
1

CSE583:
Programming Languages

David Notkin
25 January 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Functional programming: 2+
weeks
� Scheme

– Gives a strong, language-based foundation
for functional programming

– May be mostly review for some of you

� Some theory
– Theoretical foundations and issues in

functional programming
� ML

– A modern basis for discussing key issues in
functional programming
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Tonight: a final set of topics on
functional languages
� ML types

– user-defined datatypes, variant records,
recursive types, polymorphic types,
exceptions, streams, …

� Haskell
– lazy evaluation

• purely side-effect free, infinite lists
– type classes for added flexibility in

polymorphism
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Then, with luck, on to types
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ML concrete user-defined
datatypes

� Users can define their own
(polymorphic) data structures

� Simple example: ML’s version of
enumerated types
– datatype sign = Positive | Zero | Negative;

� Introduces constants
– Can be used in patterns
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Example

- fun signum(x) =

    if x > 0 then positive

    else if x = 0 then Zero

    else Negative;

val signum = fn : int -> sign;

- fun signum_val(Positive) = 1

    | signum_val(Zero)     = 0

    | signum_val(Negative) = -1;

val signum = fn : sign -> int;
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Variant records/tagged unions

� Each component of a datatype declaration can
have information
– constructors act as functions to create values with

that tag
– can be used in patterns to take apart values of a tag

datatype Sexpr =
   Nil |
   Integer of int |
   Symbol of string |
   Cons of Sexpr * Sexpr;
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Example

- Nil;

Nil : Sexpr;

- Integer;

Integer : int -> Sexpr;

- Symbol;

Symbol : string -> Sexpr;

- Cons;

Symbol : Sexpr * Sexpr -> Sexpr;
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Using datatypes

- val wuss =Cons(Integer(3),Cons(Symbol(“hi”),Nil));

Cons(Integer 3,Cons(Symbol “hi”,Nil)) : Sexpr;  (*
‘(3 hi)   *)

- fun car Nil        = Nil
  | car (Cons(x,_) = x;

val car = fn : Sexpr -> Sexpr;

- fun cdr Nil         = Nil
  | cdr (Cons(_,xs) = xs;

val car = fn : Sexpr -> Sexpr;

- cdr wuss;

Cons(Symbol “hi”,Nil) : Sexpr;

- car wuss = Integer 3;

true : bool;
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Recursive user-defined datatypes
- datatype int_tree =

     Empty |
     Node of int * int_tree * int_tree;

- fun insert x Empty = Node(x,Empty,Empty)
    | insert x (n as Node(y,t1,t2)) =

      if x = y then n
      else if x < y then Node(y,insert x t1,t2)
      else Node(y,t1,insert x t2);

val insert = fn : int -> int_tree -> int_tree;

- fun member x Empty            = false
  | member x (Node(y,t1,t2))  =
      if x = y then true
      else if x < y then member x t1
      else member x t2;

val member = fn : int -> int_tree -> bool;
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But what about a polymorphic
version?

� It should be polymorphic with
respect to = and <

� int_tree is an equality type
– Does = do the right thing?

� Define using explicit type variables
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Polymorphic binary trees

- datatype ‘a tr =

     Empty |
     Node of ‘a * ‘a tr * ‘a tr;

- fun ins eq lt x Empty = Node(x,Empty,Empty)
    | ins eq lt x (n as Node(y,t1,t2)) =

      if eq(x,y) then n
      else if lt(x,y) then
        Node(y,ins eq lt x t1,t2)
      else Node(y,t1,ins eq lt x t2);

val ins = fn : (‘a*‘a->bool) -> (‘a*‘a->bool)
               -> ‘a -> ‘a tr -> ‘a tr;
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That’s a mouthful: use a wrapper

- datatype ‘a tree =

     Tree of {tree: ‘a tr,
            eq: ‘a* ‘ a -> bool,
            lt: ‘a* ‘ a -> bool};

- fun make_tree eq_fn lt_fn =
    Tree{tree=Empty,eq=eq_fn,lt=lt_fn};

val make_tree = fn : (‘a*‘a->bool) -> (‘a*‘a->bool)
               -> ‘a tree;

- fun insert x (Tree {tree=tr,eq_fn=fn,lt_fn=lt}) =

      Tree{tree=ins eq_fn lt_fn x tr,
                  eq=eq_fn,lt=lt_fn};

val insert = fn : ‘a -> ‘a tree -> ‘a tree;
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A problem

� In Scheme we can use
“distinguished values” to handle
exceptional cases
– (define (find pred x)
   (cond ((null? x) #f)
         ((pred (car x)) (car x))
         (else (find pred (cdr x)))))

– (find is-positive? ‘(-3 3 5)) => 3

– (find is-positive> ‘(-3 -5))  => #f
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In ML it doesn’t work

- fun find pred nil     = false

    | find pred (x::xs) =
        if pred x then x else find pred xs;

val find = fn : (bool->bool) -> bool list -> bool

- find is_positive [~3,3,5];

...type error...
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Use exceptions

� Exceptions can be returned from functions
without affecting the normal return type

- exception NotFound;
- fun find pred nil     = raise NotFound

    | find pred (x::xs) =
        if pred x then x else find pred xs;

val find = fn : (‘a->bool) -> ‘a list -> ‘a
- find is_positive [~3,3,5];

3 : int
- find is_positive [~3,~5];
uncaught exception NotFound
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Handling exceptions

� Add handler clause to expressions
to handle (some) exceptions raised
in that expression
– Must return same type as handled

expression
- (find is_positive [~3,~5])

   handle NotFound => 0

0 : int
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Exceptions can have arguments

- exception IOError of int;

- (…raise IOError(-3) …)
   handle IOError(code) => code ...



4

University of Washington • CSE583 • D. Notkin © 2000 19

Streams

� Streams are (in essence) infinite lists
� Streams are a good model for I/O (and

other things)
– Unix pipes are basically streams

� But it’s hard to have an infinite list in an
eager-evaluation language
– Think about appending an element to a list
– First you evaluate the element and the list,

and then you append … whoops!
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Streams in ML

� Instead, represent a stream cons cell
as a pair of
– a head value and
– a function that will return the next

element in the stream
- datatype ‘a stream =

   Stream of ‘a * (unit -> ‘a stream);
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Basic functions

- fun cons_stream(x,f) = Stream(x,f);

- fun hd_stream(Stream(x,f)) = x;

- fun tl_stream(Stream(x,f)) = f();

- fun ints_from(x) =

       cons_stream(x, fn() => ints_from(x+1));

- val nats = ints_from(0);

- fun map_stream(g,s) =

       cons_stream(g(hd_stream(s)),
                 fn() => map_stream(g,tl_stream(s)));

- val squares = map_stream(fn(x)=>x*x,nats);
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References

� ML allows side-effects through
explicit reference values
– Completely non-functional

– ref     : ‘a -> ‘a ref

– !       : ‘a ref -> a

– (op :=) : ‘a ref * ‘a -> unit
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Examples

- val v = ref 0;

val v = ref 0 : int ref

- v := !v + 1;

() : unit

- !v;

1 : int

� A major difference from Scheme is that the
mutable objects are stated explicitly
– In Scheme, set! can be used anywhere, anytime
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Modules

� datatypes were cool, but they
exposed their representation
– Helped with pattern matching, etc.

� ML modules support encapsulated
abstract data types
– hidden operations, values, types, and

some kinds of polymorphism
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Note

� The module system in ML is clearly
intended to try to make the language
more industrial strength and feasible
for practical use

� A challenge is balancing the
software engineering needs with the
type system in ML
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Overview

� structure defines module
implementation

� signature defines module interface
– hides other aspects of underlying structure

� open imports a module for naming
convenience
– We won’t cover this

� functor supports parameterized module
implementations
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Structures

� Package a set of declarations
structure Queue1 = struct

  type ‘a T = ‘a list;  (* T is conventional name *)

  (* constructors)

  val empty = nil;

  fun enq x q = a @ [x]; (* @ is append *)

  (* accessors *)

  exception empty_queue;

  fun head (x::q) = x

    | head nil = raise empty_queue;

  fun deq (x::q) = (x,q)

    | deq nil = raise empty_queue;
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Accessing members

- val q = Queue1.enq 3 Queue1.empty;

val q = [3] : int list

- val q2 = Queue1.enq 4 q;

val q2 = [3,4] : int list

- Queue1.head q2;

3 : int
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Signatures

� Construct for encapsulating
representations

� Define a public external interface
with signature

� Then apply the signature to restrict
the interface to a structure
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Example

signature QUEUE = sig

  type ‘a T;
  val empty : ‘a T;

  val enq: `a -> `a T -> `a T;
  exception empty_queue;
  val head: `a T -> `a;

  val deq: `a T -> `a * `a T;
end;

structure Queue2: QUEUE = struct … end;

� Any operations in struct that aren’t in sig are
inaccessible
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Holes in encapsulation

� Signatures don’t completely hide module
implementation

� Types defined using type are not hidden
   - Queue.empty = nil;
true : bool;

� If you want to hide types, use datatype
instead of type
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Another hole

� Built-in equality (=) function operates
over the representation, not the
abstraction

� That is, two values that are abstractly the
same can be revealed to be different
using =

� There are various proposals to try to fix
these holes in ML
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Aside: abstract/concrete data

A b stra c tio n
R e pre se n ta tio n

A b stra c tio n
R e pre se n ta tio n '

C o nc rete
R e pre se n ta tio n

C o nc rete
R e pre se n ta tio n '

R e pre se n ta tio n
fu n c tio n

R e pre se n ta tio n
fu n c tio n

A b stra c t
O p e ra tio n

C o nc rete
O p e ra tio n

A b stra c tio n
R e pre se n ta tio n

A b stra c tio n
R e pre se n ta tio n '

C o nc rete
R e pre se n ta tio n

C o nc rete
R e pre se n ta tio n '

R e pre se n ta tio n
fu n c tio n

R e pre se n ta tio n
fu n c tio n

A b stra c t
O p e ra tio n

C o nc rete
O p e ra tio n
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Functors

� You can
parameterize
structures by
other
structures

� Then
instantiate the
functors to
build regular
structures

functor QueueUser(Q:QUEUE) =
struct … Q.enq … Q.deq …

end;

� This only knows the aspects of Q that are
defined by QUEUE

structure QU1 = QueueUser(Queue1);

structure QU2 = QueueUser(Queue3);
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Example

signature ORDERED = sig
type T;

  val eq: T * T -> bool;

  val lt: T * T -> bool;

end;

functor Sort(O;ORDERED) = struct

  fun min(x,y) =

     if O.lt(x,y) then x else y;

  fun sort(lst) = … O.lt(x,y) …
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Example con’t

structure IntOrder = struct
type T = int;

  val eq = (op =);

  val lt = (op <);

end;

structure IntSort = Sort(IntOrder);

IntSort.sort([3,5,~2]);
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Signature “subtyping”

� (A quick preview of one of the Cardelli-
Wegner ideas)

� How can we have subtyping in a language
that doesn’t even have inheritance?

� The question is: under what conditions
can we treat an instance of one type as an
instance of another type?

� Roughly: If all possible instances of type
S can be treated as instances of type T,
then we can view S as a subtype of T
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In ML

� A signature defines a particular interface
� Any structure that satisfies that interface

can be used where that interface is
expected
– For instance, in a functor application

� A structure can have more than is
required by the signature
– More operations, more general/polymorphic

operations, more details of implementation of
the types
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Limitations in ML

� structures and signatures are not first-
class values
– They must be named
– They must be declared at the top-level or

nested inside another structure or signature

� You cannot instantiate functors at run-
time to create “objects”
– This implies you cannot simulate classes and

object-oriented programming
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Modules vs. ADTs in ML

� ML abstract data types implicitly define a single
type
– With associated constructors, observers and

mutators

� Modules can define 0, 1 or many types in the
same module with associated operations over
several types
– Multiple types can share private data and operations

� Functors are similar to parameterized ADTs
� Modules are more general, but clumsier for the

common case
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Haskell

� A “competitor” to ML
� We won’t do a full language description,

but will focus on “interesting” differences
– Lazy evaluation instead of eager

• Purely side-effect-free

– Type classes for more flexible polymorphic
type checking

– Unparameterized modules
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A bit of history

� Main design completed in 1992
– By committee

� Attempted to merge the many
different lazy-evaluation-based
functional languages into one
common thrust
– Miranda, HOPE, …
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A few quick, minor examples

map f []      = []

map f (x::xs) = f x : map f xs

<<fn>> :: (a->b) -> [a] -> [b]

lst = map square [3,4,5]

[9,16,25] :: [Int]

(3,4,\x y -> x+y)

(3,4,<<fn>>) : (Int,Int,Int->Int->Int)
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List comprehensions

� A nice syntax for constructing lists
from generators and guards
– [ expr | var <- expr, …, … boolExpr, …]

[ f x | x <- xs ]

[(x,y) | x <- xs, y <- ys)]

[y | y <- ys, y > 10 ]

University of Washington • CSE583 • D. Notkin © 2000 45

quicksort

quicksort []     = []

quicksort (x:xs) =

    quicksort [y | y <- xs, y < x] ++

    [x] ++

    quicksort [y | y <- xs, y >=  x]
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Easy to construct arithmetic
sequences
� [1..8]     -- [1,2,3,4,5,6,7,8]

� [2,4..8]   -- [2,4,6,8]

� [2,4..]    -- [2,4,6,8,10,12,…]

� [1..]      -- [1,2,3,4,5,6,7,…]
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Sections

� Can call an infix operator on 0 or 1 of its
arguments to create a curried function

(+)

<<fn>> :: Int -> Int -> Int

(+ 1)    --increment function

<<fn>> :: Int -> Int

(0 -)    --negate function

<<fn>> :: Int -> Int
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Lazy vs. eager evaluation

� Eager, applicative-order, strict
– Before passing value to function

� Lazy, normal-order, nonstrict, call-
by-need, demand-driven
– When/if first needed

� Again, Haskell is lazy
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Example

my_if test then_val else_val =

   if test then then_val else else_val

my_if True 3 4
3 : Int
my_if False 3 4

4 : Int
x = 3

y = 12
my_if (x /= 0) (y `div` x) (-1)

4 : Int

Different than in Scheme
and ML, which would
require a special form
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Streams in Haskell

� All lists are automatically streams!
– head, tail fields of a list structure won’t

be evaluated until they are demanded
by some client of the list

� Lazy evaluation holds for all data
structures in the same way
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Examples

ints_from n = n : ints_from (n+1)
--same as [n..]

nats = ints_from 0;

squares = map (^2) nats
[0,1,4,9,16,25…]
fibs = 0 : 1 :

        [a+b | (a,b) <- zip fibs
                            (tail fibs)]
[0,1,1,2,3,5,8,13,21,34,55,…]
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Lazy programming paradigm

� There is a programming style that exploits lazy
evaluation
– May lead to more reusable components

� Construct a toolkit of operations to generate
interesting streams
– Ex: Scanner produces a stream of tokens
– Ex: Input produces a stream of characters
– Ex: Event-driven simulations produce streams of

events
� Independently produce operations to

manipulate and extract the interesting subset of
the generated streams
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Polymorphic functions

� ML allows functions to be
– Completely polymorphic

• length: ‘a list -> int

– Polymorphic over types that admit =
• eq_pair: (``a*``b)*(``a*``b)->bool

– Monomorphic
• fun square n = n * n

• int or real, but not both

� With the singular exception of equality types,
ML supports universal or unbounded parametric
polymorphism
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Bounded polymorphism

� It is also possible to support forms of bounded
polymorphism, where constraints are
expressing on possible instantiating types;
examples:
– polymorphic over all types that support =
– polymorphic over all types that support + , *
– polymorphic over all types that support print
– polymorphic over all tuples with at least two

components
– polymorphic over all records with hd and tl fields
– …
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More

� Constraints on type parameters let
the body know what operations can
be performed on expressions of
those types
– Unbounded type values can be passed

around, but with no constraints on the
operations

� How to express constraints?
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Subtype constraints

� In OO languages, we can often express
constraints such as “polymorphic over all
types that are subtypes of T”
– subtypes have all the operations of T (and

maybe more)

– body can perform all operations listed in T
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Type classes in Haskell

� Haskell supports a similar idea,
within a lazy, function, type-
inferencing-based language
framework
– Similar to OO classes, but not identical
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Example

class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

� Eq is the name of the new type class
� == and /= are the newly declared names of operations

on this class
� a is the dummy name of a type that’s in this class

– used in the type signatures of operations of the class
– roughly like a formal type parameter
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Instances of type classes

� Types explicitly
declared as
members of
particular type
classes
– Use instance

construct
– They must

provide
implementations
of the type class’
operations

instance Eq Int where

  x == y = intEq x y
  x /= y = intNeq x y

instance Eq Float where
  x == y = floatEq x y
  x /= y = floatNeq x y

3    == 4       -–allowed

3.4  /= 5.6     --allowed
3    == 4.5     --type error

“hi” == “there” –-type error
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Type classes as polymorphic
constraints

� Can use a type class to constrain
legal instantiations

eq_pair (x1,y1) (x2,y2) = x1==x2 and y1==y2

eq_pair :: (Eq a,Eq b)=>(a,b)->(a,b)->Bool

� (eq a,Eq b) is a context that constrains
the polymorphic type variables a and b to be
instances of the Eq class
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Defining contexts

� Can be implicitly defined by the type inference
system based on operations used in the body
– Requires that operations are defined in only one class
– Cannot overload signatures in multiple classes

� Contexts can also be defined explicitly

member :: (Eq a)=> a -> [a] -> Bool
member _ []     = False

member x (y:ys) = x==y or member x ys
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Conditional instances

� “A pair supports == if its component types
do”

instance (Eq a,Eq b)=> Eq(a,b) where
   (x1,y1)==(x2,y2) = x1=x2 and y1=y2

   x /= y           = not (x==y)

� A list of a supports == if a does”
instance (Eq a)=> Eq [a] where
   []     == []      = True
   (x:xs) == (y:ys)  = x==y and xs==ys

   _      == _       = False
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Default implementations in type
classes

� Add a /= operation, which defaults to
negation
– class Eq a where
  (==), (/=) :: a -> a -> Bool
  x /= y   = not (x==y)

� instance (Eq a,Eq b)=> Eq(a,b) where
  (x1,y1) == (x2,y2) =
           x1==x2 and y1 == y2
  --inherits default /=,
  --  but could override
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Type subclasses

� Can define new type classes that extend
existing type classes, adding new
operations and/or defaults
– Define the superclass(es) as contexts

• Instantiate each of a type’s superclasses top-
down to satisfy context

– Multiple inheritance allowed
• No name clashes, since operations can not be

overloaded
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Hierarchy of predefined type
classes in Haskell

Eq

Ord

Num

Text Binary

e v e ry
th in g

Real Fractional

Real
Fractional

Floating

Real Float

F lo a t D o u b le

Integral

In t In te g e r

EnumIx [a ]

(... )
C h a r /
B o o l

Eq

Ord

Num

Text Binary

e v e ry
th in g

Real Fractional

Real
Fractional

Floating

Real Float

F lo a t D o u b le

Integral

In t In te g e r

EnumIx [a ]

(... )
C h a r /
B o o l
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Type classes vs. OO subtypes

� Type classes do not support run-time
heterogeneous collections
– Cannot have functions that accept lists of

mixed ints and reals
– (Roughly) no run-time subtyping, only

compile-time subtyping

� The constraints defined using type
classes are not straightforward to define
in most OO languages
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Type classes vs. ML
polymorphism
� ML polymorphism simple with warts

– equality-bounded polymorphism
– overloaded operators block some kinds of

polymorphism

� Haskell type classes subsume and unify
unbounded, equality-bounded, and general
bounded polymorphism
– Default implementations are nice, too

� Type classes
– Big part of standard library and reference manual
– Temptation is high to go overboard in refining class

hierarchy
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Whew

� Next week, on to some more
discussion of types

� Leading into object-oriented
programming languages

� Watch for a new assignment and
some readings


