Bayesian Filtering

Dieter Fox

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Control = utility optimization

Bayes Filters: Framework

• Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_2, \dots, u_{t-1}, z_t\}$$

- Sensor model P(z|x).
- Action model P(x/u, x').
- Prior probability of the system state P(x).

• Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

Markov Assumption

$$p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$$

$$p(x_t | x_{1:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)$$

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Bayes =
$$\eta P(z_t | x_t, u_1, z_2, \dots, u_{t-1}) P(x_t | u_1, z_2, \dots, u_{t-1})$$

Markov =
$$\eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

Total prob. =
$$\eta P(z_t | x_t) \int P(x_t | u_1, z_2, \dots, u_{t-1}, x_{t-1})$$

 $P(x_{t-1} | u_1, z_2, \dots, u_{t-1}) dx_{t-1}$

Markov

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) dx_{t-1}$$

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Bayes Filters are Familiar!

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

• Given

- Map of the environment.
- Sequence of sensor measurements.

Wanted

• Estimate of the robot's position.

Problem classes

- Position tracking
- Global localization
- Kidnapped robot problem (recovery)

Bayes Filters for Robot Localization

Probabilistic Kinematics

• Odometry information is inherently noisy.

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

Mixture Density

How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Sonar

Laser

Representations for Bayesian Robot Localization

AI

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Kalman filters (late-80s?)

- Gaussians
- approximately linear models
- position tracking

Robotics

Multi-hypothesis ('00)

- multiple Kalman filters
- global localization, recovery

Particle filters ('99)

sample-based representation

• global localization, recovery

Discrete Grid Filters

Piecewise Constant Representation

Grid-based Localization

Sonars and Occupancy Grid Map

Tree-based Representation

Idea: Represent density using a variant of Octrees

Tree-based Representations

- Efficient in space and time
- Multi-resolution

Particle Filters

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Importance Sampling

Weight samples: w = f/g

Particle Filter Algorithm

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sample-based Localization (sonar)

Using Ceiling Maps for Localization

[Dellaert et al. 99]

Vision-based Localization

Under a Light

Measurement z:

Next to a Light

Measurement z:

P(z|x):

Measurement z:

Global Localization Using Vision

Localization for AIBO robots

Adaptive Sampling

KLD-sampling

• Idea:

- Assume we know the true belief.
- Represent this belief as a multinomial distribution.
- Determine number of samples such that we can guarantee that, with probability $(1-\delta)$, the KL-distance between the true posterior and the sample-based approximation is less than ε .

• Observation:

 For fixed δ and ε, number of samples only depends on number k of bins with support:

$$n = \frac{1}{2\varepsilon} X^{2}(k-1, 1-\delta) \cong \frac{k-1}{2\varepsilon} \left\{ 1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta} \right\}^{3}$$

Example Run Sonar

Example Run Laser

Kalman Filters

Bayes Filter Reminder

Prediction

$$\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$$

$$p(x) \sim N(\mu, \sigma^2):$$
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Multivariate

Gaussians and Linear Functions

Kalman Filter Updates in 1D

Kalman Filter Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- $\mathbf{3}. \qquad \boldsymbol{\mu}_t = A_t \boldsymbol{\mu}_{t-1} + B_t \boldsymbol{u}_t$
- $\mathbf{4}. \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$
- 5. Correction:
- **6**. $K_t = \overline{\Sigma}_t C_t (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- 7. $\mu_t = \mu_t + K_t (z_t C_t \mu_t)$
- 8. $\Sigma_t = (I K_t C_t) \overline{\Sigma}_t$
- 9. Return μ_t , Σ_t

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

Linearity Assumption Revisited

Non-linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

Particle Filter Projection

Density Extraction

2

0

Δ

ΛF

н

Sampling Variance

EKF Algorithm

- **1. Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- **Prediction:** 2. 3. $\overline{\mu}_t = g(u_t, \mu_{t-1})$ $\longleftarrow \mu_t = A_t \mu_{t-1} + B_t u_t$ $\longleftarrow \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$ **4**. $\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ Correction: 5. 6. $K_t = \overline{\Sigma}_t H_t (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1} \qquad \longleftarrow \qquad K_t = \overline{\Sigma}_t C_t (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$ $(\mu_t = \mu_t + K_t(z_t - C_t \mu_t))$ 8. $\Sigma_{\star} = (I - K_{\star}H_{\star})\Sigma_{t}$ $\longleftarrow \Sigma_t = (I - K_t C_t) \Sigma_t$ 9. Return μ_t, Σ_t $H_t = \frac{\partial h(\overline{\mu}_t)}{x_t} \qquad G_t = \frac{\partial g(u_t, \mu_{t-1})}{x_{t-1}}$

Landmark-based Localization

EKF Prediction Step

EKF Observation Prediction Step

EKF Correction Step

Estimation Sequence (1)

Estimation Sequence (2)

Comparison to GroundTruth

EKF Summary

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)
- Not optimal!
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!

Linearization via Unscented Transform

UKF Sigma-Point Estimate (2)

UKF Sigma-Point Estimate (3)

Unscented Transform

Sigma points $\chi^0 = \mu$ $w_m^0 = \frac{\lambda}{1-\lambda}$ Weights

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

 $\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$ $\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu) (\psi^i - \mu)^T$

UKF Prediction Step

UKF Observation Prediction Step

UKF Correction Step

EKF Correction Step

Estimation Sequence

EKF

UKF

Estimation Sequence

EKF

UKF

Prediction Quality

EKF

UKF

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term)
- Derivative-free: No Jacobians needed
- Still not optimal!

SLAM: Simultaneous Localization and Mapping

Mapping with Raw Odometry

SLAM: Simultaneous Localization and Mapping

• Full SLAM:

$$p(x_{1:t}, m | z_{1:t}, u_{1:t})$$

• Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \iiint p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1, dx_2, \dots, dx_{t-1}$$

Integrations typically done one at a time

 Map with N landmarks: (2N+3)-dimensional Gaussian

Can handle hundreds of dimensions

Мар

Correlation matrix

Graph-SLAM

Full SLAM technique

• Generates probabilistic links

Computes map only occasionally

Based on Information Filter form

Graph-SLAM Idea

Sum of all constraints:

$$J_{\text{GraphSLAM}} = x_0^T \Omega_0 x_0 + \sum_t [x_t - g(u_t, x_{t-1})]^T R^{-1} [x_t - g(u_t, x_{t-1})] + \sum_t [z_t - h(m_{c_t}, x_t)]^T Q^{-1} [z_t - h(m_{c_t}, x_t)]$$

Robot Poses and Scans [Lu and Milios 1997]

- Successive robot poses connected by odometry
- Sensor readings yield constraints between poses
- Constraints represented by Gaussians

$$D_{ij} = \overline{D_{ij}} + Q_{ij}$$

• Globally optimal estimate $\arg \max_{X_i} \left[P(D_{ij} | \overline{D_{ij}}) \right]$

Loop Closure

- Use scan patches to detect loop closure
- Add new position constraints
- Deform the network based on covariances of matches

Before loop closure

After loop closure

Efficient Map Recovery

 Minimize constraint function J_{GraphSLAM} using standard optimization techniques (gradient descent, Levenberg Marquardt, conjugate gradient)

Mapping the Allen Center

Rao-Blackwellised Particle Filters

Rao-Blackwellized Mapping

Compute a posterior over the map and possible trajectories of the robot :

map and trajectory

FastSLAM

[Begin courtesy of Mike Montemerlo]

FastSLAM – Simulation

- Up to 100,000 landmarks
- 100 particles
- 10³ times fewer parameters than EKF SLAM

Blue line = true robot path Red line = estimated robot path Black dashed line = odometry

Victoria Park Results

- 4 km traverse
- 100 particles
- Uses negative evidence to remove spurious landmarks

[End courtesy of Mike Montemerlo]

Motion Model for Scan Matching

Rao-Blackwellized Mapping with Scan-Matching

Rao-Blackwellized Mapping with Scan-Matching

Rao-Blackwellized Mapping with Scan-Matching

Example (Intel Lab)

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

joint work with Giorgio Grisetti

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

joint work with Giorgio Grisetti

DP-SLAM [Eliazar & Parr]

Runs at real-time speed on 2.4GHz Pentium 4 at 10cm/s

Results obtained with DP-SLAM 2.0 (offline)

U UB

End courtesy of Eliazar & Parr

Fast-SLAM Summary

- Full and online version of SLAM
- Factorizes posterior into robot trajectories (particles) and map (EKFs).
- Landmark locations are independent!
- More efficient proposal distribution through Kalman filter prediction
- Data association per particle

Ball Tracking in RoboCup

- Extremely noisy (nonlinear) motion of observer
- Inaccurate sensing, limited processing power
- Interactions between target and

Goal: Unified framework for modeling the ball and its interactions.

Tracking Techniques

Kalman Filter

- Highly efficient, robust (even for nonlinear)
- Uni-modal, limited handling of nonlinearities
- Particle Filter
 - Less efficient, highly robust
 - Multi-modal, nonlinear, non-Gaussian
- Rao-Blackwellised Particle Filter, MHT
 - Combines PF with KF
 - Multi-modal, highly efficient
Dynamic Bayes Network for Ball Tracking

Robot Location

Robot and Ball Location (and velocity)

Ball-Environment Interactions

Ball-Environment Interactions

Integrating Discrete Ball Motion Mode

Landmark detection

Map and robot location

Robot control

Ball motion mode

Ball location and velocity

Ball tracking

Robot localization

Ball observation

Grab Example (1)

Landmark detection

Map and robot location

Robot control

Ball motion mode

Ball location and velocity

Robot localization

Ball observation

Grab Example (2)

Landmark detection

Map and robot location

Robot control

Ball motion mode

Ball location and velocity

Ball tracking

Robot localization

Ball observation

Inference: Posterior Estimation

 $p(b_k, m_k, r_k | z_{1:k}^b, z_{1:k}^l, u_{1:k-1})$

Rao-Blackwellised PF for Inference

- Represent posterior by random samples
- Each sample

$$s_i = \langle r_i, m_i, b_i \rangle = \langle \langle x, y, \theta \rangle_i, m_i, \langle \mu, \Sigma \rangle_i \rangle$$

contains robot location, ball mode, ball Kalman filter

 Generate individual components of a particle stepwise using the factorization

$$p(b_{k}, m_{1:k}, r_{1:k} | z_{1:k}, u_{1:k-1}) =$$

$$p(b_{k} | m_{1:k}, r_{1:k}, z_{1:k}, u_{1:k-1}) p(m_{1:k} | r_{1:k}, z_{1:k}, u_{1:k-1}) \cdot p(r_{1:k} | z_{1:k}, u_{1:k-1})$$

Rao-Blackwellised Particle Filter for Inference

Draw a sample from the previous sample set:

$$\left\langle r_{k-1}^{(i)}, m_{k-1}^{(i)}, b_{k-1}^{(i)} \right\rangle$$

Generate Robot Location

 $r_{k}^{(i)} \sim p(r_{k} | r_{k-1}^{(i)}, m_{k-1}^{(i)}, b_{k-1}^{(i)}, z_{k}, u_{k-1}) \implies \langle r_{k}^{(i)}, \ldots, \ldots \rangle$

Generate Ball Motion Model

 $m_k^{(i)} \sim p(m_k | r_k^{(i)}, m_{k-1}^{(i)}, b_{k-1}^{(i)}, z_k, u_{k-1}) \implies \langle r_k^{(i)}, m_k^{(i)}, - \rangle$

Update Ball Location and Velocity

Importance Resampling

Weight sample by

 $w_k^{(i)} \propto p(z_k^l \mid r_k^{(i)})$

if observation is landmark detection and by

 $w_k^{(i)} \propto \sum_{M_k} p(z_k^b | M_k, r_k^{(i)}, b_{k-1}^{(i)}) p(M_k | r_k^{(i)}, m_{k-1}^{(i)}, b_{k-1}^{(i)}, u_{k-1})$ if observation is ball detection.

Resample

Ball-Environment Interaction

Ball-Environment Interaction

Tracking and Finding the Ball

- Cluster ball samples by discretizing pan / tilt angles
- Uses negative information

0

Experiment: Real Robot

Robot kicks ball 100 times, tries to find it afterwards

Simulation Runs

Comparison to KF* (optimized for straight motion)

Comparison to KF' (inflated prediction noise)

Orientation Errors

Conclusions

- Bayesian filters are the most successful technique in robotics (vision?)
- Many instances (Kalman, particle, grid, MHT, RBPF, ...)
- Special case of dynamic Bayesian networks
- Recently: hierarchical models