Object Class Recognition by Unsupervised Scale-Invariant Learning

R. Fergus, P. Perona, and A. Zisserman

Presented By Jeff

Goal:

 Enable Computers to Recognize Different Categories of Objects in Images.

Components

- Model
 - Generative Probabilistic Model
 - Location, Scale, and Appearance
- Learning
 - Estimate Parameters Via EM
- Recognition

- Evaluate Image Using Model and Threshold

Model: Constellation Of Parts

Fischler & Elschlager, 1973

Yuille, 91 Brunelli & Poggio, 93 Lades, v.d. Malsburg et al. 93 Cootes, Lanitis, Taylor et al. 95 Amit & Geman, 95, 99 Perona et al. 95, 96, 98, 00

Parts Selected by Interest Operator

Kadir and Brady's Interest Operator. Finds Maxima in Entropy Over Scale and Location

Representation of Appearance

Generative Probabilistic Model

Start with Recognition:

$$R = \frac{p(\text{Object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}{p(\text{No object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}$$

=
$$\frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{Object}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{No object}) p(\text{No object})}$$

$$\approx \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}_{bg}) p(\text{No object})}$$

$$\begin{split} p(\mathbf{X},\mathbf{S},\mathbf{A}|\,\theta) &= \sum_{\mathbf{h}\in H} p(\mathbf{X},\mathbf{S},\mathbf{A},\mathbf{h}|\,\theta) = \\ \sum_{\mathbf{h}\in H} \underbrace{p(\mathbf{A}|\mathbf{X},\mathbf{S},\mathbf{h},\theta)}_{Appearance} \underbrace{p(\mathbf{X}|\mathbf{S},\mathbf{h},\theta)}_{Shape} \underbrace{p(\mathbf{S}|\mathbf{h},\theta)}_{Rel.\ Scale\ Other} \underbrace{p(\mathbf{h}|\theta)}_{Other} \end{split}$$

Appearance

$$\frac{p(\mathbf{A}|\mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}{p(\mathbf{A}|\mathbf{X}, \mathbf{S}, \mathbf{h}, \theta_{bg})} = \prod_{p=1}^{P} \left(\frac{\mathbf{G}(\mathbf{A}(h_p)|\mathbf{c}_p, V_p)}{\mathbf{G}(\mathbf{A}(h_p)|\mathbf{c}_{bg}, V_{bg})} \right)^{d_p}$$

Gaussian Part Appearance PDF

Shape

$$\frac{p(\mathbf{X}|\mathbf{S}, \mathbf{h}, \theta)}{p(\mathbf{X}|\mathbf{S}, \mathbf{h}, \theta_{bg})} = G(\mathbf{X}(\mathbf{h})|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \, \alpha^{f}$$

Gaussian Shape PDF

Scale

$$\frac{p(\mathbf{S}|\mathbf{h}, \theta)}{p(\mathbf{S}|\mathbf{h}, \theta_{bg})} = \prod_{p=1}^{P} \mathbf{G}(\mathbf{S}(h_p)|t_p, U_p)^{d_p} r^f$$

Prob. of detection

Poission PDF On # Detections

Occlusion and Part Statistics

$$\frac{p(\mathbf{h}|\theta)}{p(\mathbf{h}|\theta_{bg})} = \frac{p_{Poiss}(n|M)}{p_{Poiss}(N|M)} \, \frac{1}{{}^nC_r(N,f)} \, p(\mathbf{d}|\theta)$$

Learning

- Train Model Parameters Using EM:
 - Optimize Parameters
 - Optimize Assignments
 - Repeat Until Convergence

$$\boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{c}, \boldsymbol{V}, \boldsymbol{M}, p(\mathbf{d}|\boldsymbol{\theta}), t, \boldsymbol{U}\}$$

$$\hat{\theta}_{ML} = \mathop{arg\,max}\limits_{\theta} \, p(\mathbf{X}, \mathbf{S}, \mathbf{A} | \, \theta)$$

Recognition

Make This:

$$R = \frac{p(\text{Object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}{p(\text{No object}|\mathbf{X}, \mathbf{S}, \mathbf{A})}$$

=
$$\frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{Object}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\text{No object}) p(\text{No object})}$$

$$\approx \frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}) p(\text{Object})}{p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\boldsymbol{\theta}_{bg}) p(\text{No object})}$$

Greater Than Threshold

RESULTS

Background Images

Correct

OPPE

Contec

Correct

Correct

Contec

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Equal error rate: 9.8%

Airplanes

1022

Scale-Invariant Cats

Spotted cat shape model

Correct

Correct

Equal error rate: S. Cale-Invariant cars

80

Robustness of Algorithm

ROC equal error rates

Pre-Scaled Data (Identical Settings):

				Model		
	Total size	\sim Object width				
Dataset	of dataset	(pixels)	Motorbikes	Faces	Airplanes	Spotted Cats
Motorbikes	800	200	92.5	50	51	56
Faces	435	300	33	96.4	32	32
Airplanes	800	300	64	63	90.2	53
Spotted Cats	200	80	48	44	51	90.0

Scale-Invariant Learning and Recognition:

	Total size	Object size	Pre-scaled	Unscaled
Dataset	of dataset	range (pixels)	performance	performance
Motorbikes	800	200-480	95.0	93.3
Airplanes	800	200-500	94.0	93.0
Cars (Rear)	800	100-550	84.8	90.3

Scale-Invariant Cars

The End

