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Functional programming: two
weeks
� Scheme

– Gives a strong, language-based foundation
for functional programming

– May be mostly review for some of you
� Some theory

– Theoretical foundations and issues in
functional programming

� ML
– A modern basis for discussing key issues in

functional programming
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Scheme: a Lisp descendant

� A statically scoped and properly tail-recursive
dialect of the Lisp programming language
developed by Steele and Sussman in the mid
1970s
– Embodies an executable version of the lamda

calculus

� Intended to have an exceptionally clear and
simple semantics with few different ways to
form expressions
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Statically scoped (review)

� A free variable in a
function definition is
bound to the variable
of the same name in
the closest enclosing
block

� Dynamically scoped:
free variable bound to
nearest match on the
call stack

proc fork(x,y:int){
proc snork(a:int){
  proc cork() {
    a := x + y;
  }
  x : int;
  a := x + y;
}

}
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Tail recursive

� The top level call
returns a value
identical to that of
the bottom level
call

� Who cares?
– Performance!
– Scheme requires

tail recursion to be
implemented as
efficiently as
iteration

(define member(e l)

  (cond

    (null l) #f

    (equal e (car l)) #t

    (member e (cdr l))

  ))

� Once an element is a member,
it’s always a member

� Once you start returning true,
you keep on returning true until
you unwind the whole recursive
call stack
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Scheme

� Dynamically typed, strongly typed
� Expression-oriented, largely side-effect-

free
– Functional languages are expression, not

statement-oriented, since the expression
define the function computation

� List-oriented, garbage-collected heap-
based

� Good compilers exist
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read-eval-print loop

� Programming language equivalent of
fetch-increment-execute structure of
computer architectures

� Heart of most interpreted languages
� Helps in rapid development of small

programs; simplifies debugging
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Scheme syntax

Program     ::= ( Definition | Expr )

Definition  ::=
  (define id Expr)
| (define (idfn idformal1 … idformalN) Expr)

Expr        ::= id | Literal | SpecialForm
            | (Exprfn Exprarg1 … ExprargN)

Literal     ::= int | string | symbol | …

SpecialForm ::= (if Exprtest Exprthen Exprelse)
| ...
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Examples

� Identifiers
– x

– x1_2

– is-string?

– make-string!

– <=

� Literals (self-evaluating
expressions)

– 3

– 0.34

– -5.6e-7

– “hello world!”

– “”

– #t

– #f
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Ex: Definitions, expressions and
evaluation results
� (+ 3 4)
7

� (define seven (+ 3 4))
seven

� seven
7

� (+ seven 8)
15

� (define (square n) (* n n))
square

� (square 7)
49
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Another example

� (define (fact n)
  (if (<= n 0)
      1
      (* n (fact (- n 1)))))
fact

� (fact 20)
2432902008176640000

� (fact 1)
1

� (fact “xyz”)
???

� Everything is
an expression,
including what
we usually
think of as
control
structures

� Prefix
operators and
functions calls
are regular,
although not
traditional
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Special forms

� Standard rule:
evaluate all
arguments before
invocation
– This is called eager

evaluation
� Can cause

computational (and
performance)
problems

� Can define your own

� (define x 0)

� (define y 5)

� (if (= x 0)
    0 (/ y x))
0

� (define (my-if c t e)
  (if c t e))

� (my-if (= x 0)
       0 (/ y x))
error!

� (fact 3)



3

University of Washington • CSE583 • D. Notkin © 2000 13

Other special forms

� cond: like if-elseif-…else chain
–(cond ((> x 0) 1)
       (= x 0) 0)
       (else -1)))

� short-circuit booleans
–(or (= x 0) (> (/ y x) 5) …)
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Two more special forms

� Local variable bindings
– (define x 1) (define y 2) (define z 3)
(let ((x 5)
      (y (+ 3 4))
      (z (+ x y z)))
(+ x y z)
18

� Sequentially evaluated local variable bindings
– Replace let by let*
– The same expression evaluates to 27
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Lists

� Standard data structure for aggregates
� A list is a singly-linked chain of cons-

cells (i.e., pairs)
� (define snork (5 6 7 8))

5 6 7 8

()
[nil]

snork

5 6 7 8

()
[nil]

snork
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List creation

� cons adds a cell at the beginning of a list, non-
destructively
– Remember, in the functional world, we don’t destroy

things (which would be a side-effect)
� (define fork (cons 4 snork))

– fork → (4 5 6 7 8)
– snork → (5 6 7 8)

6 7 8

()
[nil]

snork

54

fork

6 7 8

()
[nil]

snork

54

fork
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List accessors

� car (head) returns the first element in a list
– (+ (car snork) (car fork)) → 9

� cdr (tail) non-destructively returns the rest of
the elements in the list after the first
– (define dork (cdr fork))

– fork → (4 5 6 7 8)  snork → (5 6 7 8)
dork → (6 7 8)

6 7 8

()
[nil]

snork

54

fork

dork

6 7 8

()
[nil]

snork

54

fork

dork

University of Washington • CSE583 • D. Notkin © 2000 18

Why the names car and cdr?
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The empty list

� () is the empty list literal
– In Lisp, this is the same as nil; in some

Scheme implementations, it is the same as
#f as well

� (cons 6 ()) → (6)
– The second argument to cons must be a list

� (cdr (cons 6 ()) → ()
� (cdr 6) → ???
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Lists: heterogeneous and nested

� (define foo (5 6.7 “I am not a wuss”))

� (define bar (5 (6 7) “wuss” (“a” 4)))

"wuss"

( )

5

bar

6 7

( )

"a"

( )

4

"wuss"

( )

5

bar

6 7

( )

"a"

( )

4
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Quoting

� How can we distinguish list literals from
function invocations?
– (cdr (cons 6 ()) → ()
– (cdr (cons (7 8) ())

→ error [function 7 not known]
– (cdr (cons (quote (7 8)) ())

 → ()
– quote (‘) and list are special forms
– (cdr (cons ‘ (7 8) ())
– (list 7 8)
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Programs and data

� It should now be obvious that programs
and data share the same syntax in
Scheme (Lisp)

� To come full circle in this, there is a eval
form that takes a list and evaluates it
– (eval ‘(+ 2 3 4)) → 9

�  Among other things, this makes it quite
easy to write a Scheme interpreter in
Scheme
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Equality

� There are (more
than) two different
notions of equality
in Scheme (and
most other
programming
languages)
– Are the two entities

isomorphic?
(equal?)

– Are they the exact
same entity? (eqv?)

� (eqv? 3 3) → #t
� (eqv? ’(3 4) ‘(3 4))

→ #f
� (let ((x ‘(3 4)))

   (eqv? x x) → #t
� (equal? ’(3 4) ‘(3 4))

→ #t
� (eqv? “hi” “hi”) → #f
� (equal? “hi” “hi”) → #t
� (eqv? ‘hi ‘hi) → #t
� (eqv? () ()) → #t
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Other predicates

� Numeric comparisons
� Type-testing predicates, available

due to the use of dynamic typing
–null? pair? symbol? boolean?
number? integer? string? …

� The use of the ? is a convention
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A note about binding and
parameter passing
� All variables refer to data values, yielding a

simple, regular model
� let binding and parameter passing do not copy

– They introduce a new name that refers to and shares
the right-hand-side value

– “call by pointer value” or “call by sharing”
� (define snork ‘(3 4 5))
(define (f fork)
  (let ((dork fork))
    (and (eqv? snork fork)
         (eqv? dork fork))))
(f snork) → #t
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Global heap

� All data structures are implicitly allocated
in the global heap

� Gives data structures unlimited lifetime
(indefinite extent)
– Simple and expressive

� Allows all data to be passed around and
returned from functions and stored in
other data structures
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Garbage collection

� System automatically reclaims memory
for unused data structures
– Programmer needn’t worry about freeing

unused memory
– Avoids freeing too early (dangling pointer

bugs) and freeing too late (storage leak bugs)
– System can sometimes be more efficient than

programming
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Recursion over lists

� Lists are a recursive
data type
– A list is either () [base

case]
– Or a pair of a value

and another list
[inductive case]

� Good for
manipulation by
recursive functions
that share this
structure

(define (f x …)

  (if (null? x)

     …base case on

       (car x)

     …inductive

       case on (cdr x)

  ))
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Recursive examples

(define (length x)
  (if (null? x) 0
      (+ 1 (length (cdr x)))))

(define (sum x)
  (if (null? x) 0

      (+ (car x) (sum (cdr x)))))
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Another example

� Find a value associated with a given key in an association list
(alist), a list of key-value pairs

� (define (assoc key alist)

    (if (null? alist) #f
      (let* ((pair (car alist))

             (k (car pair))
             (v (cdr pair)))

         (if (equal? key k) v
             (assoc key (cdr alist))))))

(define Zips (list ‘(98195 Seattle)

                     ‘(15213 Pittsburgh)))

  (assoc 98195 Zips) → #t
  (assoc 98103 Zips) → #f
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Yet another example

� Append two lists non-destructively
– Requires a copy of the first list but not

the second one
– Sharing of list substructures is

common and safe with no side-effects
� (define (append x1 x2)
   (if (null? x1) x2
       (cons (car x1)
             (append (cdr x1)
                     x2))))
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Append: in list form

6

snork

7 8

()

()

4 5

fork

4 5

dork

6

snork

7 8

()

()

4 5

fork

4 5

dork

� (define snork ‘(6 7 8))

� (define fork ‘(4 5))
� (define dork (append fork snork))
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Side-effects

� There are several special forms that allow
side-effects (note the ! convention)
– set! set-car! set-cdr!

� set! rebinds a variable to a new value
� (define (test x)

  (set! x (cons 1 x))
  x)
(test ‘(2 3)) → (1 2 3)
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Side effects on cons cells

� set-car! and set-cdr! do what you would
expect

� You can use these, for instance, to define a
destructive append, where the first list is reused
instead of copied

� These tend to create more efficient functions
that make the overall program more complicated
due to more complex sharing

� Strictly, they are outside the basic notion of
functional programming
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Recursion vs. iteration

� These are comparable control structures
– One or the other is needed for a language to

be Turing-complete
– Recursion is in some sense more general,

since it has an implicit stack

� Recursion is often considered less
efficient (time and space) than iteration
– Procedures calls and stack allocation or

deallocation on each “iteration” (recursive
call)
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Tail recursion (reprieve)

� In many cases, though, recursion
can be compiled into code that’s as
efficient as iteration

� This is always possible in the face of
tail recursion, where the recursive
call is the last operation before
returning
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Tail recursion examples

� (define (last x)
  (if (null? (cdr x)) (car x)
      (last (cdr x))))

� (define (member e x)
  (cond ((null? x) #f)
        ((eqv? e (car x) #t)
        (else (member e (cdr x)))))

� The bold-italics invocations represent the
final thing that the function does
– After that, it’s just a bunch of returns that don’t

“do” anything
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Converting to tail recursion

� Programmers (and
sometimes really smart
compilers) can
sometimes convert to tail
recursion

� (define (fact n)
  (if (= n 0) 1
      (+ n
      (fact (- n 1))
  )))

� Not tail recursive (must
do + after recursive call)

(define (fact n)
(f-iter n 1))

(define (f-iter n r)

  (if (= n 0) result
      (f-iter

        (- n 1)
        (* n result)

       )))

• With a helper function,
converted to tail
recursion
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Partial conversions

� Quicksort is a good example of a program
for which there is no direct and simple
conversion to tail recursion

� The second recursive call can be made
tail recursive, but not the first

� Quicksort can be implemented using
iteration, but only by implementing a
stack internally
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First-class functions

� Functions are themselves data values
that can be passed around and called
later
– Which function to call can be computed as

any other expression can be

� This enables a powerful form of
abstraction where functions can take
other functions as parameters
– These parameterized functions are

sometimes called functionals
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Example: a find functional with a
comparison parameter
� (define (find pred-fn x)
  (if (null? x) #f
    (if (pred-fn (car x)) (car x)
        (find pred-fn (cdr x)))))

� pred-fn is a parameter that must be a
function

� (define is-positive? n) (> n 0))
(find is-positive? ‘(-3 –4 5 7)) → 5

� (find pair? ‘(3 (4 5) 6)) → (4 5)
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map: apply a function to each
element of a list, returning a list
� (map square ‘(3 4 5)) → (9 16 25)
� (map is-positive? ‘(3 -4 5)) → (#t #f #t)

� (defun map fn x)
  (if (null? x) ()
    (cons (fn (car x))
          (map fn (cdr x)))))

� The resulting list is always of the same length as
the list to which map is applied
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map2

� (map2 + ‘(3 4 5) ‘(6 7 8)) → (9 11 13)
� (map2 list ‘(98195 15213)

           ‘(“Seattle” “Pittsburgh”))
→ ((98195 “Seattle”) (15213 “Pittsburgh”))

� The resulting list is always of the same length as the first
list argument
– Why?  (Note: I haven’t provided enough information.)

– What if the first and second list are of different lengths?
• (map2 + ‘(3 4 5) ‘(6 7 8 9)) → ???
• (map2 + ‘(3 4 5 6) ‘(6 7 8)) → ???
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Anonymous functions

� We can define functions that don’t have names, to
reduce cluttering of the global name space

� (map (lambda (n) (* n n)) ‘(3 4 5))
→ (9 16 25)

� (map2 (lambda (x y)
        (if (= y 0) 0 (/ x y)))
        ‘(3 4 5) ‘(-1 0 2))
→ (9 16 25)

� Define for functions (and indeed cond, let, let*,
and, and or) is just syntactic sugar
– (define (square n) (* n n))

– (define square (lambda (n) (* n n)))
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Another functional

� reduce: take a binary operator and apply to
pairs of list elements to compute a result

� (define (sum x)  (reduce + 0 x))

� (define (prod x) (reduce * 1 x))

1080

3 1 4 1 5 9 2
0

1

25 22 21 17 16 11 2

+++++++

360 360 90 90 18 2*******1080

3 1 4 1 5 9 2
0

1

25 22 21 17 16 11 2

+++++++

360 360 90 90 18 2*******
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reduce

� Lots of choices in defining it
– left-to-right or right-to-left?
– provide base value or require non-empty input list and

symmetric operator?

� Right-to-left, with base value, used on previous
slide

� (define (reduce fn base x)
  (if (null? x) base
    (fn (car x)
        (reduce fn base (cdr x)))))
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Functionals vs. recursion

� There are many more common
functionals like these

� How do you choose between using
recursion and functionals?

� In general, functionals are clearer
– Once you get over the learning curve
– For instance, it’s much easier to tell the

structure of the resulting data
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Returning functions from
functions

� Functions are first-class (i.e., just like any
other entity in Scheme)
– So we can pass them to functions
– Return them from functions
– Store them in data structures

� (define (compose f g)
  (lambda (x) (f (g x))))
(define double-square
  (compose double square))



9

University of Washington • CSE583 • D. Notkin © 2000 49

Currying

� Every function of multiple arguments can
reduce its number of arguments through
currying

� Take the original function, accept some of
its arguments, and then return a function
that takes the remaining arguments

� The returned function can be applied in
many different contexts, without having
to pass in the first arguments again
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Simple curry example

� We can think of any two-argument function in
terms of two one-argument functions

� (plus 3 5)
� (define (plus3 x) (+ 3 x))
(plus3 5)
(plus3 17)

� (define (plus f) (lambda (g) (+ g f)))
– ((plus 3) 5) → 8

� In essence we’ve taken a function with signature
int × int → int and turned it into int →
(int → int)
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Another curry example

� (define (mapc fn)
  (lambda (x) (map fn x)))

� ((mapc square) ‘(3 4 5))
 → (9 16 25)

� (define squarer (mapc square))

� (squarer ‘(3 4 5))
 → (9 16 25)

� (define sum-of-squares
  (compose sum squarer))

� (sum-of-squares ‘(3 4 5))
 → 50
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Another curry example

� (define (reducec fn base)
  (lambda (x) ...))

� (define sum (reducec + 0))

� (define prod (reducec * 0))

� As an aside, one can write a function that curries other
functions
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Lexical binding (reprise)

� Scheme (like many languages) has a
hierarchy of name bindings
– There’s a global scope of all defined names
– lambda, let, let* define nested scopes

• Remember, define is sugar for lambda

� What happens to free variables?
– (define (f x) (+ x y))
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Example

� (define x 100)
(define bar (lambda (x) (foo 1 2))
(define foo (lambda (x y)
  (let ((w (+ y 1)))
    (let ((y w))
      (+ x y)))))

� Using lexical scoping, (bar 5) → 103
� Using dynamic scoping, (bar 5) → 4

– The call stack is followed to find the binding of the
variables
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First-class functions and scoping

� What if you return a function that has free
variables?
– In lexical scoping, they should be bound in

the context in which it is defined
– In dynamic scoping, they should be bound in

the context in which it is used

� This is a classic issue, called the
(upwards) funarg problem
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Funarg example

(define (compose f g)
(lambda (x) (f (g x))))

(define double-square
  (compose double square))

(define square-double
  (compose square double))

(let ((square (lambda (y) (* y y y))))
 (define d-square
   (compose double square))
 (double-square 5)           ; which square?
 (square-double 5)           ; which square?
 (d-square 5))               ; which square?

Remember: compose returns a
function like
(lambda (x)
  (double (square x)))
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Closures

� The solution for static scoping is to return
functions as a closure

� A closure defines the code for the function and
its environment
– Environment records bindings of free variables
– Closure is no longer dependent on the enclosing

scope
– The closure is heap-allocated
– Languages with closures include Scheme, ML,

Haskell, Smalltalk-80, Cecil
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More on closures

� If you can only pass nested procedures
downward (downward funarg) then there are
cheaper, stack-based allocation schemes
– Ex: Pascal, Modula-3

� If allow nested procedures but not first-class
procedures, then even cheaper
– Ex: Ada

� If allow first-class procedures but no nesting,
then also cheap
– Ex: C, C++
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Functions in data structures

� (define FileMenu
  (list (list ‘Open… open-fn)
        (list ‘Save save-fn)
        (list ‘SaveAs… save-as-fn)
        (list ‘Quit quit-fn))

� (define (click key)
  (let ((fn (assoc FileMenu key))) (fn)))
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Control constructs

� Basic methods
– Function call and return
– Conditional execution
– Looping

� Advanced methods
– break, continue
– Exception handling
– Coroutines, threads
– …
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Continuations

� Scheme supports all advanced control
mechanisms (including looping) with one
primitive called continuations

� A continuation is a procedure that can be
called (with a result value) to do “the rest
of the program”, exiting the current task
– Enables parameterization of a procedure by

“what to do next”
– Enables having multiple return places, not

just one normal return, for different outcomes
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Continuation example

(define (find pred x if-found if-not-found)

  (cond ((null? x) (if-not-found))

        ((pred (car x)) (if-found (car x)))

        (else (find pred (cdr x)

                      if-found if-not-found

               )))))

(find is-positive? ‘(2 5 –0)

      (lambda (y) ‘Yes) (lambda () ‘No))
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Current continuation

� The normal return point is an implicit
continuation
– It takes the returned value and “does

the rest of the program”

� Scheme makes this continuation
available
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Features of continuations

� Continuations can be used to program
– Exception handling, stack unwinding code,

coroutines, threads, backtracking, etc.
– No other special features are needed

� Because they are first-class data values,
they are very powerful in Scheme
– But they can be confusing
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Shift: From Scheme to theory

� What are the underpinnings of the
functional programming paradigm?

� We’ve seen a lot of the basics
� Now for a bit more depth on the

theory behind them
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Functions and their combination

� Functional programs deal with
structured data, are often
nonrepetitive and nonrecursive,
are hierarchically constructed,
do not name their arguments,
and do not require the complex
machinery of procedure
declarations to become
generally applicable.
Combining forms can use high
level programs to build still
higher level ones in a style not
possible in conventional
languages. – Backus

� Functions are first-class data
objects: they may be passed as
arguments, returned as results,
and stored in variables.  The
principal control mechanism in
ML is recursive function
application. –Harper
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The lambda calculus

� This prevalence of functions demands a
basic understanding of the lambda calculus
– Other models of computation (such as Turing

machines) don’t give us much insight into
functional computation

� Why care about the model of computation
underlying a programming language?
– It helps us deeply understand a language, and

thus be more effective in using it
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Function definition

� A function in the lambda calculus has a
single basic form
– λx,y,z • expr
– where the x,y,z are identifiers representing the

function’s arguments

� The value of the lambda expression is a
mathematical function (not a number, or a
set of numbers, or a float, or a structure, or a
C procedure, or anything else)
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Function application

� Application consists of applying this
function given values for the arguments

� We show this by listing the values after
the lambda expression
– (λx,y •x+y) 5 6

– (λx,y •if x > y then x else y) 5 6

– (λx •if x > 0 then 1 else
                      if x < 0 then -1 else 0) -9
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That it!

� That’s just about
the full definition
of the λ-calculus
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Currying

� Many definitions of the lambda calculus
restrict functions to having a single
argument

� But that’s OK, since there exists a
function that can curry other functions,
yielding only functions of one argument

� So we can use a multiple argument
lambda calculus without loss of
generality
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Beta reduction rule

� Application is defined using the beta-
reduction rule
– This in essence replaces the formals with

the values of the applied arguments

� (λx,y •if x > y then x else y) 5 6
if 5 > 6 then 5 else 6
6
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Representation

� For the λ-calculus to be Turing-
complete, we need to address some
representational issues

� Indeed, it only really has identifiers
that don’t really represent anything

� Even writing + is kind of a cheat
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(Non-negative) integers

� Here’s a scheme for representing non-
negative integers
– 0 ≡ λf • λx • x
– 1 ≡ λf • λx • f x
– 2 ≡ λf • λx • f (f x)
– 3 ≡ λf • λx • f (f (f x))

� That is, every time we see λf • λx • f (f x), we
think “Oh, that’s 2”

� You can think of f as “increment by 1”
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Defining addition

� add ≡ λa • λb • λf • λx • a f (b f x)
� To add 1 and 2 we write

– (λa • λb • λf • λx • a f (b f x))
   (λf • λx • f x) (λf • λx • f (f x))
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Reduction

� Applying β-reduction to both arguments
– λf • λx • (λf • λx • f x)  f

              ((λf • λx • f (f x)) f x)
– λf • λx • (λf • λx • f x)  f (f (f x))
– λx • (λf • λx • f x) (f (f x))
– λf • λx • f (f (f x))

� Whew, 1 + 2 is 3
– This is much like adding in unary on a Turing

machine
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Representing booleans

� true ≡ λt • λf • t
� false ≡ λt • λf • f
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Defining cond

� cond ≡ λb • λc • λa • b c a
– cond true 2 1

(λb • λc • λa • b c a) true 2 1
– (λc • λa • true c a) 2 1
– (λa • true 2 a) 1
– true 2 1
– (λt • λf • t) 2 1
– (λf • 2) 1
– 2

� Of course, we could represent 1 and 2 explicitly as
functions, too
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Normal form

� A lambda expression has reached normal
form if no reduction other than renaming
variables can be applied
– Not all expressions have such a normal form

� The normal form is in some sense the value
of the computation defined by the function
– One Church-Rosser theorem in essence states

that for the lambda calculus the normal form (if
any) is unique for an expression
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Reduction order

� A normal-order reduction sequentially applies
the leftmost available reductions first

� An applicative-order reduction sequentially
applies the leftmost innermost reduction first

� This is a little like top-down vs. bottom-up
parsing and choosing what to reduce when
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Example

� (λx • y) ((λx • x x) (λx • x x))
– never reduces in applicative-order

� (λx • y) ((λx • x x) (λx • x x))
– reduces to y directly in normal-order
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High-level view

� Normal-order defines a kind of lazy (non-
strict) semantics, where values are only
computed as needed
– This is not unlike shortcircuit boolean

computations

� Applicative-order defines a kind of eager
(strict) semantics, where values for functions
are computed regardless of whether they are
needed
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A different high-level view

� To the first order, you can think of
normal-order as substituting the actual
parameter for the formal parameter rather
than evaluating the actual first
– It’s closely related to call-by-name in Algol.

� To the first order, you can think of
applicative-order (also called eager-order)
as evaluating each actual parameter once
and passing its value to the formal
parameter
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Comparing them

� For many functions, the reduction order
is immaterial to the computation

� fun sqr n = n * n;   // from D. Watt
� sqr (p+q) [say, p = 2, q = 5]

� For applicative-order, we compute p+q=7,
bind n to 7, then compute 49

� For normal-order, we pass in “p+q” and
evaluate 2+5 each time sqr uses n

� But we get the same answer regardless
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Strict functions

� A strict function requires all its
parameters in order to be evaluated

� sqr is strict, since it requires its
(only) parameter
–(define one (x) 1) is not-strict
–(one 92)
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More strictness

� fun cand (b1, b2) = if b1 then b2 else false
� cand(n>0,t/n>0.5) with n=2 and t=0.8

– Eagerly, n>0 evaluates to true, t/n>0.5 evaluates to
false, and therefore the function evaluates to false

– Normal-order also evaluates to false.
�  But what if n=0

– Eagerly, n>0 evaluates to false but t/n>0.5 fails due to
division-by-zero; so the function call fails.

–  But with normal-order, the division isn’t needed nor
done, so it’s fine.

� This function is considered to be strict in its first
argument but non-strict in its second argument
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Fixed-points (or fixpoints)

� The idea of defining the semantics of lambda calculus
by reducing first every expression to normal form (for
which a simple mathematical denotation exists) by a
sequence of contractions is attractive but, unfortunately,
does not work as simply as suggested…  The problem is
that, since every contraction step … removes a λ, we
have deduced a bit hastily that it decreases the overall
number of λs.  We have neglected the possibility for a
contraction step actually to add one λ, or even more,
while it removes another. – Meyer
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Example

� SELF ≡ λx • (x (x))
� SELF (λx • (x (x)))
� λx • (x (x)) (λx • (x (x)))
� What does this application of SELF to

itself produce?
– λx • (x (x)) (λx • (x (x)))
– Itself, with no reduction in lambda’s.
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The good news

� However, we’re still not in trouble
� Church proved a theorem that shows

that any recursive function can be
written non-recursively in the lambda
calculus
– So we can use recursion without (this)

danger in defining programs in functional
languages
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But its complicated

� Theorem: If there is a normal form for a
lambda expression, then it is unique
– There isn’t always a normal form, however

� Theorem: If there is a normal form, then
normal-order reduction will get to it
– Applicative-order reduction might not

�  So, it seems pretty clear that you want to
define a functional language in terms of
normal-order reductions, right?  
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In theory, there is no difference
between theory and practice
� Nope, since efficiency shows it’s ugly

head
– Even for sqr above, we had to recompute

values for expressions more than once
– And there are lots of examples that arise in

practice where “unnecessary” computations
arise regularly

� So, applicative-order evaluation looks
better again
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But…

� But there are two problems with this,
too
– The “magic” approach to representing

recursion without recursion falls apart
for applicative-order evaluation; a
special reduction rule for recursion
must be introduced

– It isn’t always faster to evaluate  
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Example

� (λx•1)(* 5 4) in normal-order and in
applicative-order

� (λx•1)(( λx•x x) (λx•x x )) in normal-order
and in applicative-order, as we know still
stands as a problem

� Even with this, most early functional
languages used applicative-order
evaluation: pure Lisp, FP, ML, Hope, etc.
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What do to?

� The basic approach to doing better lies in representing
reduction as a graph reduction process, not a string
reduction process; this allows sharing of computations
not allowed in string reductions  (Wadsworth)

� A graph-based approach to normal-order evaluation in
which recomputation is avoided (by sharing) is called
lazy evaluation, or call-by-need
– One can prove it has all the desirable properties of normal-

order reduction and it more efficient than applicative order
evaluation.

– Still, performance of the underlying mechanisms isn’t that
great, although it’s improved a ton
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Theory

� OK, that’s all the theory we’ll cover for
functional languages
– There’s tons more (typed lambda-calculus, as

one example)

� It’s not intended to make you
theoreticians, but rather to give you some
sense of the underlying mathematical
basis for functional programming


