzK

xbel
µµµ

2
,

2

2

22 with    
)1(

)(
)(

tobst

t
t

ttt

ttttt
t K

K
zK

xbel
σσ

σ
σσ
µµµ

+
=

⎩
⎨
⎧

−=
−+=

=

⎩
⎨
⎧

+Σ=Σ
+=

=
−

−

t
T
tttt

ttttt
t RAA

uBA
xbel

1

1)(
µµ

⎩
⎨
⎧

+=
+=

= −
2

,
222
1)(

tactttt

ttttt
t a

uba
xbel

σσσ
µµ



Kalman Filter Algorithm 

1. Algorithm Kalman_filter( µt-1, Σt-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt, Σt
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Nonlinear Dynamic Systems

• Most realistic robotic problems involve 
nonlinear functions
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Linearity Assumption Revisited



Non-linear Function



EKF Linearization (1)



EKF Linearization (2) 



EKF Linearization (3)



Particle Filter Projection



Density Extraction



Sampling Variance



EKF Algorithm 

1. Extended_Kalman_filter( µt-1, Σt-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt, Σt
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Landmark-based Localization



EKF Prediction Step



EKF Observation Prediction Step



EKF Correction Step



Estimation Sequence (1)



Estimation Sequence (2)



Comparison to GroundTruth



EKF Summary

• Highly efficient: Polynomial in 
measurement dimensionality k and 
state dimensionality n: 

O(k2.376 + n2)

• Not optimal!
• Can diverge if nonlinearities are large!
• Works surprisingly well even when all 

assumptions are violated!



Linearization via Unscented 
Transform

EKF UKF



UKF Sigma-Point Estimate (2)

EKF UKF



UKF Sigma-Point Estimate (3)

EKF UKF



Unscented Transform

Sigma points                               Weights 
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UKF Prediction Step



UKF Observation Prediction Step



UKF Correction Step



EKF Correction Step



Estimation Sequence

EKF                    PF                    UKF 



Estimation Sequence

EKF                                UKF 



Prediction Quality

EKF                               UKF 



UKF Summary

• Highly efficient: Same complexity as 
EKF, with a constant factor slower in 
typical practical applications 

• Better linearization than EKF: 
Accurate in first two terms of Taylor 
expansion (EKF only first term)

• Derivative-free: No Jacobians needed

• Still not optimal!



SLAM: Simultaneous 
Localization and Mapping 



Mapping with Raw Odometry



SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

• Online SLAM:

Integrations typically done one at a time 
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SLAM: Mapping with Kalman Filters

• Map with N landmarks:(2N+3)-dimensional 
Gaussian

• Can handle hundreds of dimensions
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SLAM: Mapping with Kalman Filters



SLAM: Mapping with Kalman Filters



SLAM: Mapping with Kalman Filters

Map              Correlation matrix



Graph-SLAM

• Full SLAM technique

• Generates probabilistic links

• Computes map only occasionally

• Based on Information Filter form



Graph-SLAM Idea



Robot Poses and Scans [Lu and Milios 
1997]

• Successive robot 
poses  connected by 
odometry

• Sensor readings yield 
constraints between 
poses

• Constraints 
represented by 
Gaussians

• Globally optimal 
estimate
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X
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Loop Closure
• Use scan patches to detect loop closure
• Add new position constraints
• Deform the network based on covariances of 

matches

Before loop closure After loop closure



Efficient Map Recovery

• Minimize constraint function JGraphSLAM

using standard optimization 
techniques (gradient descent, Levenberg
Marquardt, conjugate gradient)



Mapping the Allen Center



Rao-Blackwellised
Particle Filters



Rao-Blackwellized Mapping
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Compute a posterior over the map and possible 
trajectories of the robot :

map robot motion trajectory

map and trajectory

measurements



FastSLAM

Robot Pose 2 x 2 Kalman Filters

Landmark 1 Landmark 2 Landmark N…x, y, θParticle
#1

Landmark 1 Landmark 2 Landmark N…x, y, θParticle
#2

Landmark 1 Landmark 2 Landmark N…x, y, θParticle
#3

Particle
M

…

Landmark 1 Landmark 2 Landmark N…x, y, θ

[Begin courtesy of Mike Montemerlo]



FastSLAM – Simulation

• Up to 100,000 
landmarks

• 100 particles

• 103 times fewer 
parameters 
than EKF SLAM

Blue line = true robot path
Red line = estimated robot path
Black dashed line = odometry



Victoria Park Results

• 4 km traverse
• 100 particles
• Uses negative 

evidence to remove 
spurious landmarks

Blue path = odometry
Red path = estimated path

[End courtesy of Mike Montemerlo]



Motion Model for Scan Matching

α'

β'

d'

final pose
α

d

measured pose
β

initial pose

path

Raw Odometry
Scan Matching



Rao-Blackwellized Mapping with 
Scan-Matching

Loop Closure
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Rao-Blackwellized Mapping with 
Scan-Matching

M
ap

: 
In

te
l 
R
es

ea
rc

h
 L

ab
 S

ea
tt

le

Loop Closure



Rao-Blackwellized Mapping with 
Scan-Matching
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Example (Intel Lab)

15 particles

four times faster 
than real-time
P4, 2.8GHz

5cm resolution 
during scan 
matching

1cm resolution in 
final map

joint work with Giorgio Grisetti



Outdoor Campus Map

30 particles

250x250m2

1.75 km 
(odometry)

20cm resolution 
during scan 
matching

30cm resolution 
in final map

30 particles

250x250m2

1.088 miles 
(odometry)

20cm resolution 
during scan 
matching

30cm resolution 
in final map

joint work with Giorgio Grisetti



DP-SLAM [Eliazar & Parr]

Runs at real-time speed on 2.4GHz Pentium 4 at 10cm/s 

scale: 3cm



Consistency



Results obtained with 
DP-SLAM 2.0 (offline)

Eliazar & Parr, 04



Close up

End courtesy of Eliazar & Parr



Fast-SLAM Summary

• Full and online version of SLAM

• Factorizes posterior into robot trajectories 
(particles) and map (EKFs).

• Landmark locations are independent!

• More efficient proposal distribution through 
Kalman filter prediction

• Data association per particle



Ball Tracking 
in RoboCup

Extremely noisy (nonlinear) motion of 
observer
Inaccurate sensing, limited processing 
power
Interactions between target and 
environment
Interactions between robot(s) and target

Goal: Unified framework for modeling the ball 
and its interactions.



Tracking Techniques

Kalman Filter 
Highly efficient, robust (even for nonlinear)
Uni-modal, limited handling of nonlinearities

Particle Filter
Less efficient, highly robust
Multi-modal, nonlinear, non-Gaussian

Rao-Blackwellised Particle Filter, MHT
Combines PF with KF
Multi-modal, highly efficient



Dynamic Bayes Network for Ball 
Tracking
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Robot Location
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Robot and Ball Location (and 
velocity)
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Ball-Environment Interactions

None Grabbed

Bounced Deflected
Kicked



Ball-Environment Interactions

None Grabbed

Bounced
Kicked
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Integrating Discrete Ball 
Motion Mode
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Grab Example (1)
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Grab Example (2)

k-2b k-1b kb

r k-2 r k-1 r k

z k-2 zk-1 z k

u k-2 u k-1

zk-1 zkz k-2

kmk-1mk-2m

B
al

l t
ra

ck
in

g
R

ob
ot

 lo
ca

liz
at

io
n

Landmark detection

Map and robot location
Robot control

Ball motion mode

Ball location and velocity

Ball observation

l l l

b b b



Inference: Posterior 
Estimation
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Rao-Blackwellised PF for 
Inference

Represent posterior by random samples

Each sample 

contains robot location, ball mode, ball Kalman
filter

Generate individual components of a particle 
stepwise using the factorization
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Rao-Blackwellised Particle Filter for 
Inference
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Generate Robot Location
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Generate Ball Motion Model
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Update Ball Location and 
Velocity
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Importance Resampling

Weight sample by

if observation is landmark detection and by

if observation is ball detection.

Resample
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Ball-Environment Interaction



Ball-Environment Interaction



Tracking and Finding the Ball

Cluster ball samples by discretizing
pan / tilt angles
Uses negative information



Experiment: Real Robot
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Comparison to KF* (optimized for straight 
motion)
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Comparison to KF’ (inflated prediction noise)
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Orientation Errors
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Conclusions

Bayesian filters are the most successful 
technique in robotics (vision?)

Many instances (Kalman, particle, grid, 
MHT, RBPF, …)

Special case of dynamic Bayesian 
networks

Recently: hierarchical models
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