
1

CSE583: Programming
Languages

David Notkin
7 March 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Tonight

� Domain specific languages
� A quick overview of programming

language topics that we didn’t cover
– Any why

� Overview of final exam structure
� Course reviews

University of Washington • CSE583 • D. Notkin © 2000 3

Domain specific languages

� These are programming languages
focused on solving problems in a limited
domain
– By limiting the domain, the intent is to gain

added leverage

� Overall, the goal of a DSL is to gain
expressiveness at the cost of generality

University of Washington • CSE583 • D. Notkin © 2000 4

Tonight

DSL = Domain
Specific Language

DSL ≠ Digital
Subscriber Line

University of Washington • CSE583 • D. Notkin © 2000 5

Example DSLs

� CLP(R)
� Spreadsheets
� JavaScript
� csh
� make

� …more…?

� What domain does
each focus on?

� What leverage
does it get in that
domain?

� What does it give
up to gain that
leverage?

University of Washington • CSE583 • D. Notkin © 2000 6

Synonyms for DSL

� Little languages
� Micro languages
� Application languages
� Very high level languages
� Sometimes they are considered to be

executable specification languages
– Often highly declarative

2

University of Washington • CSE583 • D. Notkin © 2000 7

Example: Unix shells

� Domain is
– streams (e.g., standard in and out)
– operations on streams (e.g., redirection and

pipe into another stream)
– processes (management)

� Simple control-flow and data (primarily
string) manipulation mechanisms

� They are Turing-complete, but you’d
never want to (for instance) manipulate
complex data structures in the shell

University of Washington • CSE583 • D. Notkin © 2000 8

Example: make

� Dependences between parts of a larger program
are described declaratively
– Technically, it needn’t be a program, of course

� Actions to take when a simple temporal relation
holds between two dependent parts are
described imperatively
– The description of these actions is outside the scope

of make itself

� Domain details like file modification time and file
suffixes are handled easily

University of Washington • CSE583 • D. Notkin © 2000 9

Benefits of DSLs [IRISA/INRIA]

� Easier programming
– Productivity gains of at least a factor of

10 have been cited

� Systematic reuse
� Easier verification

– Higher reliability

University of Washington • CSE583 • D. Notkin © 2000 10

Parameterization mechanism

� One can view complex parameters as
their own DSL
– Consider viewing the “little language” used

as the string format for printf as a DSL

– Data represented as a parameter ends up
being a program to be processed

� This is a traditional tradeoff between
program and data

University of Washington • CSE583 • D. Notkin © 2000 11

Program families

� A program family is a set of
programs that share enough in
common that it is worthwhile to
study them as a whole [Parnas]

� A program family provides an
opportunity for developing a DSL
from which it is easy (easier) to build
instances of that family

University of Washington • CSE583 • D. Notkin © 2000 12

Guideline

� If the similarities give you significant
leverage, then you might consider a
DSL to handle a program family

� Note: there are other software
design approaches, such as
layering, for handling program
families, too

3

University of Washington • CSE583 • D. Notkin © 2000 13

Guideline

� This guideline isn’t so useful
– The cost of developing the DSL isn’t explicit
– Presumably one intends to amortize this cost

over both planned and future (unplanned)
instances

� Aside: almost all decisions we make in
software are roughly this ill-formed

University of Washington • CSE583 • D. Notkin © 2000 14

How to design and implement a
DSL?

� Pertinent to the cost issue, of course
� Who should develop DSLs
� Programming language design is difficult
� Programming language implementation is

difficult
� The “DSL-ness” of DSLs doesn’t make

these less
– Indeed, if you look at many DSLs, it’s

apparent it makes it worse!

University of Washington • CSE583 • D. Notkin © 2000 15

Small example: reflexion mapping

� Last week:software
reflexion models

� A key is the mapping
from source code to
high-level model

� We defined a little
language for this
– Used logical and

physical structure
in the source code

– Used regular
expressions

[file=scanner.* mapTo=Parse]
[file=buf\.[ch] mapTo=Parse]
[class=Parser mapTo=Parse]
[class=Ast mapTo=AST]
[class=AssignStmt mapTo=AST]
[class=BinOp mapTo=AST]
[class=Block mapTo=AST]
[directory=401 class=CallStmt
 mapTo=AST]

Actually, a family of DSLs;
each defines the structures for
the given source code system

University of Washington • CSE583 • D. Notkin © 2000 16

An obvious point

� Understanding language issues (and
ideally, language design) will lead to
better, more useful DSLs

� But be a bit careful about this point
– As an example, TKL/TK is generally

considered to be a lousy language
– But it’s clearly been useful and is used

broadly

University of Washington • CSE583 • D. Notkin © 2000 17

Larger example: MDL

� Paradyn is a project on tools for
parallel performance at the U. of
Wisconsin [Miller et al.]

� MDL is a “metrics description
language”, a DSL for instrumenting
code

University of Washington • CSE583 • D. Notkin © 2000 18

MDL control flow
MDL Program

Parsed MDL:
What to

Instrument

Parsed MDL:
Where to

Instrument

Paradyne
Code Generator

Instrumentation
Machine Code

Application
Binary

Paradyne
Structural
Analysis

Application
Control Information

Paradyne
Instrumentation Mgr

4

University of Washington • CSE583 • D. Notkin © 2000 19

MDL example

list pvm_msg_func is procedure {

 flavor pvm;

 items { "pvm_send", "pvm_recv" };

}

constraint procedure /Code is counter {

 append preInsn $constraint[0].entry

 (* procedure = 1; *)

 prepend preInsn $constraint[0].return

 (* procedure = 0; *)

}

University of Washington • CSE583 • D. Notkin © 2000 20

More of the example

metric msgs {

 name "Messages";

 units opsPerSecond;

 aggregateOperator sum;

 flavor { pvm };

// the base computation of the metric.

 base is counter {

 foreach func in pvm_msg_func

 append preInsn func.entry constrained

 (* msgs++; *)

 }

}

University of Washington • CSE583 • D. Notkin © 2000 21

MAWL: another example [Atkins et al.]

“A form-based service is one in which the flow of
data between service and user is described by a
sequence of query/response interactions, or
forms. Mawl is a domain-specific language for
programming form-based services in a device-
independent manner. We focus on Mawl's form
abstraction, which is the means for separating
service logic from user interface description, and
show how this simple abstraction addresses
seven issues in service creation, analysis, and
maintenance.”

University of Washington • CSE583 • D. Notkin © 2000 22

MAWL structure

Service Logic
(.mawl)

Form

Service
Data

Template
 (.mhtml)

Web

Browser

Request
(HTTP)

Response
(HTTP.GET)

User
Data

University of Washington • CSE583 • D. Notkin © 2000 23

Greet.mawl

global int access_cnt = 0;
session Greet {
 local form {} -> { string id } GetName;

 local form { string id, int cnt,
 int time } -> {} ShowInfo;
 local int time_now = minutes();

 local string i = GetName.put({}).id;
 ShowInfo.put({i, ++access_cnt,
 minutes()-time_now});
}

University of Washington • CSE583 • D. Notkin © 2000 24

GetName & ShowInfo.mhtml

<HTML><HEAD><TITLE>Get-Name Form</TITLE></HEAD>

<BODY>Enter your name: <INPUT NAME=id>
</BODY></HTML>

<HTML><HEAD><TITLE>

 Show-Info Form</TITLE></HEAD>

<BODY>Hello <MVAR NAME=id>,
you are visitor number <MVAR NAME=cnt>.

 Time elapsed since first form is <MVAR NAME=time>
minutes.

</BODY></HTML>

5

University of Washington • CSE583 • D. Notkin © 2000 25

Service creation, analysis &
maintenance
� MAWL is not intended only to make

writing form-based programs easier
� It’s also designed to ensure that the

engineering of these programs has
specific benefits
– compile time, implementation flexibility, rapid

prototyping, testing & validation, support for
multiple devices, composition of services,
usage analysis

University of Washington • CSE583 • D. Notkin © 2000 26

Compile-time guarantees

� A service should only generate valid HTML
� The HTML should be consistent with the service

logic
– That is, is the service prepared to handle the values

entered by the user?

� Separating a service into sessions, forms, and
templates enables such checking
– The descriptions can be checked against one another
– Most other approaches to generating HTML can’t do

this

University of Washington • CSE583 • D. Notkin © 2000 27

Implementation flexibility

� A MAWL service can be compiled into a
CGI script
– This is easy, but may not scale to heavy hit

rates

� It can also be compiled directly to an
HTTP server
– More complex, but may scale better

� MAWL handles this without modifying the
service descriptions

University of Washington • CSE583 • D. Notkin © 2000 28

Prototyping services

� Early versions of MAWL were statically
type checked, requiring each MHTML
template to always be typed properly
– Programmers complained about this, since it

compromised initial prototyping

� MAWL was modified to allow sessions to
be compiled without templates at all
(using a default)
– This allows programmers to try out their

service through forms more immediately

University of Washington • CSE583 • D. Notkin © 2000 29

Testing and validation

� The separation of the pieces allows
testing of the parts other than through a
GUI
– For example, a testing harness can provide

an alternative implementation for each form’s
put method

� By separating control flow and state
management from UI, exercising and
analyzing the components is much easier

University of Washington • CSE583 • D. Notkin © 2000 30

Multi-device services

� Separation into the separate components
allows for making single services that can
handle diverse devices
– Standard browers, cell phone browsers, etc.

� Provide two different templates that have
the same effect (e.g., mhtml and mpml, for
phones)
– The service sees a single consistent view
– The differences are isolated in the templates

6

University of Washington • CSE583 • D. Notkin © 2000 31

Composing web services

� Approach allows linking to existing
web pages

� Can also combine information from
other pages
– i.e., like the Metacrawler

� Data from these other pages can be
treated like MAWL user data

University of Washington • CSE583 • D. Notkin © 2000 32

Usage analysis

� MAWL forms provide a centralized
point for monitoring interactions
between the service and its users
– A form put method is instrumented to

record service data
– (A visualization tool is provided, too)

University of Washington • CSE583 • D. Notkin © 2000 33

MAWL

� Collectively, the MAWL language
design shows the leverage one can
get from a carefully designed DSL
– Types
– Separation of control and data flow
– Separation of concerns
– Other language design issues?

University of Washington • CSE583 • D. Notkin © 2000 34

Key issues: given a DSL design

� Should you implement it as a standard
language is implemented?

� Should you implement it in the context of
an existing language?
– Haskell, monads, etc.

� How do you get all the associated tools
(debuggers, monitors, visualization,
etc.)?

University of Washington • CSE583 • D. Notkin © 2000 35

No simple answers

� The question is (as are many
software engineering questions)
largely an economic one
– What is the cost of developing the tools

in different ways?
– How does it affect the quality of the

tools?
– How does it affect time-to-market?

University of Washington • CSE583 • D. Notkin © 2000 36

Bottom line on DSLs

� They are everywhere, even when you
don’t think of them as DSLs

� Thinking about them as languages gives
a ton of leverage

� The implementation issues are equally
complex as the design issues
– And beyond the scope of this course

7

University of Washington • CSE583 • D. Notkin © 2000 37

Topics we didn’t cover

� And why
– But you’ll have to listen to the lecture

University of Washington • CSE583 • D. Notkin © 2000 38

Programming language semantics

� Everything beyond the BNF
� Operational semantics

– Abstract interpretation (fancy data flow)

� Axiomatic semantics
– Pre/post conditions to define constructs

� Denotational semantics
– Associate abstract syntax with semantic

domains

University of Washington • CSE583 • D. Notkin © 2000 39

Partial evaluation, program
specialization, run-time compilation

� Building faster programs through delayed
binding

� Ray tracing efficiently written in C ran 1.5
to 3 times faster after specialization to the
scene to be drawn

� A Fortran FFT program was specialized
with respect to a fixed function and
number of points, running x1.5-4

� Compiler generation from interpreters for
programming languages

University of Washington • CSE583 • D. Notkin © 2000 40

Programming calculi
(Other than the λ-calculus)

� Reasoning about programs
– CSP
– CCS
– Π-calculus
– Several for handling mobility (for the

web)

University of Washington • CSE583 • D. Notkin © 2000 41

Parallel and concurrent languages

University of Washington • CSE583 • D. Notkin © 2000 42

Logical frameworks and automatic
deduction

8

University of Washington • CSE583 • D. Notkin © 2000 43

Functional logic programming

University of Washington • CSE583 • D. Notkin © 2000 44

Literate programming

University of Washington • CSE583 • D. Notkin © 2000 45

What else?

University of Washington • CSE583 • D. Notkin © 2000 46

Final

� Functional languages 25%
� Object oriented languages 25%
� Logic and constraint logic programming

25%
� Miscellaneous 25%

– Language design issues, visual
programming/program visualization, domain
specific languages, etc.

University of Washington • CSE583 • D. Notkin © 2000 47

Final

� No code to write
– Well, no code to write and execute

• It’s possible I’ll ask for snippets of code

� Concise and clear answers
– Increased partial credit

University of Washington • CSE583 • D. Notkin © 2000 48

Final

� Available on web tomorrow, Wednesday March
8, by 5PM
– I’ll send email when it’s ready
– It’ll be in PDF form

� You can choose any consecutive 3-hour period
to do the exam

� It is due by 11:59PM PST on Sunday March 12,
2000

� No electronic turn-in!
– Get it to me (by snail mail, under my door, in my office

mail box) in time

