
1

CSE583:
Programming Languages

David Notkin
4 January 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Central focus

� Study of major concepts in programming
languages

� A particular focus on non-standard
languages, concepts and constructs

� Not especially
– Implementation oriented or theoretically

oriented, although we’ll necessarily touch on
both

University of Washington • CSE583 • D. Notkin © 2000 3

Tonight

� A little administrivia
– Ask questions now or at the end

� Basic intentions for the class
– Why study languages, importance of

languages, a bit of language history, etc.
� Language design principles
� A whirlwind tour of types and some non-

standard programming paradigms

University of Washington • CSE583 • D. Notkin © 2000 4

Distance learning

� You need to be
involved in the
lecture
– I’ll try to help

� Let us know if there
are technical
problems
– Then and there, and

on an ongoing basis

University of Washington • CSE583 • D. Notkin © 2000 5

Administrivia: see web page

� Readings
� Assignments (written and programming)
� Mini term papers
� Take home final
� Some pair work permitted (not required)

� TA: Adam Carlson

University of Washington • CSE583 • D. Notkin © 2000 6

My prejudices

� Programming languages are a key
part of developing better software

� I’m a software engineering
researcher
– There are many other factors that

contribute to quality software
– (Aside: my knowledge of programming

languages is somewhat limited)

2

University of Washington • CSE583 • D. Notkin © 2000 7

Two most important benefits

� Higher-level languages give productivity
improvements
– The lines of code you can produce is roughly

independent of the programming language
– It is not clear whether the quality remains the

same

� Explicit interfaces
– The structure of a program is at least as

important as the way the computation is
written

University of Washington • CSE583 • D. Notkin © 2000 8

Sapir-Whorf hypothesis

� Programming languages do influence the
way we write software

� Hypothesis: the language we have
influences how we think (as well as how
we communicate what we think)
– Hypothesized with respect to natural

language, not programming language, but
plausible nonetheless

– “First language” theory

University of Washington • CSE583 • D. Notkin © 2000 9

What was your first language?

� What programming
language did you
learn first
– Use your own

definition of “learn”
and “first”

� At each site, the
person who was born
closest to UW should
gather the
information

University of Washington • CSE583 • D. Notkin © 2000 10

Flon’s Law

� A good programmer will program
well in any language, and a bad
programmer will program poorly in
any language

University of Washington • CSE583 • D. Notkin © 2000 11

Why study programming
languages?

� I’m not likely to convince you to stop
using YFPL and start using MFPL, my
new distributed, concurrent, web-based,
object-oriented, interactive, enterprise,
constraint-based, rule-oriented, parallel,
Y2K-compliant, heterogeneous, 128-bit,
buzzword-based language

� Your Favorite Programming Language

University of Washington • CSE583 • D. Notkin © 2000 12

Why study programming
languages?

� You are probably not going to try to
write a new programming language
intended to replace C++, Java or any
other prevalent programming
language

� If you are going to try, good luck!

3

University of Washington • CSE583 • D. Notkin © 2000 13

So why?

� Some of the stuff is very, very cool
� It may help you better use the

language(s) you currently use
� It may possibly help you select a

language for a new project
� It may help you design “little”,

domain-specific, languages better

University of Washington • CSE583 • D. Notkin © 2000 14

A Partially Correct History of
Programming Languages
� [Edited without permission from Dartmouth’s CS68 97W]

� Konrad Zuse's Plankalkul (1945) was perhaps the
first language designed for expressing computation
on a computer; but never implemented

� FORTRAN (FORmula TRANslator) was the first high-
level language implemented, with an emphasis on
efficiency of compiled code; design and
implementation team led by John Backus (1954-57)

� LISP (LISt Processor) was a language designed for
symbolic processing (mostly for AI users);
McCarthy at MIT (1958); introduced symbolic
computation and automatic memory management

University of Washington • CSE583 • D. Notkin © 2000 15

More…

� ALGOL-60 (ALGOrithmic Language) designed for
clearly expressing algorithms both to the computer
and in computer science literature; first report on
issued in 1958, with subsequent meetings in 1959
and 1960 revised the specification; primary ancestor
of Pascal and C, introduingd block structure,
compound statements, recursive procedure calls,
nested if, loops, arbitrary length identifiers

� COBOL (COmmon Business-Oriented Language)
designed around 1960 for business applications,
pioneering sophisticated record structures;
designed to be readable by managers, so has a
strong English-like flavor

University of Washington • CSE583 • D. Notkin © 2000 16

More…

� BASIC (Dartmouth) was perhaps the first language
designed for time-sharing systems

� PL/I was IBM's attempt to tie together concepts from
FORTRAN, ALGOL, COBOL (and a little LISP) and to
add more features; introduced concurrency and
exceptions

� Simula/67 that introduced objects and inheritance
� Pascal (Wirth, 1971), a ALGOL-like language with a

deep understanding of implementation issues
� C (1972), designed in part for portable OS design

University of Washington • CSE583 • D. Notkin © 2000 17

More…

� Prolog designed and implemented in early 1970s
� ML late 1970s; as broadly used as any functional

programming language
� Smalltalk late 1980s; uniformly object-oriented

language
� Ada in early 1980s, intended to be a uniform

language for government applications
� C++ in mid 1980's
� Java developed by Sun in early 1990s

University of Washington • CSE583 • D. Notkin © 2000 18

Sammet’s view

� Over 200 programming languages
were developed between 1952 and
1972, but only about 13 were
significant

4

University of Washington • CSE583 • D. Notkin © 2000 19

Another chronology of influential
languages
� 1957 FORTRAN
� 1958 ALGOL
� 1960 LISP
� 1960 COBOL
� 1962 APL
� 1962 SIMULA
� 1964 BASIC
� 1964 PL/I
� 1966 ISWIM
� 1970 Prolog
� 1972 C
� 1975 Pascal
� 1975 Scheme
� 1977 OPS5

� 1978 CSP
� 1978 FP
� 1980 dBASE II
� 1983 Smalltalk-80
� 1983 Ada
� 1983 Parlog
� 1984 Standard ML
� 1986 C++
� 1986 CLP(R)
� 1986 Eiffel
� 1988 CLOS
� 1988 Mathematica
� 1988 Oberon
� 1990 Haskell

University of Washington • CSE583 • D. Notkin © 2000 20

What is your primary
programming language?
� What programming

language do you use
most regularly and
extensively?

� At each site, the
person who was born
closest to New York
City should gather
the information

University of Washington • CSE583 • D. Notkin © 2000 21

Tradeoff between expressiveness
and performance
� Perlis epigram #54: “Beware of the Turing

tar-pit in which everything is possible but
nothing of interest is easy.”
– http://www.cs.yale.edu/~perlis-alan/quotes.html

� We’re not talking about computability in
this class
– In principle, you can (somehow or another)

write any program you care about in any
programming language

� We’re talking about effectiveness

University of Washington • CSE583 • D. Notkin © 2000 22

Basic language design principles

� Many of the following are from B.J.
MacLennan
– Principles of Programming Languages:

Design, Evaluation and Implementation
� Two of the assigned papers (by Wirth and

by Hoare) are on programming language
design principles

� I’ll give a few examples; you can fill in
others from your experience

University of Washington • CSE583 • D. Notkin © 2000 23

Abstraction

� Avoid requiring
something to be
stated more than
once; factor out the
recurring pattern
– Procedures and

functions, modules
and classes, macros,
etc.

� FORTRAN I (in the
1950s) did not include
subprograms in its
preliminary
description
– Libraries (for I/O and

math) but not user-
defined subprograms

� The original and
central use of
subprograms was to
save memory

University of Washington • CSE583 • D. Notkin © 2000 24

Automation

� Automate
mechanical,
tedious, or error-
prone activities

� (This rule is at
least as important
for tools as for
languages.)

� High-level
language loops are
a great example

� Parameter passing
is another

5

University of Washington • CSE583 • D. Notkin © 2000 25

Labeling

� Avoid arbitrary
sequences more than
a few items long

� Do not require the
user to know the
absolute position of
an item in a list
– Instead, associate a

meaningful label with
each item, allowing to
occur in any order

� case statements
vs. computed
gotos

� property lists (p-
lists) in Lisp
– (age 45 ssn 123456789

 name (Smokey Bear)
 office (Sieg 123))

University of Washington • CSE583 • D. Notkin © 2000 26

Parameter labeling

� call stokes (a, bc_tag, detmap, eqn, g, ierror,
indx, ipivot, jac, maxelm, maxeqn, maxnp,
maxquad1, maxquad2, maxside, nelem, neqn, nlband,
node, np, nquad1, nquad2, nrow, nside, penalty1,
penalty2, phi, region, region_ymax, res, res2,
reynold, side_basis, side_elem, side_eqn,
side_etam, side_etap, side_indx, side_xsim,
side_xsip, squad1, wquad1, wquad2, xc, yc)

� 45 parameters in this FORTRAN call
– Taken from John Burkhart’s web page at the Pittsburgh

Supercomputing Center

– http://www.psc.edu/~burkardt/flow6.html

� I’ve heard tell of Cobol programs with 100s of parameters

University of Washington • CSE583 • D. Notkin © 2000 27

Parameter labeling in Ada

� Ada 83 permits position-independent
parameters (and default values)
– procedure DRAW_AXES(X_ORIGIN,Y_ORIGIN:COORD:=0;

 X_SCALE,Y_SCALE:REAL:=1.0;
 X_SPACING,Y_SPACING:NATURAL:=1;
 X_LOG,Y_LOG:BOOLEAN:=FALSE;
 FULL_GRID:BOOLEAN:=FALSE);

– DRAW_AXES(500,500,Y_SCALE=>0.5,Y_LOG:=TRUE,
 X_SPACING=>10,Y_SPACING=>10);

� Complicates overloading
– procedure P(X:INTEGER;Y:BOOLEAN:=FALSE);

procedure P(X:INTEGER;Y:INTEGER:=0);
P(3);

University of Washington • CSE583 • D. Notkin © 2000 28

Defense in Depth

� Have a series of
defenses so that if
an error isn’t
caught by one, it
will probably be
caught by another

� DO 20 I = 1.100
DO 20 I = 1,100

� Boom, there goes the
Venus probe!
– Apparently urban

legend, but still!

� Interaction of implicit
declarations and
ignoring of blanks as
lexical units

University of Washington • CSE583 • D. Notkin © 2000 29

Localized cost

� Users should only
pay for what they
use; avoid
distributed costs

� (I prefer to call this
“manifest cost”,
where all costs
should be
apparent)

� Algol 60 for-loops
reevaluated its
loop parameters
on each iteration
– In the absence of a

smart compiler,
even simple loops
became very costly

University of Washington • CSE583 • D. Notkin © 2000 30

Orthogonality

� Independent
functions should
be controlled by
independent
mechanisms

� Single statements
vs. blocks in
FORTRAN or C
– if c then S
if c then {S1;S2}

– Complicates change

� Inheritance for
sharing code vs.
inheritance for
sharing behaviors

6

University of Washington • CSE583 • D. Notkin © 2000 31

Regularity

� Regular rules, with
exceptions, are
easier to learn,
use, describe, and
implement

� In Smalltalk-80,
everything is an
object
– Integers, points, user-

defined objects, even
the class definitions
themselves

– So you manipulate
everything the same
way

University of Washington • CSE583 • D. Notkin © 2000 32

Security

� No program that
violates the
definition of the
language, or its
own intended
structure, should
escape detection

� Pascal’s type hole
for non-
discriminated
union types

� Ada 83 and non-
compliant
programs

University of Washington • CSE583 • D. Notkin © 2000 33

Simplicity

� A language should
be as simple as
possible

� There should be a
minimum number
of concepts with
simple rules for
their combination

� C++, need I say
more?

� Smalltalk-80
� Functional languages

– Function (λ) definition
– Function application

University of Washington • CSE583 • D. Notkin © 2000 34

Structure

� The static
structure of the
program should
correspond in a
simple way with
the dynamic
structure of the
corresponding
computations

� gotos
� Dynamic scoping

University of Washington • CSE583 • D. Notkin © 2000 35

Syntactic consistency

� Similar things
should look similar

� Different things
should look
different

� computed gotos
vs. assigned gotos
– GOTO (L1,L2…),I
GOTO N,(L1,L2,…)

– goto LI vs. branch
to statement
whose address is
in N

• the list is
documentation

University of Washington • CSE583 • D. Notkin © 2000 36

Zero-one-infinity

� The only
reasonable
numbers are zero,
one, and infinity

� Six character
identifiers

7

University of Washington • CSE583 • D. Notkin © 2000 37

Others from MacLennan

� Information hiding
� Portability

– Avoid features or facilities that are
dependent on a particular machine or a
small class of machines

University of Washington • CSE583 • D. Notkin © 2000 38

Feature interaction

� If there were only one or two design
principles and features at issue,
language design wouldn’t be so hard

� But the interaction among them is
what makes language design
extremely challenging

University of Washington • CSE583 • D. Notkin © 2000 39

Communication is central

� A program bridges the gap between
the programmer (a human) and the
computer

� A programming language defines
how the programmer interacts with
the program

University of Washington • CSE583 • D. Notkin © 2000 40

Ideally, it should be easy to…

� …quickly learn a programming language
� …quickly express intent and model

application domains
� …read other people’s code and

understand their intent
� …debug & reason about correctness,
� …reason about performance trade-offs

and ensure good performance
� …modify and extend programs

University of Washington • CSE583 • D. Notkin © 2000 41

Tools also interact with the
language

� Compilers analyze, optimize and
translate

� Debuggers, program understanding
tools, etc., aid programmers
– Some tools must be language-

knowledgeable
– Other tools may benefit from knowing

about the language at issue

University of Washington • CSE583 • D. Notkin © 2000 42

A whirlwind tour…

� …of some basic ideas that we will
cover this quarter
– Types
– Different language paradigms

• Functional, OO, logic- and constraint-
based

– Domain-specific (“little”) languages

8

University of Washington • CSE583 • D. Notkin © 2000 43

Types

� Types are one of the
most powerful
notions developed in
programming
language research
– Rich in theory and rich

in practice
– There are lots of

disagreements about
what is the right way
to handle types

� Most simply, a type
represents a
collection of values
– Integers, cartesian

points, polygons,
employees, etc.

� Types can be useful
to the programmer, to
the compiler, and as
documentation

University of Washington • CSE583 • D. Notkin © 2000 44

Strong vs. weak typing

� Strong typing (type safe)
– Never apply an operation to an inappropriate

data value without signaling an error
– Never misuse a bit pattern in memory
– Array bounds checking? Divide-by-zero

checking?
– Ex: Scheme, ML, Haskell, Smalltalk, Java,

Prolog, safe subset of Modula-3

� Weak typing: not strong
– C/C++, Pascal, Fortran, assembly languages

University of Washington • CSE583 • D. Notkin © 2000 45

Static vs. dynamic typing

� Static typing
– Check for type safety statically (at compile

time)
– Impossible for some aspects

• Ex: array bounds (value vs. type checking)
– Ex: ML, Haskell, Java, C/C++, Pascal, Fortran

• At least they think they know the types

� Dynamic typing: not static
– Scheme, Smalltalk, Prolog
– Some are mixed (static/dynamic): CLU, Cecil

University of Washington • CSE583 • D. Notkin © 2000 46

Types (miscellaneous)

� There is a tremendous amount of
confusion in the terminology
– Especially with”strong” vs. “static”

� Does static imply strong typing?
� Does strong imply static typing?

University of Washington • CSE583 • D. Notkin © 2000 47

Imperative programming paradigm

� Most programming is done using the
imperative paradigm

� Based on the Von Neumann machine with
registers and modifiable memory
– The memory is manipulated by the program

through variables and assignments
– Various constructs (especially control

constructs) provide a way to structure the
code and to order the manipulations of
memory through variables and assignments

University of Washington • CSE583 • D. Notkin © 2000 48

Object oriented paradigm

� We’ve had enough
riots in Seattle
lately, so let’s
delay this
discussion until
later in the quarter

� “I am not a wuss”

9

University of Washington • CSE583 • D. Notkin © 2000 49

Functional programming paradigm

� From the comp.lang.functional FAQ
– “Functional programming is a style of

programming that emphasizes the evaluation
of expressions, rather than execution of
commands. The expressions in these
language are formed by using functions to
combine basic values. A functional language
is a language that supports and encourages
programming in a functional style.”

University of Washington • CSE583 • D. Notkin © 2000 50

Functional (con’t)

� One central notion (of many) is referential
transparency, which essentially means
that computations are free of side-effects
– That is, it’s just like math, and you can always

replace an expression by its value

� The following is always true in functional
languages (but not in imperative ones)
– f(x) + f(x) = 2*f(x)

� Makes I/O really fun!

University of Washington • CSE583 • D. Notkin © 2000 51

Logic programming paradigm

� Use symbolic logic as
a programming
language

� This is good because
logic is powerful and
theorem proving can
be used to “execute”
programs
– This will be clearer

later in the term

app([], L, L).
app([A|X], Y, [A|Z])
:- app(X, Y, Z).

� These two (Horn)
clauses define list
appending

� Can be used to
compute in any
direction or to check
a property

University of Washington • CSE583 • D. Notkin © 2000 52

Constraint logic programming
paradigm
� Most logic

programming is
highly inefficient due
to the needed search

� Some domains are
more constrained,
allowing efficient
solutions to some
limited but important
classes of problems
– Xerox paper flow

 DONALD
 + GERALD =
 ROBERT

University of Washington • CSE583 • D. Notkin © 2000 53

Domain specific languages

� “Programming” languages are written all
the time
– Jon Bentley called these “little languages”
– Often without thought to programming

language principles

� Examples?
� Tom Ball, Microsoft Research, will lecture

on these later in the quarter

University of Washington • CSE583 • D. Notkin © 2000 54

Questions?

� About content?
� About the course?
� About administrivia?

