
1

CSE583: Programming
Languages

David Notkin
22 February 2000
notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Two weeks: logic and constraint
logic programming paradigms
� Use logic and theorem proving as the

underlying computational model
� From a set of axioms and rules, a

program executes by trying to prove a
given hypothesis

� In constraint logic programming, more
information is provided about the domain,
which can increase the efficiency of the
programs significantly

University of Washington • CSE583 • D. Notkin © 2000 3

Constraint
Logic Programming
� CLP(R) --- built on top of Prolog’s foundations
� Developed by Jaffar and Lassez at

Monash University in Melbourne, Australia
� Includes domain-specific constraint solvers to

augment the logical deduction algorithm
� Different domains are targeted with different

specialized solvers
– CLP(FD), for finite domains
– CLP(R), for real number

University of Washington • CSE583 • D. Notkin © 2000 4

Importance of
Constraint Logic Programming

³:HUH \RX WR DVN PH ZKLFK
SURJUDPPLQJ SDUDGLJP LV OLNHO\ WR
JDLQ PRVW LQ FRPPHUFLDO VLJQLILFDQFH
RYHU WKH QH[W � \HDUV ,
G KDYH WR SLFN
&RQVWUDLQW /RJLF 3URJUDPPLQJ«´

² 'LFN 3RXQWDLQ

University of Washington • CSE583 • D. Notkin © 2000 5

Tonight

� Overview of CLP(R)
– With examples

� Stepping back to look more carefully
at CLP in general
– Based on slides from Marriott and

Stuckey

University of Washington • CSE583 • D. Notkin © 2000 6

Prolog example

solution(X,Y,Z) :- p(X),p(Y),p(Z),test(X,Y,Z).

p(11).
p(3).

p(7).
p(16).
p(15).

p(14).
test(X,Y,Z) :- Y is X+1,Z is Y+1.

solution(X,Y,Z)?

X=14; Y=15; Z=16 ?
no

2

University of Washington • CSE583 • D. Notkin © 2000 7

How many search steps?

� In small groups, determine how
many search steps are needed to
find the one (and only) solution to
the previous Prolog program

� In the form of: “This takes X steps to
find the solution and a total of Y
steps to exhaust the search space.”

University of Washington • CSE583 • D. Notkin © 2000 8

The problem is…

� …that Prolog has an extremely limited
knowledge of mathematics
– It leads to a big search space over only six

possible integer values!

� It checks to see if the formulae hold, but it
doesn’t think about them as mathematical
formulae nor does it manipulate them as
math

University of Washington • CSE583 • D. Notkin © 2000 9

Speeding up the earlier example:
reordering conjuncts
solution(X,Y,Z) :- test(X,Y,Z),p(X),p(Y),p(Z).

p(11).

p(3).

p(7).

p(16).

p(15).

p(14).

test(X,Y,Z) :- Y is X+1,Z is Y+1.

solution(X,Y,Z)?

This fails, since X is uninstantiated in test

University of Washington • CSE583 • D. Notkin © 2000 10

CLP

� CLP essentially merges logic programming with
constraint solving

� Constraint solving is much in the spirit of logic
programming, allowing a two-way flow of
computation
– But the domains are not limited to relations
– Borning’s Thinglab is a classic example of a system

based on constraint solving
• “here’s a polygon in which I always want the opposite

sides to be parallel to each other.”
• “keep point M as the midpoint of the line defined by

points A and B.”

University of Washington • CSE583 • D. Notkin © 2000 11

Solvers

� Underneath any constraint-based system is a
constraint solver that takes equations and
solves them (preferably quickly)

� The constraint satisfaction algorithms used
depend on the domain over which the
constraints are defined
– For reals, common algorithms include gauss and

simplex methods
– A little more later

� To become truly facile at CLP for a given
domain one has to become knowledgeable
about the solvers

University of Washington • CSE583 • D. Notkin © 2000 12

CLP does “more”

� The reason CLP can do “more” than logic
programming is that the elements have
semantic meaning
– in CLP(R), they are real numbers
– In logic programming they were just strings

to which you associated some meaning

� That is, CLP can, in general, manipulate
symbolic expressions, too

� To do this, CLPR has to understand
numbers, equations, arithmetic, etc.

3

University of Washington • CSE583 • D. Notkin © 2000 13

A CLP(R) example

p(X,Y,Z) :- Z = X + Y.
p(3,4,Z)?
Z=7

p(X,4,7)?
X=3

p(X,Y,7).
X = -Y + 7 // instead of returning
 //multiple answers

University of Washington • CSE583 • D. Notkin © 2000 14

The example in CLP(R):
replace is with =
solution(X,Y,Z) :- test(X,Y,Z),p(X),p(Y),p(Z).

p(11).
p(3).

p(7).
p(16).
p(15).

p(14).
test(X,Y,Z) :- Y = X+1,Z = Y+1.

solution(X,Y,Z)?

X=14;Y=15;Z=16;
NO

� How many steps to find the solution?

University of Washington • CSE583 • D. Notkin © 2000 15

Furthermore

solution(X,Y,Z) :-
test(X,Y,Z),p(X),p(Y),p(Z).

test(X,Y,Z) :- Y = X+1,Z = Y+1.

solution(A,B,C)?

B = C – 1

A = C - 2

University of Washington • CSE583 • D. Notkin © 2000 16

Fibonacci: Prolog vs. CLP(R)

fib(0,0).

fib(1,1).
fib(N,F) :-

N > 1, N1 is N-1, N2
is N-2,

fib(N1,F1),
fib(N2,F2),

F is F1 + F2.

fib(10,L)?

fib(N,55)?
 // instantiation error

fib(0,0).

fib(1,1).

fib(N,F1 + F2) :-

N > 1,
fib(N-1,F1),
fib(N-2,F2).

fib(10,L)?

fib(N,55)?

fib(X,X)? //0,1,5

University of Washington • CSE583 • D. Notkin © 2000 17

Slides

� Most of tonight’s slides are taken
(with implicit permission) from slides
produced by Marriott and Stuckey as
support material for their text book
Programming with Constraints: An
Introduction

� This is a great place to look for more
material, if you’re interested

University of Washington • CSE583 • D. Notkin © 2000 18

Constraints

� What are constraints?
� Modeling problems
� Constraint solving
� Tree constraints
� Other constraint domains
� Properties of constraint solving

4

University of Washington • CSE583 • D. Notkin © 2000 19

Constraints

Variable: a place holder for values

X Y Z L U List, , , , ,3 21

Function Symbol: mapping of values to values

Relation Symbol: relation between values

+ − × ÷, , , , sin,cos,||

= ≤ ≠, ,

University of Washington • CSE583 • D. Notkin © 2000 20

Constraints

X

X Y

≥
+ =

4

2 9

Primitive Constraint: constraint relation with
arguments

Constraint: conjunction of primitive constraints

X X Y Y≤ ∧ = ∧ ≥3 4

University of Washington • CSE583 • D. Notkin © 2000 21

Satisfiability

Valuation: an assignment of values to variables

θ
θ

=
+ = + × =

{ , , }

() ()

X Y Z

X Y

� � �3 4 2

2 3 2 4 11

Solution: valuation which satisfies constraint

θ ()

()

X Y X

true

≥ ∧ = +
= ≥ ∧ = + =

3 1

3 3 4 3 1

Very similar to unification

University of Washington • CSE583 • D. Notkin © 2000 22

Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a
solution

X Y X

X Y X Y

≤ ∧ = +
≤ ∧ = + ∧ ≥

3 1

3 1 6

satisfiable

unsatisfiable

University of Washington • CSE583 • D. Notkin © 2000 23

Constraints: syntactic issues

� Constraints are strings of symbols
� Parentheses don't matter

� Order does matter

� Some algorithms will depend on order

() ()X Y Z X Y Z= ∧ = ∧ = ≡ = ∧ = ∧ =0 1 2 0 1 2

X Y Z Y Z X= ∧ = ∧ = /≡ = ∧ = ∧ =0 1 2 1 2 0

University of Washington • CSE583 • D. Notkin © 2000 24

Equivalent Constraints

Two different constraints can represent the same
information

X X

X Y Y X

X Y Y X Y X

> ↔ <
= ∧ = ↔ = ∧ =

= + ∧ ≥ ↔ = + ∧ ≥

0 0

1 2 2 1

1 2 1 3

Two constraints are equivalent if they have the
same set of solutions

5

University of Washington • CSE583 • D. Notkin © 2000 25

Modeling with constraints

� Constraints describe idealized
behavior of objects in the real world

I
I1

I2

V

+

--

+

V1
V2

--

R1 R2

V I R

V I R

V V

V V

V V

I I I

I I I

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

= ×
= ×

− =
− =
− =

− − =
− + + =

University of Washington • CSE583 • D. Notkin © 2000 26

Modelling with constraints
Bu ild ing a House

Doors
2 days

Stage B

In terior W alls
4 days

Ch im ney
3 days

Stage D

Stage E

Tiles
3 days

Roof
2 days

W indows
3 days

Stage C

E xterior W alls
3 days

Stage A

Foundations
7 days

Stage ST

T T

T T

T T

T T

T T

T T

T T

T T

S

A S

B A

C A

D A

D C

E B

E D

E C

≥
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +

0

7

4

3

3

2

2

3

3

start

foundations

interior walls

exterior walls

chimney

roof

doors

tiles

windows

University of Washington • CSE583 • D. Notkin © 2000 27

Constraint Satisfaction

� Given a constraint C, two questions
– satisfaction: does it have a solution?
– solution: give me a solution, if it has

one?

� The first is more basic
� A constraint solver answers the

satisfaction problem

University of Washington • CSE583 • D. Notkin © 2000 28

Constraint Satisfaction

� How do we answer the question?
� Simple approach: try all valuations.

X Y

X Y false

X Y false

X Y false

>

•
•
•

{ , }

{ , }

{ , }

� �

� �

� �

1 1

1 2

1 3

X Y

X Y false

X Y true

X Y false

X Y true

X Y true

>

•
•

{ , }

{ , }

{ , }

{ , }

{ , }

� �

� �

� �

� �

� �

1 1

2 1

2 2

3 1

3 2

University of Washington • CSE583 • D. Notkin © 2000 29

Constraint Satisfaction

� The enumeration method won’t work
for reals

� A smarter version will be used for
finite domain constraints

� How do we solve constraints on the
reals?

� ⇒ Gauss-Jordan elimination

University of Washington • CSE583 • D. Notkin © 2000 30

Gauss-Jordan elimination

� Choose an equation c from C
� Rewrite c into the form x = e
� Replace x everywhere else in C by e
� Continue until

– all equations are in the form x = e
– or an equation is equivalent to d = 0 ^ (d != 0)

� Return true in the first case else false

6

University of Washington • CSE583 • D. Notkin © 2000 31

Gauss-Jordan Example 1
1 2

3

5

+ = + ∧
− = ∧

+ = +

X Y Z

Z X

X Y Z

Replace X by 2Y+Z-1

X Y Z

Z Y Z

Y Z Y Z

= + − ∧
− − + = ∧

+ − + = +

2 1

2 1 3

2 1 5

Replace Y by -1

X Z

Y

Z Z

= − + − ∧
= − ∧

− + − − = +

2 1

1

2 1 1 5

1 2+ = +X Y Z

− =2 2Y

− =4 5

Return
false

University of Washington • CSE583 • D. Notkin © 2000 32

Gauss-Jordan Example 2
1 2

3

+ = + ∧
− =

X Y Z

Z X

Replace X by 2Y+Z-1

X Y Z

Z Y Z

= + − ∧
− − + =

2 1

2 1 3

Replace Y by -1

X Z

Y

= − ∧
= −

3

1

1 2+ = +X Y Z

− =2 2Y

Solved form: constraints in
this form are satisfiable

University of Washington • CSE583 • D. Notkin © 2000 33

Solved Form

� Non-parametric variable: appears on
the left of one equation.

� Parametric variable: appears on the
right of any number of equations.

� Solution: choose parameter values
and determine non-parameters

X Z

Y

= − ∧
= −

3

1
Z = 4 X

Y

= − =
= −

4 3 1

1

University of Washington • CSE583 • D. Notkin © 2000 34

Tree Constraints

� Tree constraints represent structured
data

� Tree constructor: character string
– cons, node, null, widget, f

� Constant: constructor or number
� Tree:

– A constant is a tree
– A constructor with a list of > 0 trees is a tree
– Drawn with constructor above children

University of Washington • CSE583 • D. Notkin © 2000 35

Tree Examples

order

part quantity date

77665 widget 17 3 feb 1994

red moose

order(part(77665, widget(red, moose)),
quantity(17), date(3, feb, 1994))

cons

cons

cons

red

blue

red

cons

cons(red,cons(blue,con
s(red,cons(…))))

University of Washington • CSE583 • D. Notkin © 2000 36

Tree Constraints

� Height of a tree:
– a constant has height 1
– a tree with children t1, …, tn has height

one more than the maximum of trees
t1,…,tn

7

University of Washington • CSE583 • D. Notkin © 2000 37

Terms

� A term is a tree with variables replacing
subtrees

� Term:
– A constant is a term
– A variable is a term
– A constructor with a list of > 0 terms is a

term
– Drawn with constructor above children

� Term equation: s = t (s,t terms)

University of Washington • CSE583 • D. Notkin © 2000 38

part Q date

77665 widget 3 feb Y

C moose

order

order(part(77665, widget(C, moose)),
Q, date(3, feb, Y))

cons

cons

L

red

B

red

cons

cons(red,cons(B,cons
(red,L)))

Term Examples

University of Washington • CSE583 • D. Notkin © 2000 39

Tree Constraint Solving

� Assign trees to variables so that the
terms are identical
– cons(R, cons(B, nil)) = cons(red, L)

� Similar to Gauss-Jordan
� Starts with a set of term equations C and

an empty set of term equations S
� Continues until C is empty or it returns

false

{ , (,), }R red L cons blue nil B blue� � �

University of Washington • CSE583 • D. Notkin © 2000 40

Tree Constraint Solving

� unify(C)
– Remove equation c from C
– case x=x: do nothing
– case f(s1,..,sn)=g(t1,..,tn): return false
– case f(s1,..,sn)=f(t1,..,tn):

• add s1=t1, .., sn=tn to C

– case t=x (x variable): add x=t to C
– case x=t (x variable): add x=t to S

• substitute t for x everywhere else in C and S

University of Washington • CSE583 • D. Notkin © 2000 41

Tree Solving Example

cons Y nil cons X Z Y cons a T

Y X nil Z Y cons a T

nil Z X cons a T

Z nil X cons a T

X cons a T

true

(,) (,) (,)

(,)

(,)

(,)

(,)

= ∧ =
= ∧ = ∧ =

= ∧ =
= ∧ =
=

true

true

Y X

Y X

Y X Z nil

Y cons a T Z nil X cons a T

=
=

= ∧ =
= ∧ = ∧ =(,) (,)

C S

� � � �

Like Gauss-Jordan, variables are parameters or non-parameters.
A solution results from setting parameters (i.e., T) to any value.

University of Washington • CSE583 • D. Notkin © 2000 42

One extra case

� Is there a solution to X = f(X) ?
� NO!

– if the height of X in the solution is n
– then f(X) has height n+1

� Occurs check:
– before substituting t for x
– check that x does not occur in t

8

University of Washington • CSE583 • D. Notkin © 2000 43

Other Constraint Domains

� There are many
– Boolean constraints
– Sequence constraints
– Blocks world

� Many more, usually related to some
well understood mathematical
structure

University of Washington • CSE583 • D. Notkin © 2000 44

Boolean Constraints

Used to model circuits, register allocation problems, etc.

X

Y

Z
O

A N

An exclusive or gate

O X Y

A X Y

N A

Z O N

↔ ∨ ∧
↔ ∧
↔ ¬ ∧
↔

()

(&)

(&)

Boolean constraint
describing the xor circuit

University of Washington • CSE583 • D. Notkin © 2000 45

Boolean Constraints
X

Y

Z
O

A N

¬ ↔ ↔ ∨ ∧
¬ ↔ ↔ ∧
¬ ↔ ↔ ¬ ∧
¬ ↔ ↔

FO O X Y

FA A X Y

FN N A

FG Z N O

(())

((&))

()

((&)

Constraint modeling the circuit with faulty variables

¬ ∧ ¬ ∧ ¬ ∧
¬ ∧ ¬ ∧ ¬

(&) (&) (&)

(&) (&) (&)

FO FA FO FN FO FG

FA FN FA FG FN FG

University of Washington • CSE583 • D. Notkin © 2000 46

Boolean Solver

let m be the number of primitive constraints in C

epsilon is between 0 and 1 and

determines the degree of incompleteness

for i := 1 to n do

generate a random valuation over the variables in C

if the valuation satisfies C then return true endif

endfor

return unknown

n

m
m

:
ln()

ln(()
=

− −

















ε

1 1
1

University of Washington • CSE583 • D. Notkin © 2000 47

Boolean Constraints

� Something new?
� The Boolean solver can return unknown
� It is incomplete (doesn’t answer all

questions)
� It is polynomial time, where a complete

solver is exponential (unless P = NP)
� Still such solvers can be useful!

University of Washington • CSE583 • D. Notkin © 2000 48

Blocks World Constraints

Objects in the blocks world can be on the floor or on another
object. Physics restricts which positions are stable. Primitive
constraints are e.g. red(X), on(X,Y), not_sphere(Y).

floor

Constraints don't have to be mathematical

9

University of Washington • CSE583 • D. Notkin © 2000 49

Blocks World Constraints

A solution to a Blocks World constraint is a picture

with an annotation of which variable is which block

yellow Y

red X

on X Y

floor Z

red Z

()

()

(,)

()

()

∧
∧

∧
∧

Y

X

Z

University of Washington • CSE583 • D. Notkin © 2000 50

Solver Definition

� A constraint solver is a function solv
that takes a constraint C and returns
true, false or unknown depending on
whether the constraint is satisfiable
– if solv(C) = true then C is satisfiable
– if solv(C) = false then C is unsatisfiable

University of Washington • CSE583 • D. Notkin © 2000 51

Properties of Solvers

� We desire solvers to have certain
properties

� well-behaved:
– set based: answer depends only on set of

primitive constraints
– monotonic: is solver fails for C1 it also fails

for C1 /\ C2
– variable name independent: the solver gives

the same answer regardless of names of vars

University of Washington • CSE583 • D. Notkin © 2000 52

Properties of Solvers

� The most restrictive property we can
ask:
– complete: A solver is complete if it

always answers true or false
• (never unknown)

University of Washington • CSE583 • D. Notkin © 2000 53

Constraints Summary

� Constraints are pieces of syntax
used to model real world behavior

� A constraint solver determines if a
constraint has a solution

� Real arithmetic and tree constraints
� Properties of solver we expect (well-

behavedness)

University of Washington • CSE583 • D. Notkin © 2000 54

Simplification, Optimization and
Implication

� Constraint Simplification
� Projection
� Constraint Simplifiers
� Optimization
� Implication and Equivalence

10

University of Washington • CSE583 • D. Notkin © 2000 55

Constraint Simplification

� Two equivalent constraints represent the
same information

� But one may be simpler than the other
X X Y X

X Y X

X X Y

X Y X

X Y Y

X Y Y

≥ ∧ ≥ ∧ = +
↔ ≥ ∧ = +
↔ ≤ ∧ = −
↔ = − ∧ ≤

↔ = − ∧ ≤ −
↔ = − ∧ ≤ −

1 3 2

3 2

3 2

2 3

2 3 2

2 1

Removing redundant
constraints, rewriting a
primitive constraint, changing
order, substituting using an
equation all preserve
equivalence

University of Washington • CSE583 • D. Notkin © 2000 56

Redundant Constraints

� One constraint C1 implies another C2 if
the solutions of C1 are a subset of those
of C2

� C2 is said to be redundant with respect to
C1

X X

Y X Y X

cons X X cons Z nil Z nil

≥ → ≥
≤ + ∧ ≥ → ≥

= → =

3 1

2 4 1

(,) (,)

University of Washington • CSE583 • D. Notkin © 2000 57

Redundant Constraints

� We can remove a primitive
constraint that is redundant with
respect to the rest of the constraint

X X X

Y X X Y Y X Y

cons X X cons Z nil Z nil cons X X cons Z nil

≥ ∧ ≥ ↔ ≥
≤ + ∧ ≥ ∧ ≥ ↔ ≤ + ∧ ≥
= ∧ = ↔ =

1 3 3

2 1 4 2 4

(,) (,) (,) (,)

Definitely produces a simpler constraint

University of Washington • CSE583 • D. Notkin © 2000 58

Solved Form Solvers

� Since a solved form solver creates equivalent
constraints, it can be a simplifier

cons X X cons Z nil Y succ X succ Z Y Z nil

X nil Z nil Y succ nil

(,) (,) () ()

()

= ∧ = ∧ = ∧ =
↔ = ∧ = ∧ =

For example, using the term constraint solver

Or using the Gauss-Jordan solver
X Y Y X T Z X Y Z T

X Y Z T

= + ∧ + − = ∧ + = ∧ + =
↔ = ∧ = ∧ = −

2 2 4 5

3 1 5

University of Washington • CSE583 • D. Notkin © 2000 59

Projection

It becomes even more important to simplify when we are
only interested in some variables in the constraint

I
I1

I2

V

+

--

+

V1
V2

--

V I R

V I R

V V

V V

V V

I I I

I I I

R

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

1 5

= ×
= ×

− =
− =
− =

− − =
− + + =

=
Simplified w.r.t. to V and I

V I=
10

University of Washington • CSE583 • D. Notkin © 2000 60

Constraint Simplifiers

� constraints C1 and C2 are equivalent wrt
variables V if
– taking any solution of one and restricting it to

the variables V, this restricted solution can be
extended to be a solution of the other

� Example X=succ(Y) and X=succ(Z) wrt {X}

X succ Y X X succ Z

X succ a Y a X succ a X succ a Z a
= =() { } ()

{ (), } { ()} { (), }� � � � �

� � � � �

11

University of Washington • CSE583 • D. Notkin © 2000 61

Optimization

� Often given some problem that is
modeled by constraints we don’t want
just any solution, but a “best” solution

� This is an optimization problem

� We need an objective function so that we
can rank solutions
– That is, a mapping from solutions to a real

value

University of Washington • CSE583 • D. Notkin © 2000 62

Optimization Problem

� An optimization problem (C,f) consists of a
constraint C and objective function f

� A valuation v1 is preferred to valuation v2
if f(v1) < f(v2)

� An optimal solution is a solution of C such
that no other solution of C is preferred to
it

University of Washington • CSE583 • D. Notkin © 2000 63

Optimization Example

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

An optimization problem

(,)C X Y f X Y≡ + ≥ ≡ +4 2 2

Find the closest point to the
origin satisfying the C.
Some solutions and f value

{ , }

{ , }

{ , }

X Y

X Y

X Y

� �

� �

� �

0 4 16

3 3 18

2 2 8

Optimal solution
{ , }X Y� �2 2

University of Washington • CSE583 • D. Notkin © 2000 64

Optimization

� Some optimization problems have
no solution
– Constraint has no solution

– Problem has no optimum — for any
solution there is more preferable one

(,)X X X≥ ∧ ≤2 0 2

(,)X X≤ 0

University of Washington • CSE583 • D. Notkin © 2000 65

Simplex Algorithm

� The most widely used optimization
algorithm

� Optimizes a linear function wrt to
linear constraints

� Related to Gauss-Jordan elimination

University of Washington • CSE583 • D. Notkin © 2000 66

Simplex Algorithm

� A optimization problem (C, f) is in
simplex form:
– C is the conjunction of CE and CI
– CE is a conjunction of linear equations
– CI constrains all variables in C to be

non-negative
– f is a linear expression over variables in

C

12

University of Washington • CSE583 • D. Notkin © 2000 67

Simplex Example

minimize subject to3 2 1

3

3 2 1

0 0 0 0

X+ Y-Z+

X Y

X Y Z T

X Y Z T

+ = ∧
− − + + = ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

An optimization problem in simplex form

• An arbitrary problem can be put in simplex form by

• replacing unconstrained var X by new vars

• replacing ineq by new var s and

X X+ −−

e r≤ e s r+ =

University of Washington • CSE583 • D. Notkin © 2000 68

Simplex Solved Form

� A simplex optimization problem is in basic
feasible solved (bfs) form if:
– The equations are in solved form
– Each constant on the right hand side is non-

negative
– Only parameters occur in the objective

� A basic feasible solution is obtained by
setting each parameter to 0 and each non-
parameter to the constant in its equation

University of Washington • CSE583 • D. Notkin © 2000 69

Simplex Example

minimize subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

An equivalent problem to that before in bfs form

We can read off a solution and its objective value
{ , , , }X T Y Z

f

� � � �3 4 0 0

10=

University of Washington • CSE583 • D. Notkin © 2000 70

Simplex Algorithm

starting from a problem in bfs form

repeat

 Choose a variable y with negative coefficient in the obj. func.

 Find the equation x = b + cy + ... where c<0 and -b/c is minimal

 Rewrite this equation with y the subject y = -b/c + 1/c x + ...

 Substitute -b/c + 1/c x + ... for y in all other eqns and obj. func.

until no such variable y exists or no such equation exists

if no such y exists optimum is found

else there is no optimum solution

University of Washington • CSE583 • D. Notkin © 2000 71

Simplex Example
minimize subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

Choose variable Y, the first
eqn is only one with neg.
coeff

minimize subject to7

3

10 2 2

+ −
= − ∧
= − − ∧

X Z

Y X

T X Z

Choose variable Z, the 2nd
eqn is only one with neg.
coeff Z X T= − −5 0 5.

minimize subject to2 2 0 5

3

5 0 5

+ +
= − ∧
= − − ∧

X T

Y X

Z X T

.

.

No variable can be chosen,
optimal value 2 is found

University of Washington • CSE583 • D. Notkin © 2000 72

Another example

0 1 2 3 4

1

2

3

4

Y

X

-2 -1 0

1

2

preferred
solutions

minimize subject toX Y

Y

X

X

−
≥ ∧
≥ ∧
≤ ∧

0

1

3

An equivalent simplex form is:

32

3

1

1

3

2

≥≥≥≥≥
∧=++−
∧=+
∧=−

SYX

SX

SX

An optimization problem
showing contours of the
objective function

13

University of Washington • CSE583 • D. Notkin © 2000 73

Implication and Equivalence

� Other important operations involving
constraints are:

� implication: test if C1 implies C2
– impl(C1, C2) answers true, false or unknown

� equivalence: test if C1 and C2 are
equivalent
– equiv(C1, C2) answers true, false or unknown

University of Washington • CSE583 • D. Notkin © 2000 74

Implication Example
B u ild in g a H o u s e

D oo rs
2 d a ys

S ta g e B

In te rio r W a lls
4 d a ys

C h im n e y
3 d a ys

S ta g e D

S ta g e E

Tiles
3 d a ys

R o of
2 d ays

W in d o w s
3 d a ys

S ta g e C

E xterio r W alls
3 d ays

S ta g e A

F o u n d at io n s
7 d a ys

S ta g e S

For the house constraints CH, will
stage B have to be reached after
stage C?

CH T TB C→ ≥
For this question the answer if
false, but if we require the house
to be finished in 15 days the
answer is true

CH T T TE B C∧ = → ≥15

University of Washington • CSE583 • D. Notkin © 2000 75

Simplication, Optimization and
Implication Summary
� Equivalent constraints can be written in

many forms, hence we desire
simplification

� Particularly if we are only interested in the
interaction of some of the variables

� Many problems desire a optimal solution,
there are algorithmms (simplex) to find
them

University of Washington • CSE583 • D. Notkin © 2000 76

Some more CLP(R) examples

� To try to tie this all together

University of Washington • CSE583 • D. Notkin © 2000 77

Rules

I
I1

I2

V

+

--

V

R1 R2

A user defined constraint
to define the model of the
simple circuit:

parallel_resistors(V,I,R1,R2)

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

And the rule defining it

University of Washington • CSE583 • D. Notkin © 2000 78

Using Rules

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Behavior with resistors of 10 and 5 Ohms

parallel_resistors(, , ,)V I R R R R1 2 1 10 2 5∧ = ∧ =

Behavior with 10V battery where resistors are the same

parallel resistors
It represents the constraint (macro replacement)

14

University of Washington • CSE583 • D. Notkin © 2000 79

Modeling

� Choose the variables that will be used to
represent the parameters of the problem
(this may be straightforward or difficult)

� Model the idealized relationships between
these variables using the primitive
constraints available in the domain

University of Washington • CSE583 • D. Notkin © 2000 80

Modelling Example

W

P

A traveler wishes to cross a
shark infested river as
quickly as possible.
Reasoning the fastest route
is to row straight across and
drift downstream, where
should she set off

width of river: W
speed of river: S
set of position: P
rowing speed: R

R

S

University of Washington • CSE583 • D. Notkin © 2000 81

Modelling Example

Reason: in the time the rower rows the width of
the river, she floats downstream distance given
by river speed by time. Hence model

river(W, S, R, P) :- T = W/R, P = S*T.

Suppose she rows at 1.5m/s, river speed is 1m/s
and width is 24m.

river(24, 1, 1.5, P).

Has unique answer P = 16

University of Washington • CSE583 • D. Notkin © 2000 82

Modeling Example Cont.

If her rowing speed is between 1 and 1.3 m/s
and she cannot set out more than 20 m
upstream can she make it?

1 <= R, R <= 1.3, P <= 20,
river(24,1,R,P).

Flexibility of constraint based modeling!

University of Washington • CSE583 • D. Notkin © 2000 83

More Complicated Model

� A call option gives the holder the right to
buy 100 shares at a fixed price E

� A put option gives the holder the right to
sell 100 shares at a fixed price E

� pay off of an option is determined by cost
C and current share price S

� e.g. call cost $200 exercise $300
– stock price $2, don’t exercise payoff = -$200
– stock price $7, exercise payoff = $200

University of Washington • CSE583 • D. Notkin © 2000 84

Options Trading

0 1 2 3 4 5 6 7

call, buying
call, selling-200

-100
0

100
200

call C=200, E = 300 put C=100, E = 300

0 1 2 3 4 5 6

butterfly
-100
-50

0
50

100
Butterfly strike:
buy call at 500
and 100 sell 2
puts at 300

0 1 2 3 4 5 6 7

put, buying
-200
-100

0
100
200

15

University of Washington • CSE583 • D. Notkin © 2000 85

Modeling Functions

call payoff S C E
C S E

S E C S E
_ (, ,)

/

/
=

− ≤ ≤
− − ≥





if

if

0 100

100 100

buy_call_payoff(S,C,E,P) :-

0 <= S, S <= E/100, P = -C.

buy_call_payoff(S,C,E,P) :-

S >= E/100, P = 100*S - E - C.

Model a function with n arguments as a predicate with n+1
arguments. Tests are constraints, and result is an equation

University of Washington • CSE583 • D. Notkin © 2000 86

Modeling Options

Add an extra argument B=1 (buy), B = -1 (sell)

call_option(B,S,C,E,P) :-

0 <= S, S <= E/100, P = -C * B.

call_option(B,S,C,E,P) :-

S >= E/100, P = (100*S - E - C)*B.

call_option(1, 7, 200, 300, P)

has answer P = 200

The goal (the original call option question)

University of Washington • CSE583 • D. Notkin © 2000 87

Using the Model

butterfly(S, P1 + 2*P2 + P3) :-

Buy = 1, Sell = -1,

call_option(Buy, S, 100, 500, P1),

call_option(Sell, S, 200, 300, P2),

call_option(Buy, S, 400, 100, P3).

P >= 0, butterfly(S,P).

has two answers
P S S S

P S S S

= − ∧ ≤ ∧ ≤
= − + ∧ ≤ ∧ ≤

100 200 2 3

100 400 3 4

University of Washington • CSE583 • D. Notkin © 2000 88

Wrap up

� LP and CLP are not general purpose
computing paradigms
– Even though they are Turing equivalent, there

is no way you’d do most general purpose
programs in them

� However, there are a number of important
problems for which this is a good match

University of Washington • CSE583 • D. Notkin © 2000 89

Domains

� But the expense of building a solver,
simplifier, etc. for a given domain is
not small
– So the narrow domain must provide

enough benefit to justify this effort

University of Washington • CSE583 • D. Notkin © 2000 90

Next week

� Visual programming and program
visualization

� Final week: domain specific
languages

