

Two weeks: logic and constraint

 logic programming paradigms- Use logic and theorem proving as the underlying computational model
- From a set of axioms and rules, a program executes by trying to prove a given hypothesis
- In constraint logic programming, more information is provided about the domain, which can increase the efficiency of the programs significantly

Importance of Constraint Logic Programming

"Were you to ask me which programming paradigm is likely to gain most in commercial significance over the next 5 years I'd have to pick Constraint Logic Programming..."

- Dick Pountain

University of Washington • CSE583 • D. Notkin © 2000 4

Prolog example

```
solution(X,Y,Z) :- p(X),p(Y),p(Z), test(X,Y,Z).
p(11).
p(3).
p(7).
p(16).
p(15).
p(14)
test(X,Y,Z) :- Y is X+1,Z is Y+1.
solution(X,Y,Z) ?
X=14; Y=15; Z=16 ?
no
```


How many search steps?

- In small groups, determine how many search steps are needed to find the one (and only) solution to the previous Prolog program
- In the form of: "This takes X steps to find the solution and a total of Y steps to exhaust the search space."

University of Washington • CSE583 • D. Notkin © 2000

Speeding up the earlier example: reordering conjuncts

solution ($\mathrm{X}, \mathrm{y}, \mathrm{Z}$) :- test($\mathrm{X}, \mathrm{y}, \mathrm{Z}), \mathrm{p}(\mathrm{X}), \mathrm{p}(\mathrm{Y}), \mathrm{p}(\mathrm{Z})$.
$\mathrm{p}(11)$.
$p(3)$.
$p(7)$.
$p(16)$.
p(15).
p(14).
test $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):-\mathrm{Y}$ is $\mathrm{X}+1, \mathrm{Z}$ is $\mathrm{Y}+1$.
solution ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) ?
This fails, since X is uninstantiated in test
University of Washington • CSE583 • D. Notkin © 2000

The problem is...

- ...that Prolog has an extremely limited knowledge of mathematics
- It leads to a big search space over only six possible integer values!
- It checks to see if the formulae hold, but it doesn't think about them as mathematical formulae nor does it manipulate them as math

CLP

- CLP essentially merges logic programming with constraint solving
- Constraint solving is much in the spirit of logic programming, allowing a two-way flow of computation
- But the domains are not limited to relations
- Borning's Thinglab is a classic example of a system based on constraint solving
- "here's a polygon in which I always want the opposite sides to be parallel to each other."
- "keep point M as the midpoint of the line defined by points A and B."

University of Washington • CSE583 • D. Notkin © 2000 10

Solvers

- Underneath any constraint-based system is a constraint solver that takes equations and solves them (preferably quickly)
- The constraint satisfaction algorithms used depend on the domain over which the constraints are defined
- For reals, common algorithms include gauss and simplex methods
- A little more later
- To become truly facile at CLP for a given domain one has to become knowledgeable about the solvers

CLP does "more"

- The reason CLP can do "more" than logic programming is that the elements have semantic meaning
- in $\operatorname{CLP}(R)$, they are real numbers
- In logic programming they were just strings to which you associated some meaning
- That is, CLP can, in general, manipulate symbolic expressions, too
- To do this, CLPR has to understand numbers, equations, arithmetic, etc.

A CLP(R) example

```
p(X,Y,Z) :- Z = X + Y.
p(3,4,Z)?
Z=7
p(x,4,7) ?
X=3
p(X,Y,7).
X = -Y + 7 // instead of returning
    //multiple answers
```

University of Washington - CSE583 • D. Notkin © 2000
13

The example in CLP(R):

 replace is with $=$```
solution(X,Y,Z) :- test(X,Y,Z),p(X),p(Y),p(Z).
p(11).
p(3).
p(7).
p(16).
p(15).
p(14).
test(X,Y,Z) :- Y = X+1,Z = Y+1.
solution(X,Y,Z)?
X=14;Y=15;Z=16;
No
- How many steps to find the solution?
University of Washington - CSE583 - D. Notkin © 2000
```

Fibonacci: Prolog vs. CLP(R)

```
fib (0,0).
fib(1,1).
fib(N,F) :
 N > 1, N1 is N-1, N2
 is N-2,
 fib(N1,F1),
 fib(N2,F2),
 F is F1 + F2.
fib (10,L)?
fib(N,55)?
 // instantiation error
```

```
fib (0,0).
```

fib (0,0).
fib (1,1).
fib (1,1).
fib(N,F1 + F2) :-
fib(N,F1 + F2) :-
N > 1,
N > 1,
fib(N-1,F1)
fib(N-1,F1)
fib(N-2,F2)
fib(N-2,F2)
fib(10,L) ?
fib(N,55) ?
fib(x,x)? //0,1,5
University of Washington - CSE583 - D. Notkin © 2000
16

```

\section*{Slides}
- Most of tonight's slides are taken (with implicit permission) from slides produced by Marriott and Stuckey as support material for their text book Programming with Constraints: An Introduction
- This is a great place to look for more material, if you're interested

\section*{Constraints}
- What are constraints?
- Modeling problems
- Constraint solving
- Tree constraints
- Other constraint domains
\(\bullet\) Properties of constraint solving

University of Washington • CSE583 • D. Notkin © 2000

\section*{Constraints}

Primitive Constraint: constraint relation with arguments
\[
\begin{aligned}
& X \geq 4 \\
& X+2 Y=9
\end{aligned}
\]

Constraint: conjunction of primitive constraints
\[
X \leq 3 \wedge X=Y \wedge Y \geq 4
\]

\section*{Satisfiability}
Very similar to unification

Valuation: an assignment of values to variables
\[
\begin{aligned}
& \theta=\{X \mapsto 3, Y \mapsto 4, Z \mapsto 2\} \\
& \theta(X+2 Y)=(3+2 \times 4)=11
\end{aligned}
\]

Solution: valuation which satisfies constraint
\[
\begin{aligned}
& \theta(X \geq 3 \wedge Y=X+1) \\
& =(3 \geq 3 \wedge 4=3+1)=\text { true }
\end{aligned}
\]

University of Washington • CSE583 • D. Notkin © 2000 21

\section*{Constraints: syntactic issues}
- Constraints are strings of symbols
- Parentheses don't matter
\((X=0 \wedge Y=1) \wedge Z=2 \equiv X=0 \wedge(Y=1 \wedge Z=2)\)
- Order does matter
\(X=0 \wedge Y=1 \wedge Z=2 \not \equiv Y=1 \wedge Z=2 \wedge X=0\)
- Some algorithms will depend on order

University of Washington - CSE583 • D. Notkin © 2000 23

\section*{Equivalent Constraints}

Two different constraints can represent the same information
\[
\begin{gathered}
X>0 \leftrightarrow 0<X \\
X=1 \wedge Y=2 \leftrightarrow Y=2 \wedge X=1 \\
X=Y+1 \wedge Y \geq 2 \leftrightarrow X=Y+1 \wedge X \geq 3
\end{gathered}
\]

Two constraints are equivalent if they have the same set of solutions

\section*{Modeling with constraints}
- Constraints describe idealized behavior of objects in the real world
\(V 1=I 1 \times R 1\)
\(V 2=I 2 \times R 2\)
\(V-V 1=0\)
\(V-V 2=0\)
\(V 1-V 2=0\)
\(I-I 1-I 2=0\)
\(-I+I 1+I 2=0\)

\section*{Modelling with constraints}
foundations \(T_{A} \geq T_{S}+7\)
interior walls \(T_{B} \geq T_{A}+4\)
exterior walls \(T_{C} \geq T_{A}+3\)
chimney \(T_{D} \geq T_{A}+3\)
roof \(T_{D} \geq T_{C}+2\)
doors \(T_{E} \geq T_{B}+2\)
tiles \(T_{E} \geq T_{D}+3\)
windows \(T_{E} \geq T_{C}+3\)

\section*{Constraint Satisfaction}
- Given a constraint \(C\), two questions - satisfaction: does it have a solution?
- solution: give me a solution, if it has one?
- The first is more basic
- A constraint solver answers the satisfaction problem

University of Washington • CSE583 • D. Notkin © 2000 27

\section*{Constraint Satisfaction}
- The enumeration method won't work for reals
- A smarter version will be used for finite domain constraints
- How do we solve constraints on the reals?
\(\bullet \Rightarrow\) Gauss-Jordan elimination

\section*{Constraint Satisfaction}
- How do we answer the question?
- Simple approach: try all valuations.
\begin{tabular}{cc}
\(X>Y\) & \\
\(X>Y\) & \(\{X \mapsto 1, Y \mapsto 1\}\) false \\
\(\{X \mapsto 1, Y \mapsto 1\}\) false & \(\{X \mapsto 2, Y \mapsto 1\}\) true \\
\(\{X \mapsto 1, Y \mapsto 2\}\) false & \(\{X \mapsto 2, Y \mapsto 2\}\) false \\
\(\{X \mapsto 1, Y \mapsto 3\}\) false & \(\{X \mapsto 3, Y \mapsto 1\}\) true \\
\(\bullet\) & \(\{X \mapsto 3, Y \mapsto 2\}\) true \\
\(\bullet\) & \(\bullet\) \\
\(\bullet\) & \(\bullet\) \\
\hline University of Washington•CsE583•D. Notkin © \(\mathbf{2 0 0 0}\) & \(\mathbf{2 8}\) \\
\hline
\end{tabular}

\section*{Gauss-Jordan elimination}
- Choose an equation \(c\) from \(C\)
- Rewrite \(c\) into the form \(x=e\)
- Replace \(x\) everywhere else in \(C\) by \(e\)
- Continue until
- all equations are in the form \(x=e\)
- or an equation is equivalent to \(d=0^{\wedge}(d!=0)\)
- Return true in the first case else false

\section*{Gauss-Jordan Example 2}
\begin{tabular}{rl}
\(1+X\) & \(=2 Y+Z \wedge \quad 1+X=2 Y+Z\) \\
\(Z-X\) & \(=3\)
\end{tabular}
\[
\text { Replace } X \text { by } 2 Y+Z-1
\]
\(\frac{Z-2 Y-Z+1=3}{}\)

Replace \(Y\) by -1
\(\begin{aligned} X & =Z-3 \wedge \quad \text { Solved form: constraints in } \\ Y & =-1\end{aligned}\) this form are satisfiable

\section*{Solved Form}
- Non-parametric variable: appears on the left of one equation.
- Parametric variable: appears on the right of any number of equations.
- Solution: choose parameter values and determine non-parameters
\(X=Z-3 \wedge \longrightarrow Z=4 \longrightarrow X=4-3=1\) \(Y=-1 \quad Y=-1\)

University of Washington •CSE583 • D. Notkin © 2000 33

\section*{Tree Constraints}
- Height of a tree:
-a constant has height 1
- a tree with children t1, ..., tn has height one more than the maximum of trees t1,...,tn

\section*{Terms}
- A term is a tree with variables replacing subtrees
- Term:
- A constant is a term
- A variable is a term
- A constructor with a list of \(>0\) terms is a term
- Drawn with constructor above children

Term equation: \(\mathbf{s}=\mathbf{t}\) (\(\mathbf{s}, \mathrm{t}\) terms)

\section*{Term Examples}

\section*{Tree Constraint Solving}
- unify(C)
- Remove equation \(c\) from \(C\)
- case \(x=x\) : do nothing
- case \(f(s 1, . ., s n)=g(t 1, . ., t n)\) : return false
- case \(f(s 1, . ., s n)=f(t 1, . ., t n)\) :
- add s1=t1, .., sn=tn to \(C\)
- case \(t=x\) (\(x\) variable): add \(x=t\) to \(C\)
- case \(x=t\) (\(x\) variable): add \(x=t\) to \(S\)
- substitute \(t\) for \(x\) everywhere else in \(C\) and \(S\)

University of Washington • CSE583 • D. Notkin © 2000 40

\section*{Tree Solving Example}
```

    C
    cons(Y,nil)}=\operatorname{cons}(X,Z)\wedgeY=\operatorname{cons}(a,T
Y=X}\wedge\mathrm{ nil = Z^ }Y=\operatorname{cons}(a,T
true
Y=X\wedgenil = Z^Y= cons(a,T) true
nil =Z}\mathrm{ ^ X = cons(a,T) Y=X
Z = nil }\wedgeX=\operatorname{cons}(a,T)\quadY=
X=\operatorname{cons}(a,T) Y=X\wedgeZ = nil
true Y
Like Gauss-Jordan, variables are parameters or non-parameters. A solution results from setting parameters (i.e., $T$ ) to any value.

## One extra case

- Is there a solution to $X=f(X)$ ?
- NO!
- if the height of $X$ in the solution is $n$
-then $f(X)$ has height $n+1$
- Occurs check:
- before substituting $t$ for $\mathbf{x}$
- check that $\mathbf{x}$ does not occur in $t$


## Other Constraint Domains

- There are many
-Boolean constraints
-Sequence constraints
- Blocks world
- Many more, usually related to some well understood mathematical structure


## Boolean Constraints

Used to model circuits, register allocation problems, etc.


An exclusive or gate
Boolean constraint describing the xor circuit

## Boolean Constraints

```
\neg F O \leftrightarrow (O \leftrightarrow (X \vee Y)) \wedge
\neg F A \leftrightarrow (A \leftrightarrow (X \& Y)) \wedge
\neg F N \leftrightarrow (N \leftrightarrow \neg A) \wedge
\negFG\leftrightarrow(Z\leftrightarrow(N&O)
```



Constraint modeling the circuit with faulty variables
$\neg(F O \& F A) \wedge \neg(F O \& F N) \wedge \neg(F O \& F G) \wedge$
$\neg(F A \& F N) \wedge \neg(F A \& F G) \wedge \neg(F N \& F G)$

University of Washington • CSE583 • D. Notkin © 2000

## Boolean Constraints

- Something new?
- The Boolean solver can return unknown
- It is incomplete (doesn't answer all questions)
- It is polynomial time, where a complete solver is exponential (unless $P=N P$ )
- Still such solvers can be useful!


## Boolean Solver

let $m$ be the number of primitive constraints in $C$

$n:=\left[\frac{\ln (\varepsilon)}{\ln \left(1-\left(1-\frac{1}{m}\right)^{m}\right.}\right]$| epsilon is between 0 and 1 and |
| :--- |
| determines the degree of incompleteness |

for $i:=1$ to $n$ do

$\quad$| generate a random valuation over the variables in $C$ |
| :--- |
|  |
| if the valuation satisfies $C$ then return true endif |

endfor
return unknown
University of Washington•CSE583•D. Notkin © 2000

## Blocks World Constraints



Constraints don't have to be mathematical
Objects in the blocks world can be on the floor or on another object. Physics restricts which positions are stable. Primitive constraints are e.g. $\operatorname{red}(X)$, on $(X, Y)$, not_sphere $(Y)$.


## Solver Definition

- A constraint solver is a function solv that takes a constraint $C$ and returns true, false or unknown depending on whether the constraint is satisfiable -if $\operatorname{solv}(C)=$ true then $C$ is satisfiable -if $\operatorname{solv}(C)=$ false then $C$ is unsatisfiable


## Properties of Solvers

- The most restrictive property we can ask:
- complete: $\mathbf{A}$ solver is complete if it always answers true or false
- (never unknown) primitive constraints
- monotonic: is solver fails for $\mathrm{C1}$ it also fails for C1^C2
- variable name independent: the solver gives the same answer regardless of names of vars

University of Washington $\cdot$ CSE583 • D. Notkin © $2000 \quad 51$ 51

## Simplification, Optimization and Implication

- Constraint Simplification
- Projection
- Constraint Simplifiers
- Optimization
- Implication and Equivalence


## Constraint Simplification

- Two equivalent constraints represent the same information
- But one may be simpler than the other $X \geq 1 \wedge X \geq 3 \wedge 2=Y+X$
$\leftrightarrow X \geq 3 \wedge 2=Y+X$
$\leftrightarrow 3 \leq X \wedge X=2-Y$
$\leftrightarrow X=2-Y \wedge 3 \leq X$
$\leftrightarrow X=2-Y \wedge 3 \leq 2-Y$
Removing redundant constraints, rewriting a primitive constraint, changing order, substituting using an equation all preserve
$\leftrightarrow X=2-Y \wedge Y \leq-1$


## Redundant Constraints

- One constraint C1 implies another C2 if the solutions of $\mathbf{C 1}$ are a subset of those of C2
- C2 is said to be redundant with respect to C1
$X \geq 3 \rightarrow X \geq 1$
$Y \leq X+2 \wedge Y \geq 4 \rightarrow X \geq 1$
$\operatorname{cons}(X, X)=\operatorname{cons}(Z$, nil $) \rightarrow Z=$ nil


## Solved Form Solvers

- Since a solved form solver creates equivalent constraints, it can be a simplifier

For example, using the term constraint solver
$\operatorname{cons}(X, X)=\operatorname{cons}(Z, n i l) \wedge Y=\operatorname{succ}(X) \wedge \operatorname{succ}(Z)=Y \wedge Z=n i l$
$\leftrightarrow X=$ nil $\wedge Z=$ nil $\wedge Y=\operatorname{succ}($ nil $)$
Or using the Gauss-Jordan solver

$$
\begin{aligned}
& X=2+Y \wedge 2 Y+X-T=Z \wedge X+Y=4 \wedge Z+T=5 \\
& \leftrightarrow X=3 \wedge Y=1 \wedge Z=5-T \\
& \hline \text { University of Washington } \cdot \text { CsE583• } \mathbf{D} \text {. Notkin } \odot \mathbf{2 0 0 0}
\end{aligned}
$$

## Constraint Simplifiers

- constraints C1 and C2 are equivalent wrt variables $\boldsymbol{V}$ if
- taking any solution of one and restricting it to the variables $V$, this restricted solution can be extended to be a solution of the other
- Example $X=\operatorname{succ}(Y)$ and $X=\operatorname{succ}(Z)$ wrt $\{X\}$
$X=\operatorname{succ}(Y)$
$\{X\}$
$X=\operatorname{succ}(Z)$
$\{X \mapsto \operatorname{succ}(a), Y \mapsto a\}$
$\{X \mapsto \operatorname{succ}(a)\}$
$\{X \mapsto \operatorname{succ}(a), Z \mapsto a\}$


## Optimization

- Often given some problem that is modeled by constraints we don't want just any solution, but a "best" solution
- This is an optimization problem
- We need an objective function so that we can rank solutions
- That is, a mapping from solutions to a real value


## Optimization Problem

- An optimization problem ( $C, f$ ) consists of a constraint $C$ and objective function $f$
- A valuation v1 is preferred to valuation v2 if $f(v 1)<f(v 2)$
- An optimal solution is a solution of $C$ such that no other solution of $C$ is preferred to it


## Optimization

- Some optimization problems have no solution
-Constraint has no solution
$\left(X \geq 2 \wedge X \leq 0, X^{2}\right)$
- Problem has no optimum - for any solution there is more preferable one

$$
(X \leq 0, X)
$$

```
University of Washington - CSE583 - D. Notkin © 2000

\section*{Simplex Algorithm}
- A optimization problem (\(C, f\)) is in simplex form:
\(-C\) is the conjunction of \(C E\) and \(C I\)
-CE is a conjunction of linear equations
- Cl constrains all variables in \(C\) to be non-negative
- \(\boldsymbol{f}\) is a linear expression over variables in C

\section*{Simplex Example}

An optimization problem in simplex form

> minimize \(3 X+2 Y-Z+1\) subject to \(\begin{aligned} X+Y & =3 \wedge \\ -X-3 Y+2 Z+T & =1 \wedge \\ X \geq 0 \wedge Y \geq 0 \wedge Z \geq 0 \wedge T & \geq 0\end{aligned}\)
- An arbitrary problem can be put in simplex form by
- replacing unconstrained var \(X\) by new vars \(\quad X^{+}-X^{-}\)
- replacing ineq \(e \leq r\) by new var \(s\) and \(e+s=r\)

University of Washington - CSE583 • D. Notkin © 2000 67

\section*{Simplex Solved Form}
- A simplex optimization problem is in basic feasible solved (bfs) form if:
- The equations are in solved form
- Each constant on the right hand side is nonnegative
- Only parameters occur in the objective
- A basic feasible solution is obtained by setting each parameter to 0 and each nonparameter to the constant in its equation

\section*{Simplex Example}

An equivalent problem to that before in bfs form
\[
\begin{gathered}
\text { minimize } 10-Y-Z \text { subject to } \\
\begin{array}{l}
X=3-Y \quad \wedge \\
T= \\
X
\end{array} \quad \wedge \quad-2 Z \quad \wedge \\
X \geq 0 \wedge Y \geq 0 \wedge Z \geq 0 \wedge T \geq 0
\end{gathered}
\]

We can read off a solution and its objective value
\[
\{X \mapsto 3, T \mapsto 4, Y \mapsto 0, Z \mapsto 0\}
\]

University of Washington • CSE583 • D. Notkin © 2000 69

\section*{Simplex Algorithm}
starting from a problem in bfs form
repeat
Choose a variable \(y\) with negative coefficient in the obj. func.
Find the equation \(x=b+c y+\ldots\) where \(c<0\) and \(-b / c\) is minimal
Rewrite this equation with \(y\) the subject \(y=-b / c+1 / c x+\ldots\)
Substitute \(-b / c+1 / c x+\ldots\) for \(y\) in all other eqns and obj. func.
until no such variable \(y\) exists or no such equation exists
\[
f=10
\]
if no such \(y\) exists optimum is found
else there is no optimum solution
```

University of Washington - CSE583 - D. Notkin © 2000

``` 70

\section*{Simplex Example}

\section*{Another example}

\section*{Implication and Equivalence}
- Other important operations involving constraints are:
- implication: test if \(\mathbf{C 1}\) implies \(\mathbf{C 2}\) - impl(C1, C2) answers true, false or unknown
- equivalence: test if C1 and C2 are equivalent
- equiv(C1, C2) answers true, false or unknown

\section*{Implication Example}

For the house constraints \(C H\), will stage B have to be reached after stage \(C\) ?
\[
C H \rightarrow T_{B} \geq T_{C}
\]

For this question the answer if false, but if we require the house to be finished in 15 days the answer is true
\(C H \wedge T_{E}=15 \rightarrow T_{B} \geq T_{C}\)

\section*{Simplication, Optimization and Implication Summary}
- Equivalent constraints can be written in many forms, hence we desire simplification
- Particularly if we are only interested in the interaction of some of the variables
- Many problems desire a optimal solution, there are algorithmms (simplex) to find them

University of Washington • CSE583 • D. Notkin © 2000
Some more CLP(R) examples
- To try to tie this all together

\section*{Using Rules}
```

parallel_resistors(V,I,R1,R2) :-
V = I1 * R1, V = I2 * R2, I1 + I2 = I.

```

Behavior with resistors of 10 and 5 Ohms
parallel_resistors \((V, I, R 1, R 2) \wedge R 1=10 \wedge R 2=5\)
Behavior with 10 V battery where resistors are the same

It represents the constraint (macro replacement)

\section*{Modeling}
- Choose the variables that will be used to represent the parameters of the problem (this may be straightforward or difficult)
- Model the idealized relationships between these variables using the primitive constraints available in the domain

\section*{Modelling Example}

A traveler wishes to cross a shark infested river as quickly as possible. Reasoning the fastest route is to row straight across and drift downstream, where should she set off
width of river: \(W\) speed of river: \(S\) set of position: \(P\) rowing speed: \(R\)

\section*{Modeling Example Cont.}

If her rowing speed is between 1 and \(1.3 \mathrm{~m} / \mathrm{s}\) and she cannot set out more than 20 m upstream can she make it?
\[
\begin{aligned}
1<= & R, R<=1.3, P<=20, \\
& \text { river }(24,1, R, P) .
\end{aligned}
\]

Flexibility of constraint based modeling!

\section*{More Complicated Model}
- A call option gives the holder the right to buy 100 shares at a fixed price \(E\)
- A put option gives the holder the right to sell 100 shares at a fixed price \(E\)
- pay off of an option is determined by cost \(C\) and current share price \(S\)
- e.g. call cost \(\$ 200\) exercise \(\$ 300\) - stock price \(\$ 2\), don't exercise payoff \(=\mathbf{- \$ 2 0 0}\) - stock price \(\$ 7\), exercise payoff \(=\mathbf{\$ 2 0 0}\)

Options Trading
call \(\mathrm{C}=200, \mathrm{E}=300\)

put \(\mathrm{C}=100, \mathrm{E}=300\)

\section*{Modeling Functions}
call_payoff \((S, C, E)=\left\{\begin{array}{cc}-C & \text { if } 0 \leq S \leq E / 100 \\ 100 S-E-C & \text { if } S \geq E / 100\end{array}\right.\)
Model a function with \(n\) arguments as a predicate with \(n+1\) arguments. Tests are constraints, and result is an equation
```

buy_call_payoff(S,C,E,P) :-
0<= S, S <= E/100, P = -C.
buy_call_payoff(S,C,E,P) :-
S >= E/100, P = 100*S - E - C.

```

\section*{Modeling Options}

Add an extra argument \(B=1\) (buy), \(B=-1\) (sell)
```

call_option(B,S,C,E,P) :-
O<=S,S <= E/100, P = -C * B.
call_option(B,S,C,E,P) :-
S >= E/100, P = (100*S - E - C)*B.

```

The goal (the original call option question)
call_option(1, 7, 200, 300, P)
has answer \(P=200\)
University of Washington - CSE583 • D. Notkin © 2000

\section*{Using the Model}
butterfly \((\mathrm{S}, \mathrm{P} 1+2 * \mathrm{P} 2+\mathrm{P} 3)\) :-
Buy \(=1\), Sell = -1,
call_option(Buy, S, 100, 500, P1),
call_option(Sell, S, 200, 300, P2), call_option(Buy, S, 400, 100, P3).
\(P>=0\), butterfly (S,P).
has two answers
\(P=100 S-200 \wedge 2 \leq S \wedge S \leq 3\)
\(P=-100 S+400 \wedge 3 \leq S \wedge S \leq 4\)
University of Washington • CSE583 • D. Notkin © 2000 87

\section*{Wrap up}
- LP and CLP are not general purpose computing paradigms
- Even though they are Turing equivalent, there is no way you'd do most general purpose programs in them
- However, there are a number of important problems for which this is a good match
- Visual programming and program
- Final week: domain specific

\section*{Next week} visualization
languages

\section*{Domains}
- But the expense of building a solver, simplifier, etc. for a given domain is not small
-So the narrow domain must provide enough benefit to justify this effort```

