
1

CSE583: Programming
Languages

David Notkin
8 February 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Next week

� We’ll look in more detail at some
languages that make many of these
points more concrete

Last week’s last slide:
we’ll look primarily at Smalltalk
80 and Cecil, since they cover

many of the issues

University of Washington • CSE583 • D. Notkin © 2000 3

Smalltalk-80: chalk talk

� Taken largely from Alan Borning
– http://www.cs.washington.edu/education/courses/505/97au/oo/smalltalk-intro.html
– http://www.cs.washington.edu/education/courses/505/97au/oo/smalltalk-basics.html

University of Washington • CSE583 • D. Notkin © 2000 4

Cecil: Chambers et al. @ UW CSE

� Pure, object-oriented language
– Classless object model
– Type safe, garbage collected, implicit

pointers, …
– Multi-methods

• Dispatching on 0 or more arguments
– Optional polymorphic static type checking

• No type inference
– More…

University of Washington • CSE583 • D. Notkin © 2000 5

Procedures and variables

� Use method to define regular procedures
– last expression is returned
– can overload for different numbers of

arguments

� Use let to define local and global
variables
– keyword var required for mutable variables

– initialization required at declaration time

University of Washington • CSE583 • D. Notkin © 2000 6

Example

let var count := 0;
method foo(a,b,c) {
 count := count + 1;

 let var d := a + b;
 let e := wuss(d,c);
 d := d + e;

 d + 5;
}
method wuss(x,y) { x – wuss(y) + 1) }
method wuss(x) { -x / 5 }

2

University of Washington • CSE583 • D. Notkin © 2000 7

Closures

� Code bracketed in braces is a (no
argument) closure
– Evaluated only when invoked by eval
– let closure := { factorial(10) + 5 } ;
…

eval(closure,10) → 3628805

University of Washington • CSE583 • D. Notkin © 2000 8

With arguments

let closure2 := &(n) {

 factorial(n) + 5

};

…

eval(closure2,10) → 3628805
� Just like lambda, fn, \

– anonymous, lexically scoped, largely first-class

University of Washington • CSE583 • D. Notkin © 2000 9

Returning closures

� Cecil (at least a year ago) could not return
closures out of their lexically enclosing
scope
– Not a language feature, but an

implementation infrastructure problem

� Prevents currying, compose, closures
stored in data structures, etc.

University of Washington • CSE583 • D. Notkin © 2000 10

Closures for control structures

� Closures are naturally supportive of lazy
control structures
– if(test, {then_value},{else_value})

– test1 & {test2}

– while({test},{body})

– for(start,stop,&(I){body})

– do(array,&(elem){body});

– fetch(table,key,{if_absent});

– compare(I,j,{if_lt},{if_eq},{if_gt})

University of Washington • CSE583 • D. Notkin © 2000 11

Example

method factorial (n) {

 if(n=0,

 {1},

 {n*factorial(n-1)})}

University of Washington • CSE583 • D. Notkin © 2000 12

Non-local returns

� Exit a method early with a non-local
return from a nested closure
– like return in C

– like a limited continuation in Scheme

3

University of Washington • CSE583 • D. Notkin © 2000 13

Example

method fetch(table,key,if_absent) {
 table.do_associations(&(k,v){
 if(k=key),{^v});
 });
 eval(if_absent)}

method fetch(table,key) {
 fetch(table,key,
 {error(“key “||print_string(key)||
 “not found “)})}

fetch(zips,”Seattle”,{98195})

University of Washington • CSE583 • D. Notkin © 2000 14

Objects, methods, fields

� To define a data structure, use object
– To instantiate, use object isa expression

� To add methods to an object, specialize
the method by adding @Object after the
first (receiver) argument

� To add instance variable, use field

University of Washington • CSE583 • D. Notkin © 2000 15

Example

Object Point;
var field x(p@Point) := 0;
var field y(p@Point) := 0;

method area(p@Point) := {p.x*p.y};
method shift(p@Point,dx,dy) {
 p.x := p.x + dx; p.y := p.y + dy;}

method new_point() {
 object isa Point }
method new_point(x0,y0) {
 object isa Point {x := x0, y := y0}}

University of Washington • CSE583 • D. Notkin © 2000 16

Overloaded methods & dynamic
dispatching

� Can overload methods in two ways
– Same name, different number of

arguments
– Same name and number of arguments,

with different specializer objects
� method area(p@Point) {p.x*p.y}
method area(c@Circle) {
 pi*square(c.radius)}

University of Washington • CSE583 • D. Notkin © 2000 17

Specializer overloading

� Specializer-
based
overloading
resolved by
using run-time
class of
received
argument
– i.e., dynamic

dispatching

method print_area(x) {

 print(area(x)); }

let var p
:=new_point(3,4);

print_area(p);

p := new_circle(5);

print_area(p);

University of Washington • CSE583 • D. Notkin © 2000 18

Field access

� Field declarations implicitly produce 1 or
2 accessor methods
– get accessor

• given object, return field contents
– set accessor (for var fields)

• given object and new contents, modify field

� Fields manipulated only by invoking
these methods
– Syntactic sugar allows invocation of these

methods using classic dot notation

4

University of Washington • CSE583 • D. Notkin © 2000 19

Example

var field x(p@Point) := 0;

method x(p@Point) { fetch p.x and return}

method set_x(p@Point,new_value) { update
p.x and return}

set_x(p,x(p)+1)

p.x := p.x + 1

Automatically generated

Equivalent to each other

University of Washington • CSE583 • D. Notkin © 2000 20

Inheritance

� Make new ADTs from old ones using
isa

– child/parent ≈ subclass/superclass
– inherit all method and field declarations
– can add new fields and methods

• specialized on child object

– can override fields and method

University of Washington • CSE583 • D. Notkin © 2000 21

Example

Object ColorPoint isa Point;
var field color(p@ColorPoint);
method new_color_point(x0,y0,c0) {

 object isa ColorPoint {
 x := x0, y := y0, c := c0 }}
let p := new_color_point(3,4,”blue”);

print(p.color);
p.shift(2,-2);
print(p.x);

University of Washington • CSE583 • D. Notkin © 2000 22

Overriding methods

� Parent and
child can
define
overloaded
methods

� If both apply
to a call, the
child’s takes
precedence

method draw(p@Point) {

 Display.plot_point(p.x,p.y)
}
method draw(p@ColorPoint) {

 Display.set_color(p.color);
 Display.plot_point(p.x,p.y)
}

let var p := new_point(3,4);
p.draw;

p := new_color_point(5,6,”red”);
p.draw;

University of Washington • CSE583 • D. Notkin © 2000 23

Resends

� When overriding method wants to invoke
overridden method

� method draw(p@Point) {
 Display.plot_point(p.x,p.y);}
method draw(p@ColorPoint) {
 Display.set_color(p.color);
 resend;
}

University of Washington • CSE583 • D. Notkin © 2000 24

Overriding fields

� Unusual in OO languages, since the per-
instance memory layout might change

� Since field accesses in Cecil are only
through accessors, this is easier
– Clients cannot tell what a message send to an

accessor actually does
– Efficiency?

� Override accessor methods with regular
methods, and vice versa

5

University of Washington • CSE583 • D. Notkin © 2000 25

Example

object Origin isa Point;

method x(@Origin) {0};

method y(@Origin) {0};

let p := …; --Point or Origin

print(p.x); --how is x

 implemented?

University of Washington • CSE583 • D. Notkin © 2000 26

classless object model

� With class-based object models
– classes differ from objects
– subclassing differs from instantiation

� Not in Cecil
– Individual objects have their own

implementation as part of the object
• Methods are specialized on objects, not on

classes
• Objects with methods and fields specializing

on them act like classes

University of Washington • CSE583 • D. Notkin © 2000 27

More

� An individual object can inherit behavior from
other objects
– If there is no additional customization, then it acts like

an instance
– If there are new and/or overriding methods or fields,

then it acts like a subclass

� Class-like objects can be used directly as
instances
– Ex: Origin object
– Useful for constants, enumerated types, etc.

� Object creation expression instead of special
constructors

University of Washington • CSE583 • D. Notkin © 2000 28

Multiple dispatching: multi-
methods
� Can specialize on more than the first argument
method =(p1@Point,p2@Point) {
 p1.x = p2.x & {p1.y = p2.y} }
method =(p1@ColorPoint,p2@ColorPoint) {

 resend & {p1.color = p2.color}}
let x1 = new_point(…);
let x2 = new_point(…);

let y1 = new_color_point(…);
let y2 = new_color_point(…);
print(x1 = x2); print(x1 = y2);

print(y1 = x2); print(y1 = y2);

University of Washington • CSE583 • D. Notkin © 2000 29

Multi-method overriding

� There are modestly complex rules
for deciding when one multi-method
overrides another

� method wuss(p1@Point,p2@Point) vs.
method wuss(p1@Point,p2@Point)

� method wuss(p1@ColorPoint,p2@ColorPoint)
vs.
method wuss(p1@ColorPoint,p2)

University of Washington • CSE583 • D. Notkin © 2000 30

Ambiguity

� Two methods may be mutually
ambiguous: neither overrides the other
– In this case, it is an error to send a message

and find no most-specific method
• No method: “Do not understand”
• No most-specific: ambiguous

� method wuss(p1@Point,p2) vs.
method wuss(p1,p2@Point)

� method wuss(p1@ColorPoint,p2@Point) vs.
method wuss(p1@Point,p2@ColorPoint)

6

University of Washington • CSE583 • D. Notkin © 2000 31

Advantages of multi-methods

� Unify and generalize
– top-level procedures (zero specialized

arguments)
– regular singly dispatched methods
– overloading

• dynamic, not static

� Naturally allow existing objects to be
extended with new behavior

University of Washington • CSE583 • D. Notkin © 2000 32

Disadvantages of multi-methods

� What’s the programming model?
– (How do I decide when to do this and

when not to?)
� What’s the encapsulation model?
� How to typecheck uses and

definitions of multi-methods?
� How to implement efficiently?

University of Washington • CSE583 • D. Notkin © 2000 33

Examples of multi-method uses

� Binary operations
– Arguments drawn from an abstract

domain with several possible
implementations
• equality over comparable types
• < etc. comparison over ordered types
• arithmetic over numbers
• set operations (union, intersection, etc.)

University of Washington • CSE583 • D. Notkin © 2000 34

More

� Cooperative operations over different
types
– display for different kinds of shapes on

different kinds of output devices
• standard implementation for each kind of

shape
• override with specific implementations for

certain devices
– operations taking flag constant objects, with

different operations for different flags

University of Washington • CSE583 • D. Notkin © 2000 35

Abstract objects

� Can introduce abstract objects
whose sole purpose is to be
inherited from
– Not to be directly used or instantiated
– May be only partially implemented
– May call abstract methods that are

required to be defined by concrete
children

University of Washington • CSE583 • D. Notkin © 2000 36

Example

abstract object Point;

 abstract method x(p@Point);

 abstract method y(p@Point);

 abstract method rho(p@Point);

 abstract method theta(p@Point);

 method area(p@Point) { p.x * p.y }

 method distance_to_origin(p@Point) {…}

7

University of Washington • CSE583 • D. Notkin © 2000 37

A concrete implementation

template object CartesianPoint isa Point;
 field x(p@CartesianPoint) := 0;
 field y(p@CartesianPoint) := 0;

 field rho(p@CartesianPoint) { … };
 field theta(p@CartesianPoint) { … };
 method new_cartesian_point(x0,y0) {

 concrete object isa CartesianPoint {
 x := x0; y := y0 } }

� Doesn’t reimplement the other methods (area,
distance, etc.)

University of Washington • CSE583 • D. Notkin © 2000 38

Another concrete implementation

template object PolarPoint isa Point;
 field x(p@PolarPoint) { … };
 field y(p@PolarPoint) { … };

 field rho(p@PolarPoint) := 0;
 field theta(p@PolarPoint) := 0
 method new_polar_point(rho0,theta0) {

 concrete object isa PolarPoint {
 … } }

� Doesn’t reimplement the other methods (area,
distance, etc.)

University of Washington • CSE583 • D. Notkin © 2000 39

And then…

concrete object Origin isa Point;

 method x(@Origin) { 0 }

 method y(@Origin) { 0 }

 method rho(@Origin) { 0 }

 method theta(@Origin) { 0 }

� Doesn’t reimplement the other methods
(area, distance, etc.)

University of Washington • CSE583 • D. Notkin © 2000 40

Object roles

� abstract
– potentially incomplete
– can be inherited from
– cannot be used

directly or instantiated

� template
– complete
– can be inherited from
– can be instantiated
– not to be used directly

� concrete
– complete
– can be inherited from
– can be instantiated
– can be used directly

University of Washington • CSE583 • D. Notkin © 2000 41

Multiple inheritance

� Can inherit from several parent objects
� Subclass gets union of all fields and

methods inherited from parents
object Shape;
object Rectangle isa Shape;
object Rhombus isa Shape;
object Square isa Rectangle,Rhombus;

University of Washington • CSE583 • D. Notkin © 2000 42

Ambiguities

� Can have ambiguities, just like with multi-
methods in Cecil
– What if two parents define methods, neither

of which overrides the other?
– object Rectangle isa Shape;
 method area(r@Rectangle) { … }
object Rhombus isa Shape;
 method area(r@Rhombus) { … }
object Square isa Rectangle,Rhombus;

let s := new_square(4);
…area(s)… -- which method?

8

University of Washington • CSE583 • D. Notkin © 2000 43

Can resolve

� …by overriding method

 method area(s@Square) {
 resend(s@Rectangle) }

University of Washington • CSE583 • D. Notkin © 2000 44

Diamond-shaped inheritance

� How do we determine method in multiple inheritance if
parent object is reachable in multiple ways?

object Shape;
 field center(s@Shape);

 method is_shape(s@Shape){…};
 method is_rectangular(s@Shape) {…};

object Rectangle isa Shape;
 method is_rectangular(r@Rectangle) {…};

object Rhombus isa Shape;
object Square isa Rectangle,Rhombus;

let s := new_square(3);

…is_shape(s)… is_rectangle(s)… center(s)

University of Washington • CSE583 • D. Notkin © 2000 45

Shape
center

is_shape
is_rectangular

RhombusRectangle
is_rectangular

Square

University of Washington • CSE583 • D. Notkin © 2000 46

Multiple inheritance ambiguity

� Handled very differently in different
languages

� Implicit resolution is common
– Basically, build in a rule to resolve
– CLOS linearizes the inheritance graph

• Use whichever method you reach first
• MOP control?

– Python is similar, fixing a pre-order traversal
of the inheritance graph

University of Washington • CSE583 • D. Notkin © 2000 47

Explicit resolution

� The programmer is responsible for
explicitly resolving any name
clashes
– Cecil
– Eiffel

� If this isn’t done, the program isn’t
correct

University of Washington • CSE583 • D. Notkin © 2000 48

Ban name conflicts

� Ordering dependencies are often a
source of problems in a language

� Explicit resolution places the burden
of resolving names on the
programmer
– But may not avoid unanticipated,

undesirable resolutions

9

University of Washington • CSE583 • D. Notkin © 2000 49

Mixins

� Multiple inheritance has a nice idiomatic usage
called mixins
– Highly factored abstract objects
– Generally independent axes
– Each concrete object combines one mixin choice

from each axis

� Examples axes in GUI
– colored or not, bordered or not, titled or not

� In non-polymorphic languages, can use to
create (for instance) doubly-linked lists of a
given (atomic or user-defined) type

University of Washington • CSE583 • D. Notkin © 2000 50

Example

object CheckBox isa

 Square,

 ColorShape,

 BorderedShape,

 ShapeWithIcon

 ClickableShape,…;

University of Washington • CSE583 • D. Notkin © 2000 51

Encapsulation

� In Cecil, there is no encapsulation
associated directly with objects

� modules are used to wrap a collection of
declarations
– Annotate those declarations with public

(visible) or private (hidden)

– Upon importing a module, only see public
declarations

University of Washington • CSE583 • D. Notkin © 2000 52

Example

module PointMod {

 object Point;

 public get private set var field x(@Point);

 public get private set var field y(@Point);

 public method new_point(x0,y0) {…}

 private method …

}

University of Washington • CSE583 • D. Notkin © 2000 53

When to inherit? (not Cecil-specific)

� Inheritance tends to work well when
– subclass supports a superset of operations

of superclass
• Eseentially, this is contravariance

– subclass reuses much of the implementation
of the superclass

– subclass’ representation extends
representation of superclass

– subclass is a special kind of superclass
• conceptually, subclass is-a superclass

University of Washington • CSE583 • D. Notkin © 2000 54

Inheritance is inappropriate when

� A class has another class as a component
– A point has-a coordinate but is not a coordinate (is-a

vs. has-a)
• The interfaces aren’t related
• Use a slot instead

� Only part of the other class’ implementation is
reused

� Representation of other class needs to be
altered

� When in doubt, don’t inherit!

