
1

CSE583: Programming
Languages

David Notkin
1 February 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Administrivia

� Assignments; reducing from 5 to 4
– #2 – due 2/11 (on OO)
– #3 – due 2/25 (on logic/constraint)
– #4 – due 3/10 (on domain-specific, visual

languages,etc.)
� More paper topics listed
� Returning assignment #1
� First term paper back next Tuesday

University of Washington • CSE583 • D. Notkin © 2000 3

Lecture schedule

� Tonight and next week (2/1 & 2/8): OO
� Following two weeks (2/15 & 2/22): logic

and constraint
� Next to last week (2/29): visual

programming, literate programming
� Last week (3/7): domain-specific

languages (me or Tom Ball)

University of Washington • CSE583 • D. Notkin © 2000 4

Object oriented programming
languages
� Basic background and introduction

– A number of you have surely done more OO
programming than me

– Definitely comment early and often!
� A deeper look at

– types, multiple inheritance, etc.
� Quick looks at a few classic and

interesting languages

University of Washington • CSE583 • D. Notkin © 2000 5

A few OO languages

� Simula-67: where it all started
� Smalltalk-80: popularized OO
� C++: OO for the hacking masses
� Java: OO for the web and ???
� CLOS: Powerful OO with Lisp
� Others? Yeah, lots

University of Washington • CSE583 • D. Notkin © 2000 6

Object Oriented

� OO programming
� OO design
� OO modeling
� OO analysis
� OO databases
� ...

gOOd’s
middle name

2

University of Washington • CSE583 • D. Notkin © 2000 7

Dimensions of OO

� Programming language design
– What features are there, and why?

� Programming language implementation
– Are these features implemented with

sufficient efficiency?

� Software engineering
– Do these language features help improve

software quality or reduce costs?

Primary focus in
this course

University of Washington • CSE583 • D. Notkin © 2000 8

OO has three key thrusts

� Abstract data types (ADTs)
– A way to structure programs

� Inheritance
– A way to exploit the relationships between

ADTs

� Dynamic binding
– Run-time selection of appropriate

implementation

University of Washington • CSE583 • D. Notkin © 2000 9

Anything else central to OO?

� Or any of these
three that aren’t
central to OO?

University of Washington • CSE583 • D. Notkin © 2000 10

Abstract data types

� An instance of Parnas’ information hiding
principle
– How to choose among alternative

modularizations
– Identify aspects of a program that are likely to

change, and those that are likely to be stable
– Capture the stable parts in interfaces, and the

likely to change parts in implementations
– (There’s a bit more to it)

University of Washington • CSE583 • D. Notkin © 2000 11

Information hiding

C lien t #1 C lien t #2 C lien t #3

Im p lem enta tion

C lien t #1 C lien t #2 C lien t #3

Im p lem enta tion

� Clients cannot rely on knowledge of the
implementation, just it’s specification

� The implementation can change without
affecting the clients

University of Washington • CSE583 • D. Notkin © 2000 12

ADTs

� The changeable part of the program is
identified to be
– the representation of the data and
– the implementation of the operations

� The interface is the stable part
– The “signature” is the syntactic definition of

the interface
– Semantics are usually given informally

3

University of Washington • CSE583 • D. Notkin © 2000 13

ADTs

� The representation and the operations are
packaged together
– The representation and implementation

details are encapsulated and hidden from
clients

� An ADT is a kind of module, but one that
(usually) allows clients to instantiate
multiple instances of the ADT

� Ada packages, Modula modules, etc.

University of Washington • CSE583 • D. Notkin © 2000 14

Aside: any weaknesses of
information hiding?

� If you took 584
from me, you must
remain silent :-)

� Weakness of
information hiding
fall onto ADTs, too

University of Washington • CSE583 • D. Notkin © 2000 15

Classes

� To the first order, an ADT is called a class
in an OO language
– Data structures are called objects and

instances
– Operations are called methods
– Data inside the class are called instance

variables

� (Later, some discussion of class vs. type)

University of Washington • CSE583 • D. Notkin © 2000 16

The classic example: a stack

class Stack[T] {

 push(item:T):void

 pop():T

 top():T

 size():int

}

s:Stack[int] :=

 new Stack[int];

s.push(3);

s.push(5);

print(s.pop());

Polymorphic Message send:
“Ask the object to do something”

Method Instantiation

University of Washington • CSE583 • D. Notkin © 2000 17

Two implementations

class Stack[T] {

private:

 items:array[10] of T;

public:

 push(item:T):void {

 items[top] := item;

 top := top + 1;

 pop():T {

 top := top - 1;

 return items[top];

 size():int {return top;}

class Stack[T] {

private:

 items:list[T] := nil;

public:

 push(item:T):void {

 items.add_first(item);

 pop():T {

 return
items.remove_first();

 size():int {return

 items.length();

}

Instance variable

Method implementation

University of Washington • CSE583 • D. Notkin © 2000 18

Inheritance

� Define new class as an incremental
modification of an existing class

� Perhaps the most recognizable
aspect of OO languages and
programs
– ADTs but no inheritance does not

usually earn the OO moniker

4

University of Washington • CSE583 • D. Notkin © 2000 19

Inheritance

� New class is subclass of the original superclass
� By default, subclass inherits the superclass’

methods and instance variables
� Can add more methods and instance variables

in the subclass
� Can override (replace) methods in the subclass

– But usually cannot override instance variables

University of Washington • CSE583 • D. Notkin © 2000 20

Example

class Rectangle {

private:

 center:Point;

 h,w:int;

public:

 area():int
 {return h*w;}

 draw(screen:ODev):void

 {…}

 move(newc:Point):void

 {…}

…

}

class ColorRectangle
inherits Rectange {

private:

 color:Color;

public:

 draw(screen:ODev):void

 {…}

}

r:Rectangle := new
Rectangle;

cr:ColorRectangle := new
ColorRectangle;

print.r.area();

print.cr.area();

r.draw();

cr.draw();

University of Washington • CSE583 • D. Notkin © 2000 21

Benefits of inheritance

� Achieve more code sharing by factoring
code into common superclass
– Encourages development of rich libraries of

related data structures
– Increases reuse

� May model real world scenarios well
– Use class to model different things
– Use inheritance for classification of things

• Subclass is a special case of superclass

University of Washington • CSE583 • D. Notkin © 2000 22

Classic hierarchies

� A square is-a rectangle is-a polygon is-a
2D-shape

� A domestic cat (species) is-a lesser cat
(genus) is-a cat (family) is-a meat-eater
(order) is-a (class) mammal
– mammalia.carnivora.felidae.felis.cattus
– Herding cats is not for wusses

University of Washington • CSE583 • D. Notkin © 2000 23

Rich OO hierarchies

� Smalltalk-80, Java JDK, …

� class java.awt.Component (implements
java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)

• class java.awt.Button

• class java.awt.Canvas

• class java.awt.Checkbox (implements
java.awt.ItemSelectable)

• class java.awt.Choice (implements
java.awt.ItemSelectable)

• class java.awt.Container

• class java.awt.Panel

• class java.applet.Applet

• class java.awt.ScrollPane

• class java.awt.Window

• class java.awt.Dialog

• class java.awt.FileDialog

•Magnitude

•Association

•Character

•Date

•Number

•Float

•Fraction

•Integer

•LargeNegativeInteger

•LargePositiveInteger

•SmallInteger

•Time

University of Washington • CSE583 • D. Notkin © 2000 24

The world is not perfectly
hierarchical
� An elephant is a mammal
� An elephant is a gray thing

– Unless it is albino

� An elephant is a big thing
� An elephant has four legs

– Unless it lost one

� …leads to issues in multiple
inheritance…

5

University of Washington • CSE583 • D. Notkin © 2000 25

Pitfalls of inheritance

� Often overused, especially by novices

� Code gets fragmented into small, factored
pieces

� Tracing control logic of code is harder

� Simple extension and overriding may be
too limited
– Ex: exceptions in classification hierarchies

University of Washington • CSE583 • D. Notkin © 2000 26

Dynamic binding

� Allow subclass to be
used wherever a
superclass is expected
– Allows reuse of

superclass’ code

� When message is sent,
proper operation is
located and invoked

r:Rectangle := …

cr:ColorRectangle := …

r := cr;

…

r.draw();

which draw is invoked?

University of Washington • CSE583 • D. Notkin © 2000 27

Dynamic binding (more)

� This is a new kind of polymorphism:
subtype (inclusion) polymorphism
– We’ll come back to this later

� Dynamic binding requires run-time class
information for each object
– Needed to figure out proper method to invoke

� Also known as message passing, virtual
function calling, generic function
application

University of Washington • CSE583 • D. Notkin © 2000 28

Method lookup

� Given a message obj.msg(args)
� Start with run-time class C of obj (the

“receiver”)
� If msg is defined in C, invoke it
� Otherwise, recursively search in the

superclass of C
� If a match is never found, report run-time

error (“Do not understand”)
– In a statically typed OO language, this error will never

be reported

University of Washington • CSE583 • D. Notkin © 2000 29

Example: displaying shapes in list

forall s:Shape in scene do

 if s.is_rectangle() then

 rectangle(s).draw();

 elseif s.is_square() then

 square(s).draw();

 elseif…

 else

 error(“unknown
shape”);

 fi

end

forall s:Shape in scene do

 s.draw();

end

Add new shapes?

University of Washington • CSE583 • D. Notkin © 2000 30

Benefits of dynamic binding

� Allows subtype polymorphism and
class-specific methods

� Allows new subclasses to be added
without modifying clients

� More important than inheritance?

6

University of Washington • CSE583 • D. Notkin © 2000 31

Pitfalls of dynamic binding

� Makes logic of program harder to
follow

� Adds run-time overhead
– Space for run-time class information
– Time to do method lookup

• But only an indirect jump, not a search

University of Washington • CSE583 • D. Notkin © 2000 32

Time for questions and comments

� Specific
questions about
OO: why, what,
how?

� Observations
from experience
about what
aspects of OO
are most crucial

University of Washington • CSE583 • D. Notkin © 2000 33

Types

� Under what conditions are instances
of two types the same?
– Constrains assignment (and related

operations) in most languages

� Arises even in “old” imperative
languages like Pascal

University of Washington • CSE583 • D. Notkin © 2000 34

Name vs. structural equivalence

record cartesian {x,y: float};

record polar (r,theta: float};

a,b: cartesian;

c: polar;

…

a := b;

c := b;

a.x := c.theta;

University of Washington • CSE583 • D. Notkin © 2000 35

Polymorphism

� A walk through some definitions
� Many from the OO FAQ on the web
� It’s more than just definitions

– At the same time, many of the
definitions are definitely tricky (or
worse)

University of Washington • CSE583 • D. Notkin © 2000 36

Strachey (1967)

� "Parametric [true] polymorphism is
obtained when a function works
uniformly on a range of types; these
types normally exhibit some common
structure

� “Ad-hoc polymorphism is obtained when
a function works, or appears to work, on
several different types (which may not
exhibit a common structure) and may
behave in unrelated ways for each type”

7

University of Washington • CSE583 • D. Notkin © 2000 37

Cardelli and Wegner (1985)

� Expand on Strachey’s definition by
adding “inclusion (or subtype)
polymorphism”

Polym orph ism

Unive rsal

P aram etric Inclus ion

ad hoc

O verloading Coe rcion

Polym orph ism

Unive rsal

P aram etric Inclus ion

ad hoc

O verloading Coe rcion

University of Washington • CSE583 • D. Notkin © 2000 38

Definitions

� Polymorphic Languages:
– Some values and variables may have more

than one type

� Polymorphic Functions:
– Functions whose operands (actual

parameters) can have more than one type

� Polymorphic Types:
– types whose operations are applicable to

operands of more than one type

University of Washington • CSE583 • D. Notkin © 2000 39

More definitions

� Parametric Polymorphism:
– A polymorphic function has an implicit or explicit type

parameter that determines the type of the argument
for each application of that function

• Ex: A list of ints is not a list of strings, but they are both
lists

� Inclusion Polymorphism:
– An object can be viewed as belonging to many

different classes that need not be disjoint; that is,
there may be inclusion of classes

• Ex: a ColorRectangle is also a Rectangle

University of Washington • CSE583 • D. Notkin © 2000 40

Universal polymorphism

� Parametric and inclusion are closely related
– Implementation approaches are distinct, however

� Parametric polymorphism is referred to as
generics
– Each generic instantiation can create a specialized

version of the code
• Ex: STL (standard template library)

� In a "true polymorphic system", only a single
implementation is used

University of Washington • CSE583 • D. Notkin © 2000 41

Inheritance (Cardelli/Wegner)

� Subtyping on record types
corresponds to the concept of
inheritance (subclass) in languages,
especially if records are allowed to
have functional components
– [These functional components in

records are methods]

University of Washington • CSE583 • D. Notkin © 2000 42

How do we determine if a type A is
a subtype of a type B?

� A <= B means A is a subtype of B
� Consider types as records

–A must have all the fields that B has; A
can have more fields

� For all fields in common,
fA <= fB

8

University of Washington • CSE583 • D. Notkin © 2000 43

Example

type object = (age : int)
type vehicle =
 (age : int,

 speed : int)
type machine =

 (age : int,

 fuel : string)
type car =

 (age : int,

 speed : int,

 fuel: string)

type 2V-garage =

 (v1 : vehicle,

 v2 : vehicle)
type 2C-garage =

 (v1 : car,

 v2 : car,

 j : junk)
type 2M-garage =

 (v1 : machine,

 v2 : machine)

University of Washington • CSE583 • D. Notkin © 2000 44

OO languages have methods, too

� How does subtyping play here
� Again, the question is, under what

conditions is it meaningful to apply a
function to an argument?

� The basic rule is:
– Given

• f: S → T
• a : S’ and S’ <= S

– Then
• f(a) is meaningful and f(a): T

University of Washington • CSE583 • D. Notkin © 2000 45

Example

� Consider any function g: t → car
– Ex: serial_number: int → car

� Since g returns a car, it necessarily also
returns a vehicle, since
car <= vehicle

� That means that
(t → car) <= (t → vehicle)
– because car <= vehicle

University of Washington • CSE583 • D. Notkin © 2000 46

Further example

� Now consider
– speed: vehicle → int

� We can use this to determine the speed of
a car (because it is-a vehicle)

� This means that
– (vehicle → int) <= (car → int) because
car <= vehicle

� Or, more generally
– (vehicle → t) <= (car → t)

because car <= vehicle

University of Washington • CSE583 • D. Notkin © 2000 47

Note carefully

� The reversal of the two examples, depending on
whether the subtype relation is on the left or the
righthand side of the function arrow

� Cardelli argues this leads to the basic rule for
subtyping of functions:
– if S’ <= S and T <= T’

 then S → T <= S’ → T’
– Because you can generally constrain the domain of a

function and unconstrain the range of a function,
without harming the function

University of Washington • CSE583 • D. Notkin © 2000 48

Contravariant typing

� This set of rules leads to the notion of
contravariant typing

� Again, it ensures that if you have A <= B
and a:A and b:B then you can always
safely use a where you had b, and

� you’ll never have a reference to an
instance variable that is unknown or to a
function that is not meaningful

9

University of Washington • CSE583 • D. Notkin © 2000 49

Example

2Dpoint =
 <x : Int,
 y : Int,
 equal : 2Dpoint -> Bool>
3Dpoint =

 <x : Int,

 y : Int,

 z : Int,

 equal : 3Dpoint -> Bool>

University of Washington • CSE583 • D. Notkin © 2000 50

Contravariant?

� For this example, in
small groups for 5
minutes, determine if
2Dpoint <= 3Dpoint,
3Dpoint <= 2Dpoint,
or neither (can’t be
both…why?)

University of Washington • CSE583 • D. Notkin © 2000 51

Covariance

� The covariant rule is different, swapping
the function relationships
– if S’ <= S and T <= T’

 then S’ → T’ <= S → T

� This allows different programs to be
written, but it cannot guarantee that a “do
not understand” error will never arise
– Eiffel uses covariance checking
– It uses “system validity checking” to catch

some type errors

University of Washington • CSE583 • D. Notkin © 2000 52

Some issues in OOP

� Basic object model
– Hybrid vs. pure OO languages
– Class-based vs. classless (prototype-based)

languages
– Single vs. multiple dispatching
– Single vs. multiple inheritance

� Type checking
– Types vs. classes
– Subtype polymorphism

University of Washington • CSE583 • D. Notkin © 2000 53

Hybrid vs. pure object model

� In a pure object model, everything is an
object
– Not only user-defined objects, but integers,

bits, floats, lists, etc.
•3.+(4)

� Everything is instantiated, everything is
dynamically dispatched, etc.

� This gives a terrifically consistent
programming model

� Ex: Smalltalk-80, Cecil, …

University of Washington • CSE583 • D. Notkin © 2000 54

Why hybrid?

� Primarily because of performance
– Who wants to ask an integer to dispatch a

method to add an integer to it?
– Even “just” an added indirection can be

costly, if done frequently enough
� So, hybrid languages (C++, …) allow the

programmer to choose what is an what
isn’t an object
– Usually with some constraints; for example,

constraining non-objects to a predefined set
of types

10

University of Washington • CSE583 • D. Notkin © 2000 55

Class-based vs. classless
languages
� Most OO languages have classes
� Some are instead classless

– Also, prototype-based

� Why?
� The distinction between classes and

objects is important but tricky
– Classless languages eliminate the distinction
– In principle, this gives a clearer programming

model, just like a pure object model does

University of Washington • CSE583 • D. Notkin © 2000 56

How does it work? Delegation

� Given a message obj.msg(args)
� If msg is defined in obj, invoke it
� If not, the msg is passed on to another

object that obj “delegates” to
– In some languages, there may be more than

one delegate

� If no delegate exists, then it’s an error

University of Washington • CSE583 • D. Notkin © 2000 57

How does it work?

� Usually, a programmer simulates a
class hierarchy

� A “regular” object delegates to a
“class” object

� A “class” object delegates to its
“superclass” object

University of Washington • CSE583 • D. Notkin © 2000 58

How to create objects?

� In class-based languages, a class holds a
constructor (new method) that creates
new instances of that class
– This isn’t always exactly right, but it’s close

� In classless languages, there is an object
called a prototype that knows how to
clone itself to create new objects

University of Washington • CSE583 • D. Notkin © 2000 59

The Smalltalk-80

� Smalltalk-80 is a class-based language
� And it has a pure object model
� That is, everything is an object, and

everything has a class
� This means that a class is actually an

object, since everything is an object

University of Washington • CSE583 • D. Notkin © 2000 60

Metaclasses

� If classes are objects, what is their class?
� For each class in the system, there is an

associated metaclass
– Each metaclass is constrained to have a

single instance: the given class object
– The Smalltalk system creates the associated

metaclass when you create a class

� If you don’t like how classes work in
Smalltalk, you can change
the…metaclass class

11

University of Washington • CSE583 • D. Notkin © 2000 61

Single vs. multiple dispatching

� Resolving obj.msg(args)is
generally done on the class of obj
alone
– The class of args, for instance, is

immaterial
– (This is true even in classless

languages)

University of Washington • CSE583 • D. Notkin © 2000 62

But…

� This “single
dispatching” can lead
to contorted code

� How to handle?
– 3+1
– 4.1+5.9
– 2+6.5
– 3.5+8

� Two different code
bodies
– + for int, + for float

� Two cases inside
each code body
– One that coerces

the argument, one
that doesn’t

University of Washington • CSE583 • D. Notkin © 2000 63

Multiple dispatch

� Allows the classes of more than just
the receiver to determine which
method body is invoked

University of Washington • CSE583 • D. Notkin © 2000 64

Static type checking

� Types can be separated from
classes
– Types can define signatures
– Classes can define implementations

� interface vs. class in Java

University of Washington • CSE583 • D. Notkin © 2000 65

Next week

� We’ll look in more detail at some
languages that make many of these
points more concrete

