
1

CSE583:
Programming Languages

David Notkin
18 January 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Functional programming: two
weeks
� Scheme

– Gives a strong, language-based foundation
for functional programming

– May be mostly review for some of you

� Some theory
– Theoretical foundations and issues in

functional programming
� ML

– A modern basis for discussing key issues in
functional programming

University of Washington • CSE583 • D. Notkin © 2000 3

Flash!

� We won’t get through
functional languages
tonight

� Next week, I’ll try to finish
before the break
– A little more on ML types
– A little on Haskell, as a

comparison to ML
� Then we’ll cover some

basic information on type
systems in general

University of Washington • CSE583 • D. Notkin © 2000 4

Shift: From Scheme to theory

� What are the underpinnings of the
functional programming paradigm?

� We’ve seen a lot of the basics
� Now for a bit more depth on the

theory behind them

University of Washington • CSE583 • D. Notkin © 2000 5

Functions and their combination

� Functional programs deal with
structured data, are often
nonrepetitive and nonrecursive,
are hierarchically constructed,
do not name their arguments,
and do not require the complex
machinery of procedure
declarations to become
generally applicable.
Combining forms can use high
level programs to build still
higher level ones in a style not
possible in conventional
languages. – Backus

� Functions are first-class data
objects: they may be passed as
arguments, returned as results,
and stored in variables. The
principal control mechanism in
ML is recursive function
application. –Harper

University of Washington • CSE583 • D. Notkin © 2000 6

The lambda calculus

� This prevalence of functions demands a
basic understanding of the lambda calculus
– Other models of computation (such as Turing

machines) don’t give us much insight into
functional computation

� Why care about the model of computation
underlying a programming language?
– It helps us deeply understand a language, and

thus be more effective in using it

2

University of Washington • CSE583 • D. Notkin © 2000 7

Function definition

� A function definition in the lambda calculus
has a single basic form
– λx,y,z • expr
– where the x,y,z are identifiers representing the

function’s arguments

� The value of the lambda expression is a
mathematical function (not a number, or a
set of numbers, or a float, or a structure, or a
C procedure, or anything else)

University of Washington • CSE583 • D. Notkin © 2000 8

Function application

� Application consists of applying this
function given values for the arguments

� We show this by listing the values after
the lambda expression
– (λx,y •x+y) 5 6

– (λx,y •if x > y then x else y) 5 6

– (λx •if x > 0 then 1 else
 if x < 0 then -1 else 0) -9

University of Washington • CSE583 • D. Notkin © 2000 9

That it!

� That’s just about
the full definition
of the λ-calculus

University of Washington • CSE583 • D. Notkin © 2000 10

Currying

� Many definitions of the lambda calculus
restrict functions to having a single
argument

� But that’s OK, since there exists a
function that can curry other functions,
yielding only functions of one argument

� So we can use a multiple argument
lambda calculus without loss of
generality

University of Washington • CSE583 • D. Notkin © 2000 11

Beta reduction rule

� Application is defined using the beta-
reduction rule
– This in essence replaces the formals with the

values of the applied arguments
– It defines the actual computation of the machine
– More details to come

� (λx,y •if x > y then x else y) 5 6
if 5 > 6 then 5 else 6
6

University of Washington • CSE583 • D. Notkin © 2000 12

Representation

� For the λ-calculus to be Turing-complete,
we need to address some
representational issues

� Indeed, it only really has identifiers that
don’t really represent anything

� Even writing + is kind of a cheat
– You had to define addition for a Turing

machine, too

3

University of Washington • CSE583 • D. Notkin © 2000 13

(Non-negative) integers

� Here’s a scheme for representing non-
negative integers
– 0 ≡ λf • λx • x
– 1 ≡ λf • λx • f x
– 2 ≡ λf • λx • f (f x)
– 3 ≡ λf • λx • f (f (f x))

� That is, every time we see λf • λx • f (f x), we think
“Oh, that’s 2”
– If you prefer to “uncurry” you can think of this as

λf,x • f (f x),
� You can think of f as “increment by 1”

University of Washington • CSE583 • D. Notkin © 2000 14

Defining addition

� add ≡ λa • λb • λf • λx • a f (b f x)
– Or λa,b,f,x • a f (b f x)

� To add 1 and 2 we write
– (λa • λb • λf • λx • a f (b f x))

 (λf • λx • f x) (λf • λx • f (f x))

University of Washington • CSE583 • D. Notkin © 2000 15

Reduction

� Applying β-reduction to both arguments
– λf • λx • (λf • λx • f x) f

 ((λf • λx • f (f x)) f x)
– λf • λx • (λf • λx • f x) f (f (f x))
– λx • (λf • λx • f x) (f (f x))
– λf • λx • f (f (f x))

� Whew, 1 + 2 is 3
– This is much like adding in unary on a Turing

machine

University of Washington • CSE583 • D. Notkin © 2000 16

Representing booleans

� true ≡ λt • λf • t
� false ≡ λt • λf • f

University of Washington • CSE583 • D. Notkin © 2000 17

Defining cond

� cond ≡ λb • λc • λa • b c a
– cond true 2 1

(λb • λc • λa • b c a) true 2 1
– (λc • λa • true c a) 2 1
– (λa • true 2 a) 1
– true 2 1
– (λt • λf • t) 2 1
– (λf • 2) 1
– 2

� Of course, we could represent 1 and 2 explicitly as
functions, too

University of Washington • CSE583 • D. Notkin © 2000 18

Normal form

� A lambda expression has reached normal
form if no reduction other than renaming
variables can be applied
– Not all expressions have such a normal form

� The normal form is in some sense the value
of the computation defined by the function
– One Church-Rosser theorem in essence states

that for the lambda calculus the normal form (if
any) is unique for an expression

4

University of Washington • CSE583 • D. Notkin © 2000 19

Reduction order

� A normal-order reduction sequentially applies
the leftmost available reductions first

� An applicative-order reduction sequentially
applies the leftmost innermost reduction first

� This is a little like top-down vs. bottom-up
parsing and choosing what to reduce when

University of Washington • CSE583 • D. Notkin © 2000 20

Example

� (λx • y) ((λx • x x) (λx • x x))
– never reduces in applicative-order

� (λx • y) ((λx • x x) (λx • x x))
– reduces to y directly in normal-order

University of Washington • CSE583 • D. Notkin © 2000 21

High-level view

� Normal-order defines a kind of lazy (non-
strict) semantics, where values are only
computed as needed
– This is not unlike short-circuit boolean

computations

� Applicative-order defines a kind of eager
(strict) semantics, where values for functions
are computed regardless of whether they are
needed

University of Washington • CSE583 • D. Notkin © 2000 22

A different high-level view

� To the first order, you can think of
normal-order as substituting the actual
parameter for the formal parameter rather
than evaluating the actual first
– It’s closely related to call-by-name in Algol

� To the first order, you can think of
applicative-order (also called eager-order)
as evaluating each actual parameter once
and passing its value to the formal
parameter

University of Washington • CSE583 • D. Notkin © 2000 23

An aside: call by name

� You should be aware of standard
parameter passing mechanisms
– Call by value

• Make a copy of the actual to pass to the formal
parameter

– Call by reference
• Have the formal actually point to the actual

– Call by result, call by value-result, etc.

� ALGOL defined a rich, expensive and
confusing mechanism, Call by Name

University of Washington • CSE583 • D. Notkin © 2000 24

Call by name

� The formal is
reevaluated at each
use
– Uses a thunk to

implement it
� swap(i, a[i])

– i = 1
– a[1] = 3
– a[3] = 17

� Doesn’t swap, and
you can’t fix it

proc swap(a, b : int);

 var temp : int;

 begin

 temp := a;

 a := b;

 b := temp

end;

5

University of Washington • CSE583 • D. Notkin © 2000 25

Jensen’s device

� Why define
Call by
Name?

� Highly
expressive
– At least

based on
this one
classic
example!

real proc SUM (k, low, up, ak);
value low, up;

integer k, low, up; real ak;
begin real s;

 s := 0;
 for k := low step 1 until up do

 s := s + ak; sum := s
end;

� sum(i, 1, m, A[i])

� sum(i, 1, m, sum(j, 1, n, B[i,j]))

University of Washington • CSE583 • D. Notkin © 2000 26

Comparing reduction orders

� For many functions, the reduction order
is immaterial to the computation

� fun sqr n = n * n; // from D. Watt
� sqr (p+q) [say, p = 2, q = 5]

� For applicative-order, we compute p+q=7,
bind n to 7, then compute 49

� For normal-order, we pass in “p+q” and
evaluate 2+5 each time sqr uses n

� But we get the same answer regardless

University of Washington • CSE583 • D. Notkin © 2000 27

Strict functions

� A strict function requires all its
parameters in order to be evaluated

� sqr is strict, since it requires its
(only) parameter
–(define one (x) 1) is not-strict
–(one 92)

University of Washington • CSE583 • D. Notkin © 2000 28

More strictness

� fun cand (b1, b2) = if b1 then b2 else false
� cand(n>0,t/n>0.5) with n=2 and t=0.8

– Eagerly, n>0 evaluates to true, t/n>0.5 evaluates to
false, and therefore the function evaluates to false

– Normal-order also evaluates to false.
� But what if n=0

– Eagerly, n>0 evaluates to false but t/n>0.5 fails due to
division-by-zero; so the function call fails.

– But with normal-order, the division isn’t needed nor
done, so it’s fine.

� This function is considered to be strict in its first
argument but non-strict in its second argument

University of Washington • CSE583 • D. Notkin © 2000 29

Fixed-points (or fixpoints)

� The idea of defining the semantics of lambda calculus
by reducing first every expression to normal form (for
which a simple mathematical denotation exists) by a
sequence of contractions is attractive but, unfortunately,
does not work as simply as suggested… The problem is
that, since every contraction step … removes a λ, we
have deduced a bit hastily that it decreases the overall
number of λs. We have neglected the possibility for a
contraction step actually to add one λ, or even more,
while it removes another. – Meyer

University of Washington • CSE583 • D. Notkin © 2000 30

Example

� SELF ≡ λx • (x (x))
� SELF (λx • (x (x)))
� λx • (x (x)) (λx • (x (x)))
� What does this application of SELF to

itself produce?
– λx • (x (x)) (λx • (x (x)))
– Itself, with no reduction in lambda’s.

6

University of Washington • CSE583 • D. Notkin © 2000 31

The good news

� However, we’re still not in trouble
� Church proved a theorem that shows

that any recursive function can be
written non-recursively in the lambda
calculus
– So we can use recursion without (this)

danger in defining programs in functional
languages

University of Washington • CSE583 • D. Notkin © 2000 32

But its complicated

� Theorem: If there is a normal form for a
lambda expression, then it is unique
– There isn’t always a normal form, however

� Theorem: If there is a normal form, then
normal-order reduction will get to it
– Applicative-order reduction might not

� So, it seems pretty clear that you want to
define a functional language in terms of
normal-order reductions, right?

University of Washington • CSE583 • D. Notkin © 2000 33

In theory, there is no difference
between theory and practice
� Nope, since efficiency shows it’s ugly

head
– Even for sqr above, we had to recompute

values for expressions more than once
– And there are lots of examples that arise in

practice where “unnecessary” computations
arise regularly

� So, applicative-order evaluation looks
better again

University of Washington • CSE583 • D. Notkin © 2000 34

But…

� But there are two problems with this,
too
– The “magic” approach to representing

recursion without recursion falls apart
for applicative-order evaluation; a
special reduction rule for recursion
must be introduced

– It isn’t always faster to evaluate

University of Washington • CSE583 • D. Notkin © 2000 35

Example

� (λx•1)(* 5 4) in normal-order and in
applicative-order

� (λx•1)((λx•x x) (λx•x x)) in normal-order
and in applicative-order, as we know still
stands as a problem

� Even with this, most early functional
languages used applicative-order
evaluation: pure Lisp, FP, ML, Hope, etc.

University of Washington • CSE583 • D. Notkin © 2000 36

What do to?

� The basic approach to doing better lies in representing
reduction as a graph reduction process, not a string
reduction process; this allows sharing of computations
not allowed in string reductions (Wadsworth)

� A graph-based approach to normal-order evaluation in
which recomputation is avoided (by sharing) is called
lazy evaluation, or call-by-need
– One can prove it has all the desirable properties of normal-

order reduction and it more efficient than applicative order
evaluation.

– Still, performance of the underlying mechanisms isn’t that
great, although it’s improved a ton

7

University of Washington • CSE583 • D. Notkin © 2000 37

Theory

� OK, that’s all the theory we’ll cover for
functional languages
– There’s tons more (typed lambda-calculus, as

one example)

� It’s not intended to make you
theoreticians, but rather to give you some
sense of the underlying mathematical
basis for functional programming

University of Washington • CSE583 • D. Notkin © 2000 38

ML

� Same core concepts as Scheme
– Strongly typed
– Expression-oriented, mostly side-effect-free
– List-oriented, garbage-collected, heap-based
– Highly regular and expressive

� Designed as a Meta Language for
automatic theorem proving system in the
mid-1970s by Milner et al.

� Standard ML in 1980; SML’97 in 1997

University of Washington • CSE583 • D. Notkin © 2000 39

What’s different from Scheme?

� Statically typed
– Polymorphic type system
– Automatic type inference

� Pattern matching
– To define alternate cases

� Exceptions
� Modules

University of Washington • CSE583 • D. Notkin © 2000 40

Basic datatypes

� unit (like void)
- ()

() : unit

� bool, int, real, string
- 7 > 5;

true : bool
- ~24 + 1;

~23 : int;
- 3.14159;

3.14159 : real;
- “hi there”

“hi there” : string

University of Washington • CSE583 • D. Notkin © 2000 41

Lists

� Variable number of elements but
homogeneous element type

� […] constructor notation, like
(list …)

� :: and nil constructor notation, like
cons and ()
– :: is infix and left associative

University of Washington • CSE583 • D. Notkin © 2000 42

List examples

- [3,4,5];

[3,4,5] : int list
- 3::4::nil;

[3,4] : int list
- (3::nil)::(4::5::nil)::nil;

[[3],[4,5]] : int list list;
- [3,”hi there”];
Error: operator and operand don’t agree

operator domain: int * int list
operand: int * string list
in expression: (3 : int) :: “hi there” :: nil

8

University of Washington • CSE583 • D. Notkin © 2000 43

Tuples

� Heterogeneous element types
– Fixed number of elements
– Positional components

- (“wow”,6);
(“wow”,6) : string * int;

- (1.0,2,true,”s”);
(1.0,2,true,”s”) :

real * int * bool * string

University of Washington • CSE583 • D. Notkin © 2000 44

Records

� Heterogeneous element types
– Fixed number of elements
– Unordered, named components

- {name=“J”,age=1};

{name=“J”,age=1} : {age:int,name:string}

- {name=“J”,age=1}={age=3 mod 2,name=“J”};

true : bool

University of Washington • CSE583 • D. Notkin © 2000 45

Bindings

� Global variables
- val x = 23;
val x = 23 : int;

� Local variables for declarations
- local

 val x = 10
 val q = x
in
 val u = 230 * x
 val z = (true, 22+q)
end;

val u = 2300 : int;
val z = (true,32) : bool * int

University of Washington • CSE583 • D. Notkin © 2000 46

Local variables for expressions

- local
 val x = 5
 val q = x + 1
in
 x * q
end;

30 : int

University of Washington • CSE583 • D. Notkin © 2000 47

Named function definitions

- fun succ x = x + 1;
val succ = fn : int -> int
- succ 8;
9 : int
- fun fact n =
 if n <= 1 then 1
 else n*fact (n-1);;

val fact = fn : int -> int
- fact 4;
24 : int

University of Washington • CSE583 • D. Notkin © 2000 48

Anonymous functions

- fn x => x + 1;

fn : int -> int

- (fn x => x + 1) 8;

9 : int

- val succ = fn x => x + 1;

val succ = fn : int -> int

� fun is syntactic sugar in ML, just like define is in
Scheme

9

University of Washington • CSE583 • D. Notkin © 2000 49

Function types

� Types of functions in ML are always
written as input -> output
– Only one argument (and type) as input
– Only one argument (and type) as output

� To “pass multiple arguments”
– Use tuples
– Or use currying

University of Washington • CSE583 • D. Notkin © 2000 50

Using tuples

- fun plus(x,y) = x + y;

fn : int*int -> int

- fun all_to_all(v,lst) =
 if null lst then nil
 else (hd lst + v)::
 add_to_all(val, tl lst);

val : add_to_all = fn int*int list ->
 int list

University of Washington • CSE583 • D. Notkin © 2000 51

Minor notes

� You can “return multiple results” the
same way, using tuples
– Ex: returning a point in two-space using

either Cartesian or polar coordinates

� Precedence rules for expressions
– Juxtaposition, then prefix, then infix

� Precedence rules for types
– list suffix, then *, then ->

University of Washington • CSE583 • D. Notkin © 2000 52

Another function type example

- fun quad(a,b,c) =
 let b_sqr = b*b
 sq_4_a_c = sqrt(4.0*a*c)
 two_a = 2.0*a
 in
 ((b_sqr + sq_4_a_c)/two_a),
 (b_sqr – sq_4_a_c)/two_a))
end;

val : quad = fn real*real*real ->
 real*real

University of Washington • CSE583 • D. Notkin © 2000 53

Pattern matching: on tuples

� Means of decomposing compound values
� Reuse constructor syntax to take values

apart
- val x = (false,17);
- val (a,b) = x;

val a = false : bool;
val b = 17 : int;
- val (false,c) = x;
val c = 17 : int;
- val (true,w) = x;
exception: nonexhaustive binding failure

University of Washington • CSE583 • D. Notkin © 2000 54

Another couple of examples

- val s = [“1”,”2”,”3”];

- val hd::tl = s;

val hd = “1” : string

val tl = [“2”,”3”] : string list

- val hd::_ = s;

val hd = “1” : string

10

University of Washington • CSE583 • D. Notkin © 2000 55

Pattern matching with functions

� Means of defining function behavior by
cases

- fun fib 0 = 0
 | fib 1 = 1
 | fib n = fib(n-1)+fib(n-2);

val fib = fn : int -> int

� Could use conditionals, but pattern
matching is often much clearer

University of Washington • CSE583 • D. Notkin © 2000 56

Another example

- fun is_empty nil = true
 | is_empty (_::_) = false;

val is_empty = fn : ‘a list -> bool

� What’s going on here?
– What’s ‘a?

� This is a polymorphic function
– It must take a list
– But it can take a list of anythings
– Those “anythings” are represented by the type

variable ‘a
– We’ll see examples where a type variable appears

twice in the function type, and they must be the same

University of Washington • CSE583 • D. Notkin © 2000 57

And here is such an example

- fun append(nil,l) = l
 | append(hd:tl,l) = hd::append(tl,l);

val append = fn : ‘a list * ‘a list
 -> ‘a list

� All three ‘a type variables must have the same
type

- append([1,2],[3]);
[1,2,3] : int list;
- append([“w”,”us”],[”s”]);

[“w”,”us”,”s”] : string list;
- append([1,2],[“s”]);

…type error…

University of Washington • CSE583 • D. Notkin © 2000 58

Polymorphic functions

� Some functions are general
– That is, they can be used on arguments of

different types
– Ex: length, append, is_empty,
first_of_pair

� In Scheme: easy using dynamic typing
� How can you do this with a static typing?

– In C, you can’t
• or you need to cheat using casts

– In ML, functions can have polymorphic types

University of Washington • CSE583 • D. Notkin © 2000 59

Polymorphic types

� A polymorphic type contains one or more
type variables
– ‘a list

– ‘a * ‘b

– ((‘a * ‘b) list ‘a) -> ‘b

� To make a regular type, replace the type
variables with regular types
– Each occurrence of a type variable must be

replaced with the same type (cf. unification in
logic programming)

University of Washington • CSE583 • D. Notkin © 2000 60

On invocation

� When calling a polymorphic function, the
caller knows the real type
– So replace the type variable with the regular

type
val length = fn : ‘a list -> int

- length([3,4,5]); (* replaces ‘a with int *)

- length([(3.0,”hi”),(2.0,”there”)]);
 (* replaces ‘a with int*string *)

11

University of Washington • CSE583 • D. Notkin © 2000 61

Examples

- fun map(f,nil) = nil
 | map(f,x::xs) = f x :: map(f,xs);

val map = fn : (‘a -> ‘b) * ‘a list
 -> ‘b list

val square = fn : int -> int
- map square [3,4,5];
[9,16,25] : int list

 (* ‘a is int and ‘b is int *)
val length = fn : ‘a list -> int
- map length [[3,4],[5,6,7],[]];
[2,3,0] : int list

 (* for length: ‘a is int
 for map: ‘a is int list, ‘b is int *)

University of Washington • CSE583 • D. Notkin © 2000 62

Currying

� Simple definition
- fun map f =

 fn lst => if null lst then nil
 else f (hd lst)::
 (map f) (tl lst);

val map = fn : (‘a -> ‘b) -> ‘a list
 -> ‘b list

� Simple application
- (map square) [3,4,5];

[9,16,25] : int list

University of Washington • CSE583 • D. Notkin © 2000 63

Exploiting juxtaposition

- map square [3,4,5];

[9,16,25] : int list

� Juxtaposition associates left-to-right

University of Washington • CSE583 • D. Notkin © 2000 64

A pattern-based curried map

- fun map f =
 fn nil => nil
 | x::xs => f x:: map f xs;

val map = fn : (‘a -> ‘b) -> ‘a list
 -> ‘b list

University of Washington • CSE583 • D. Notkin © 2000 65

Clean syntactic sugar for currying

� ML allows multiple formal argument patterns,
which implies a curried function
– In essence, ML always curries for you
– You never see functions of multiple arguments in ML

• Even with tuples, it’s really a single argument

- fun map f nil = nil
 | map f (x::xs) = f x:: map f xs;

val map = fn : (‘a -> ‘b) -> ‘a list
 -> ‘b list

University of Washington • CSE583 • D. Notkin © 2000 66

Reminder: currying is

� syntactically cleaner
� semantically more flexible, since

each function of one-argument can
be used alone, if desired

12

University of Washington • CSE583 • D. Notkin © 2000 67

Polymorphism vs. overloading

� With a polymorphic function, the exact
same function can be used with many
different argument types

� In contrast, overloading gives several
different functions the same name

- 3 + 4;
7 : int

- 3.0 + 4.5;
7.5 : real

University of Washington • CSE583 • D. Notkin © 2000 68

How does ML handle overloading?

� Resolves overloading based on static
argument types
– OO languages more generally use dynamic

argument classes
– Ada also uses return types

� If you want to specify a particular
operator in ML, you can
– (op +): real*real->real
fn : real*real -> real

University of Washington • CSE583 • D. Notkin © 2000 69

Equality types

� ML defines a built-in = function that
is polymorphic over all types that
“admit equality”
– In ML, this is any type except those

containing functions or reals
– Why? Are there other examples of

types that shouldn’t be compared for
equality?

University of Washington • CSE583 • D. Notkin © 2000 70

Examples

- fun member x nil = false
 | member x (y::ys) =
 x = y orelse member x ys;

val member = fn :’’a -> ’’a list -> bool
- member 3 [4,5,6,3,4,5];
true : bool
- member 4.5 [3.4,5.6,7.8];

…type error…
- member (“hi”,3,square)
 [(“there”,6,double)];

…type error…

A type variable that is
restricted to types that
admit equality

University of Washington • CSE583 • D. Notkin © 2000 71

Type inference: infer types of
expressions automatically
� Assign each declared variable a fresh type

variable
– Result of function is an implicit variable
– Share argument and result type variables across

function cases
– Each reference to a let-bound polymorphic identifier

(roughly, a named function) gets separate type
variables

� Each expression in construct places constraints
on the types of its operands

� Solve those constraints

University of Washington • CSE583 • D. Notkin © 2000 72

Type inference: partial refinement

� Constraint solving can partially
refine types: that is, it can replace
some, but not necessarily all, type
variables with more constrained
values
–‘a => ‘b list

–‘a => ’’b

13

University of Washington • CSE583 • D. Notkin © 2000 73

Properties of ML’s type system

� Hindley-Milner type system/inference
– Universal parametric polymorphism

• No constrained polymorphism
• Except for equality types

– Only let-bound polymorphism
• Cannot pass polymorphic value that is polymorphic

inside callee (cf. next slide)

� Type inference yields principal type for
expression
– Single most general type that can be inferred

� Worse case time complexity: exponential
� Average case complexity: linear

University of Washington • CSE583 • D. Notkin © 2000 74

Examples

- fun id x = x;

val id = fn : ‘a -> ‘a

- fun g f = (f 3, f “hi”);

(* type error in ML, but in
SuperML++: *)

val g = fn : (∀’a.’a->’a) ->
int*string

University of Washington • CSE583 • D. Notkin © 2000 75

Next time

� ML types
– user-defined datatypes, variant records,

recursive types, polymorphic types,
exceptions, streams, …

� Haskell
– lazy evaluation

• purely side-effect free, infinite lists
– type classes for added flexibility in

polymorphism

