
1

CSE583:
Programming Languages

David Notkin
25 January 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Functional programming: 2+
weeks
� Scheme

– Gives a strong, language-based foundation
for functional programming

– May be mostly review for some of you

� Some theory
– Theoretical foundations and issues in

functional programming
� ML

– A modern basis for discussing key issues in
functional programming

University of Washington • CSE583 • D. Notkin © 2000 3

Tonight: a final set of topics on
functional languages
� ML types

– user-defined datatypes, variant records,
recursive types, polymorphic types,
exceptions, streams, …

� Haskell
– lazy evaluation

• purely side-effect free, infinite lists
– type classes for added flexibility in

polymorphism

University of Washington • CSE583 • D. Notkin © 2000 4

Then, with luck, on to types

University of Washington • CSE583 • D. Notkin © 2000 5

ML concrete user-defined
datatypes

� Users can define their own
(polymorphic) data structures

� Simple example: ML’s version of
enumerated types
– datatype sign = Positive | Zero | Negative;

� Introduces constants
– Can be used in patterns

University of Washington • CSE583 • D. Notkin © 2000 6

Example

- fun signum(x) =

 if x > 0 then positive

 else if x = 0 then Zero

 else Negative;

val signum = fn : int -> sign;

- fun signum_val(Positive) = 1

 | signum_val(Zero) = 0

 | signum_val(Negative) = -1;

val signum = fn : sign -> int;

2

University of Washington • CSE583 • D. Notkin © 2000 7

Variant records/tagged unions

� Each component of a datatype declaration can
have information
– constructors act as functions to create values with

that tag
– can be used in patterns to take apart values of a tag

datatype Sexpr =
 Nil |
 Integer of int |
 Symbol of string |
 Cons of Sexpr * Sexpr;

University of Washington • CSE583 • D. Notkin © 2000 8

Example

- Nil;

Nil : Sexpr;

- Integer;

Integer : int -> Sexpr;

- Symbol;

Symbol : string -> Sexpr;

- Cons;

Symbol : Sexpr * Sexpr -> Sexpr;

University of Washington • CSE583 • D. Notkin © 2000 9

Using datatypes

- val wuss =Cons(Integer(3),Cons(Symbol(“hi”),Nil));

Cons(Integer 3,Cons(Symbol “hi”,Nil)) : Sexpr; (*
‘(3 hi) *)

- fun car Nil = Nil
 | car (Cons(x,_) = x;

val car = fn : Sexpr -> Sexpr;

- fun cdr Nil = Nil
 | cdr (Cons(_,xs) = xs;

val car = fn : Sexpr -> Sexpr;

- cdr wuss;

Cons(Symbol “hi”,Nil) : Sexpr;

- car wuss = Integer 3;

true : bool;

University of Washington • CSE583 • D. Notkin © 2000 10

Recursive user-defined datatypes
- datatype int_tree =

 Empty |
 Node of int * int_tree * int_tree;

- fun insert x Empty = Node(x,Empty,Empty)
 | insert x (n as Node(y,t1,t2)) =

 if x = y then n
 else if x < y then Node(y,insert x t1,t2)
 else Node(y,t1,insert x t2);

val insert = fn : int -> int_tree -> int_tree;

- fun member x Empty = false
 | member x (Node(y,t1,t2)) =
 if x = y then true
 else if x < y then member x t1
 else member x t2;

val member = fn : int -> int_tree -> bool;

University of Washington • CSE583 • D. Notkin © 2000 11

But what about a polymorphic
version?

� It should be polymorphic with
respect to = and <

� int_tree is an equality type
– Does = do the right thing?

� Define using explicit type variables

University of Washington • CSE583 • D. Notkin © 2000 12

Polymorphic binary trees

- datatype ‘a tr =

 Empty |
 Node of ‘a * ‘a tr * ‘a tr;

- fun ins eq lt x Empty = Node(x,Empty,Empty)
 | ins eq lt x (n as Node(y,t1,t2)) =

 if eq(x,y) then n
 else if lt(x,y) then
 Node(y,ins eq lt x t1,t2)
 else Node(y,t1,ins eq lt x t2);

val ins = fn : (‘a*‘a->bool) -> (‘a*‘a->bool)
 -> ‘a -> ‘a tr -> ‘a tr;

3

University of Washington • CSE583 • D. Notkin © 2000 13

That’s a mouthful: use a wrapper

- datatype ‘a tree =

 Tree of {tree: ‘a tr,
 eq: ‘a* ‘ a -> bool,
 lt: ‘a* ‘ a -> bool};

- fun make_tree eq_fn lt_fn =
 Tree{tree=Empty,eq=eq_fn,lt=lt_fn};

val make_tree = fn : (‘a*‘a->bool) -> (‘a*‘a->bool)
 -> ‘a tree;

- fun insert x (Tree {tree=tr,eq_fn=fn,lt_fn=lt}) =

 Tree{tree=ins eq_fn lt_fn x tr,
 eq=eq_fn,lt=lt_fn};

val insert = fn : ‘a -> ‘a tree -> ‘a tree;

University of Washington • CSE583 • D. Notkin © 2000 14

A problem

� In Scheme we can use
“distinguished values” to handle
exceptional cases
– (define (find pred x)
 (cond ((null? x) #f)
 ((pred (car x)) (car x))
 (else (find pred (cdr x)))))

– (find is-positive? ‘(-3 3 5)) => 3

– (find is-positive> ‘(-3 -5)) => #f

University of Washington • CSE583 • D. Notkin © 2000 15

In ML it doesn’t work

- fun find pred nil = false

 | find pred (x::xs) =
 if pred x then x else find pred xs;

val find = fn : (bool->bool) -> bool list -> bool

- find is_positive [~3,3,5];

...type error...

University of Washington • CSE583 • D. Notkin © 2000 16

Use exceptions

� Exceptions can be returned from functions
without affecting the normal return type

- exception NotFound;
- fun find pred nil = raise NotFound

 | find pred (x::xs) =
 if pred x then x else find pred xs;

val find = fn : (‘a->bool) -> ‘a list -> ‘a
- find is_positive [~3,3,5];

3 : int
- find is_positive [~3,~5];
uncaught exception NotFound

University of Washington • CSE583 • D. Notkin © 2000 17

Handling exceptions

� Add handler clause to expressions
to handle (some) exceptions raised
in that expression
– Must return same type as handled

expression
- (find is_positive [~3,~5])

 handle NotFound => 0

0 : int

University of Washington • CSE583 • D. Notkin © 2000 18

Exceptions can have arguments

- exception IOError of int;

- (…raise IOError(-3) …)
 handle IOError(code) => code ...

4

University of Washington • CSE583 • D. Notkin © 2000 19

Streams

� Streams are (in essence) infinite lists
� Streams are a good model for I/O (and

other things)
– Unix pipes are basically streams

� But it’s hard to have an infinite list in an
eager-evaluation language
– Think about appending an element to a list
– First you evaluate the element and the list,

and then you append … whoops!

University of Washington • CSE583 • D. Notkin © 2000 20

Streams in ML

� Instead, represent a stream cons cell
as a pair of
– a head value and
– a function that will return the next

element in the stream
- datatype ‘a stream =

 Stream of ‘a * (unit -> ‘a stream);

University of Washington • CSE583 • D. Notkin © 2000 21

Basic functions

- fun cons_stream(x,f) = Stream(x,f);

- fun hd_stream(Stream(x,f)) = x;

- fun tl_stream(Stream(x,f)) = f();

- fun ints_from(x) =

 cons_stream(x, fn() => ints_from(x+1));

- val nats = ints_from(0);

- fun map_stream(g,s) =

 cons_stream(g(hd_stream(s)),
 fn() => map_stream(g,tl_stream(s)));

- val squares = map_stream(fn(x)=>x*x,nats);

University of Washington • CSE583 • D. Notkin © 2000 22

References

� ML allows side-effects through
explicit reference values
– Completely non-functional

– ref : ‘a -> ‘a ref

– ! : ‘a ref -> a

– (op :=) : ‘a ref * ‘a -> unit

University of Washington • CSE583 • D. Notkin © 2000 23

Examples

- val v = ref 0;

val v = ref 0 : int ref

- v := !v + 1;

() : unit

- !v;

1 : int

� A major difference from Scheme is that the
mutable objects are stated explicitly
– In Scheme, set! can be used anywhere, anytime

University of Washington • CSE583 • D. Notkin © 2000 24

Modules

� datatypes were cool, but they
exposed their representation
– Helped with pattern matching, etc.

� ML modules support encapsulated
abstract data types
– hidden operations, values, types, and

some kinds of polymorphism

5

University of Washington • CSE583 • D. Notkin © 2000 25

Note

� The module system in ML is clearly
intended to try to make the language
more industrial strength and feasible
for practical use

� A challenge is balancing the
software engineering needs with the
type system in ML

University of Washington • CSE583 • D. Notkin © 2000 26

Overview

� structure defines module
implementation

� signature defines module interface
– hides other aspects of underlying structure

� open imports a module for naming
convenience
– We won’t cover this

� functor supports parameterized module
implementations

University of Washington • CSE583 • D. Notkin © 2000 27

Structures

� Package a set of declarations
structure Queue1 = struct

 type ‘a T = ‘a list; (* T is conventional name *)

 (* constructors)

 val empty = nil;

 fun enq x q = a @ [x]; (* @ is append *)

 (* accessors *)

 exception empty_queue;

 fun head (x::q) = x

 | head nil = raise empty_queue;

 fun deq (x::q) = (x,q)

 | deq nil = raise empty_queue;

University of Washington • CSE583 • D. Notkin © 2000 28

Accessing members

- val q = Queue1.enq 3 Queue1.empty;

val q = [3] : int list

- val q2 = Queue1.enq 4 q;

val q2 = [3,4] : int list

- Queue1.head q2;

3 : int

University of Washington • CSE583 • D. Notkin © 2000 29

Signatures

� Construct for encapsulating
representations

� Define a public external interface
with signature

� Then apply the signature to restrict
the interface to a structure

University of Washington • CSE583 • D. Notkin © 2000 30

Example

signature QUEUE = sig

 type ‘a T;
 val empty : ‘a T;

 val enq: `a -> `a T -> `a T;
 exception empty_queue;
 val head: `a T -> `a;

 val deq: `a T -> `a * `a T;
end;

structure Queue2: QUEUE = struct … end;

� Any operations in struct that aren’t in sig are
inaccessible

6

University of Washington • CSE583 • D. Notkin © 2000 31

Holes in encapsulation

� Signatures don’t completely hide module
implementation

� Types defined using type are not hidden
 - Queue.empty = nil;
true : bool;

� If you want to hide types, use datatype
instead of type

University of Washington • CSE583 • D. Notkin © 2000 32

Another hole

� Built-in equality (=) function operates
over the representation, not the
abstraction

� That is, two values that are abstractly the
same can be revealed to be different
using =

� There are various proposals to try to fix
these holes in ML

University of Washington • CSE583 • D. Notkin © 2000 33

Aside: abstract/concrete data

A b stra c tio n
R e pre se n ta tio n

A b stra c tio n
R e pre se n ta tio n '

C o nc rete
R e pre se n ta tio n

C o nc rete
R e pre se n ta tio n '

R e pre se n ta tio n
fu n c tio n

R e pre se n ta tio n
fu n c tio n

A b stra c t
O p e ra tio n

C o nc rete
O p e ra tio n

A b stra c tio n
R e pre se n ta tio n

A b stra c tio n
R e pre se n ta tio n '

C o nc rete
R e pre se n ta tio n

C o nc rete
R e pre se n ta tio n '

R e pre se n ta tio n
fu n c tio n

R e pre se n ta tio n
fu n c tio n

A b stra c t
O p e ra tio n

C o nc rete
O p e ra tio n

University of Washington • CSE583 • D. Notkin © 2000 34

Functors

� You can
parameterize
structures by
other
structures

� Then
instantiate the
functors to
build regular
structures

functor QueueUser(Q:QUEUE) =
struct … Q.enq … Q.deq …

end;

� This only knows the aspects of Q that are
defined by QUEUE

structure QU1 = QueueUser(Queue1);

structure QU2 = QueueUser(Queue3);

University of Washington • CSE583 • D. Notkin © 2000 35

Example

signature ORDERED = sig
type T;

 val eq: T * T -> bool;

 val lt: T * T -> bool;

end;

functor Sort(O;ORDERED) = struct

 fun min(x,y) =

 if O.lt(x,y) then x else y;

 fun sort(lst) = … O.lt(x,y) …

University of Washington • CSE583 • D. Notkin © 2000 36

Example con’t

structure IntOrder = struct
type T = int;

 val eq = (op =);

 val lt = (op <);

end;

structure IntSort = Sort(IntOrder);

IntSort.sort([3,5,~2]);

7

University of Washington • CSE583 • D. Notkin © 2000 37

Signature “subtyping”

� (A quick preview of one of the Cardelli-
Wegner ideas)

� How can we have subtyping in a language
that doesn’t even have inheritance?

� The question is: under what conditions
can we treat an instance of one type as an
instance of another type?

� Roughly: If all possible instances of type
S can be treated as instances of type T,
then we can view S as a subtype of T

University of Washington • CSE583 • D. Notkin © 2000 38

In ML

� A signature defines a particular interface
� Any structure that satisfies that interface

can be used where that interface is
expected
– For instance, in a functor application

� A structure can have more than is
required by the signature
– More operations, more general/polymorphic

operations, more details of implementation of
the types

University of Washington • CSE583 • D. Notkin © 2000 39

Limitations in ML

� structures and signatures are not first-
class values
– They must be named
– They must be declared at the top-level or

nested inside another structure or signature

� You cannot instantiate functors at run-
time to create “objects”
– This implies you cannot simulate classes and

object-oriented programming

University of Washington • CSE583 • D. Notkin © 2000 40

Modules vs. ADTs in ML

� ML abstract data types implicitly define a single
type
– With associated constructors, observers and

mutators

� Modules can define 0, 1 or many types in the
same module with associated operations over
several types
– Multiple types can share private data and operations

� Functors are similar to parameterized ADTs
� Modules are more general, but clumsier for the

common case

University of Washington • CSE583 • D. Notkin © 2000 41

Haskell

� A “competitor” to ML
� We won’t do a full language description,

but will focus on “interesting” differences
– Lazy evaluation instead of eager

• Purely side-effect-free

– Type classes for more flexible polymorphic
type checking

– Unparameterized modules

University of Washington • CSE583 • D. Notkin © 2000 42

A bit of history

� Main design completed in 1992
– By committee

� Attempted to merge the many
different lazy-evaluation-based
functional languages into one
common thrust
– Miranda, HOPE, …

8

University of Washington • CSE583 • D. Notkin © 2000 43

A few quick, minor examples

map f [] = []

map f (x::xs) = f x : map f xs

<<fn>> :: (a->b) -> [a] -> [b]

lst = map square [3,4,5]

[9,16,25] :: [Int]

(3,4,\x y -> x+y)

(3,4,<<fn>>) : (Int,Int,Int->Int->Int)

University of Washington • CSE583 • D. Notkin © 2000 44

List comprehensions

� A nice syntax for constructing lists
from generators and guards
– [expr | var <- expr, …, … boolExpr, …]

[f x | x <- xs]

[(x,y) | x <- xs, y <- ys)]

[y | y <- ys, y > 10]

University of Washington • CSE583 • D. Notkin © 2000 45

quicksort

quicksort [] = []

quicksort (x:xs) =

 quicksort [y | y <- xs, y < x] ++

 [x] ++

 quicksort [y | y <- xs, y >= x]

University of Washington • CSE583 • D. Notkin © 2000 46

Easy to construct arithmetic
sequences
� [1..8] -- [1,2,3,4,5,6,7,8]

� [2,4..8] -- [2,4,6,8]

� [2,4..] -- [2,4,6,8,10,12,…]

� [1..] -- [1,2,3,4,5,6,7,…]

University of Washington • CSE583 • D. Notkin © 2000 47

Sections

� Can call an infix operator on 0 or 1 of its
arguments to create a curried function

(+)

<<fn>> :: Int -> Int -> Int

(+ 1) --increment function

<<fn>> :: Int -> Int

(0 -) --negate function

<<fn>> :: Int -> Int

University of Washington • CSE583 • D. Notkin © 2000 48

Lazy vs. eager evaluation

� Eager, applicative-order, strict
– Before passing value to function

� Lazy, normal-order, nonstrict, call-
by-need, demand-driven
– When/if first needed

� Again, Haskell is lazy

9

University of Washington • CSE583 • D. Notkin © 2000 49

Example

my_if test then_val else_val =

 if test then then_val else else_val

my_if True 3 4
3 : Int
my_if False 3 4

4 : Int
x = 3

y = 12
my_if (x /= 0) (y `div` x) (-1)

4 : Int

Different than in Scheme
and ML, which would
require a special form

University of Washington • CSE583 • D. Notkin © 2000 50

Streams in Haskell

� All lists are automatically streams!
– head, tail fields of a list structure won’t

be evaluated until they are demanded
by some client of the list

� Lazy evaluation holds for all data
structures in the same way

University of Washington • CSE583 • D. Notkin © 2000 51

Examples

ints_from n = n : ints_from (n+1)
--same as [n..]

nats = ints_from 0;

squares = map (^2) nats
[0,1,4,9,16,25…]
fibs = 0 : 1 :

 [a+b | (a,b) <- zip fibs
 (tail fibs)]
[0,1,1,2,3,5,8,13,21,34,55,…]

University of Washington • CSE583 • D. Notkin © 2000 52

Lazy programming paradigm

� There is a programming style that exploits lazy
evaluation
– May lead to more reusable components

� Construct a toolkit of operations to generate
interesting streams
– Ex: Scanner produces a stream of tokens
– Ex: Input produces a stream of characters
– Ex: Event-driven simulations produce streams of

events
� Independently produce operations to

manipulate and extract the interesting subset of
the generated streams

University of Washington • CSE583 • D. Notkin © 2000 53

Polymorphic functions

� ML allows functions to be
– Completely polymorphic

• length: ‘a list -> int

– Polymorphic over types that admit =
• eq_pair: (``a*``b)*(``a*``b)->bool

– Monomorphic
• fun square n = n * n

• int or real, but not both

� With the singular exception of equality types,
ML supports universal or unbounded parametric
polymorphism

University of Washington • CSE583 • D. Notkin © 2000 54

Bounded polymorphism

� It is also possible to support forms of bounded
polymorphism, where constraints are
expressing on possible instantiating types;
examples:
– polymorphic over all types that support =
– polymorphic over all types that support + , *
– polymorphic over all types that support print
– polymorphic over all tuples with at least two

components
– polymorphic over all records with hd and tl fields
– …

10

University of Washington • CSE583 • D. Notkin © 2000 55

More

� Constraints on type parameters let
the body know what operations can
be performed on expressions of
those types
– Unbounded type values can be passed

around, but with no constraints on the
operations

� How to express constraints?

University of Washington • CSE583 • D. Notkin © 2000 56

Subtype constraints

� In OO languages, we can often express
constraints such as “polymorphic over all
types that are subtypes of T”
– subtypes have all the operations of T (and

maybe more)

– body can perform all operations listed in T

University of Washington • CSE583 • D. Notkin © 2000 57

Type classes in Haskell

� Haskell supports a similar idea,
within a lazy, function, type-
inferencing-based language
framework
– Similar to OO classes, but not identical

University of Washington • CSE583 • D. Notkin © 2000 58

Example

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

� Eq is the name of the new type class
� == and /= are the newly declared names of operations

on this class
� a is the dummy name of a type that’s in this class

– used in the type signatures of operations of the class
– roughly like a formal type parameter

University of Washington • CSE583 • D. Notkin © 2000 59

Instances of type classes

� Types explicitly
declared as
members of
particular type
classes
– Use instance

construct
– They must

provide
implementations
of the type class’
operations

instance Eq Int where

 x == y = intEq x y
 x /= y = intNeq x y

instance Eq Float where
 x == y = floatEq x y
 x /= y = floatNeq x y

3 == 4 -–allowed

3.4 /= 5.6 --allowed
3 == 4.5 --type error

“hi” == “there” –-type error

University of Washington • CSE583 • D. Notkin © 2000 60

Type classes as polymorphic
constraints

� Can use a type class to constrain
legal instantiations

eq_pair (x1,y1) (x2,y2) = x1==x2 and y1==y2

eq_pair :: (Eq a,Eq b)=>(a,b)->(a,b)->Bool

� (eq a,Eq b) is a context that constrains
the polymorphic type variables a and b to be
instances of the Eq class

11

University of Washington • CSE583 • D. Notkin © 2000 61

Defining contexts

� Can be implicitly defined by the type inference
system based on operations used in the body
– Requires that operations are defined in only one class
– Cannot overload signatures in multiple classes

� Contexts can also be defined explicitly

member :: (Eq a)=> a -> [a] -> Bool
member _ [] = False

member x (y:ys) = x==y or member x ys

University of Washington • CSE583 • D. Notkin © 2000 62

Conditional instances

� “A pair supports == if its component types
do”

instance (Eq a,Eq b)=> Eq(a,b) where
 (x1,y1)==(x2,y2) = x1=x2 and y1=y2

 x /= y = not (x==y)

� A list of a supports == if a does”
instance (Eq a)=> Eq [a] where
 [] == [] = True
 (x:xs) == (y:ys) = x==y and xs==ys

 _ == _ = False

University of Washington • CSE583 • D. Notkin © 2000 63

Default implementations in type
classes

� Add a /= operation, which defaults to
negation
– class Eq a where
 (==), (/=) :: a -> a -> Bool
 x /= y = not (x==y)

� instance (Eq a,Eq b)=> Eq(a,b) where
 (x1,y1) == (x2,y2) =
 x1==x2 and y1 == y2
 --inherits default /=,
 -- but could override

University of Washington • CSE583 • D. Notkin © 2000 64

Type subclasses

� Can define new type classes that extend
existing type classes, adding new
operations and/or defaults
– Define the superclass(es) as contexts

• Instantiate each of a type’s superclasses top-
down to satisfy context

– Multiple inheritance allowed
• No name clashes, since operations can not be

overloaded

University of Washington • CSE583 • D. Notkin © 2000 65

Hierarchy of predefined type
classes in Haskell

Eq

Ord

Num

Text Binary

e v e ry
th in g

Real Fractional

Real
Fractional

Floating

Real Float

F lo a t D o u b le

Integral

In t In te g e r

EnumIx [a]

(...)
C h a r /
B o o l

Eq

Ord

Num

Text Binary

e v e ry
th in g

Real Fractional

Real
Fractional

Floating

Real Float

F lo a t D o u b le

Integral

In t In te g e r

EnumIx [a]

(...)
C h a r /
B o o l

University of Washington • CSE583 • D. Notkin © 2000 66

Type classes vs. OO subtypes

� Type classes do not support run-time
heterogeneous collections
– Cannot have functions that accept lists of

mixed ints and reals
– (Roughly) no run-time subtyping, only

compile-time subtyping

� The constraints defined using type
classes are not straightforward to define
in most OO languages

12

University of Washington • CSE583 • D. Notkin © 2000 67

Type classes vs. ML
polymorphism
� ML polymorphism simple with warts

– equality-bounded polymorphism
– overloaded operators block some kinds of

polymorphism

� Haskell type classes subsume and unify
unbounded, equality-bounded, and general
bounded polymorphism
– Default implementations are nice, too

� Type classes
– Big part of standard library and reference manual
– Temptation is high to go overboard in refining class

hierarchy

University of Washington • CSE583 • D. Notkin © 2000 68

Whew

� Next week, on to some more
discussion of types

� Leading into object-oriented
programming languages

� Watch for a new assignment and
some readings

