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Two weeks: logic and constraint
logic programming paradigms
� Use logic and theorem proving as the

underlying computational model
� From a set of axioms and rules, a

program executes by trying to prove a
given hypothesis

� In constraint logic programming, more
information is provided about the domain,
which can increase the efficiency of the
programs significantly
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Constraint
Logic Programming
� CLP(R) --- built on top of Prolog’s foundations
� Developed by Jaffar and Lassez at

Monash University in Melbourne, Australia
� Includes domain-specific constraint solvers to

augment the logical deduction algorithm
� Different domains are targeted with different

specialized solvers
– CLP(FD), for finite domains
– CLP(R), for real number
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Importance of
Constraint Logic Programming
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Tonight

� Overview of CLP(R)
– With examples

� Stepping back to look more carefully
at CLP in general
– Based on slides from Marriott and

Stuckey
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Prolog example

solution(X,Y,Z) :- p(X),p(Y),p(Z),test(X,Y,Z).

p(11).
p(3).

p(7).
p(16).
p(15).

p(14).
test(X,Y,Z) :- Y is X+1,Z is Y+1.

 
solution(X,Y,Z)?

X=14; Y=15; Z=16 ?
no
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How many search steps?

� In small groups, determine how
many search steps are needed to
find the one (and only) solution to
the previous Prolog program

� In the form of: “This takes X steps to
find the solution and a total of Y
steps to exhaust the search space.”
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The problem is…

� …that Prolog has an extremely limited
knowledge of mathematics
– It leads to a big search space over only six

possible integer values!

� It checks to see if the formulae hold, but it
doesn’t think about them as mathematical
formulae nor does it manipulate them as
math

University of Washington • CSE583 • D. Notkin © 2000 9

Speeding up the earlier example:
reordering conjuncts
solution(X,Y,Z) :- test(X,Y,Z),p(X),p(Y),p(Z).

p(11).

p(3).

p(7).

p(16).

p(15).

p(14).

test(X,Y,Z) :- Y is X+1,Z is Y+1.

 

solution(X,Y,Z)?

This fails, since X is uninstantiated in test
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CLP

� CLP essentially merges logic programming with
constraint solving

� Constraint solving is much in the spirit of logic
programming, allowing a two-way flow of
computation
– But the domains are not limited to relations
– Borning’s Thinglab is a classic example of a system

based on constraint solving
• “here’s a polygon in which I always want the opposite

sides to be parallel to each other.”
• “keep point M as the midpoint of the line defined by

points A and B.”
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Solvers

� Underneath any constraint-based system is a
constraint solver that takes equations and
solves them (preferably quickly)

� The constraint satisfaction algorithms used
depend on the domain over which the
constraints are defined
– For reals, common algorithms include gauss and

simplex methods
– A little more later

� To become truly facile at CLP for a given
domain one has to become knowledgeable
about the solvers

University of Washington • CSE583 • D. Notkin © 2000 12

CLP does “more”

� The reason CLP can do “more” than logic
programming is that the elements have
semantic meaning
– in CLP(R), they are real numbers
– In logic programming they were just strings

to which you associated some meaning

� That is, CLP can, in general, manipulate
symbolic expressions, too

� To do this, CLPR has to understand
numbers, equations, arithmetic, etc.
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A CLP(R) example

p(X,Y,Z) :- Z = X + Y.
p(3,4,Z)?
Z=7

 
p(X,4,7)?
X=3

p(X,Y,7).
X = -Y + 7 // instead of returning
         //multiple answers
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The example in CLP(R):
replace is with =
solution(X,Y,Z) :- test(X,Y,Z),p(X),p(Y),p(Z).

p(11).
p(3).

p(7).
p(16).
p(15).

p(14).
test(X,Y,Z) :- Y = X+1,Z = Y+1.

 
solution(X,Y,Z)?

X=14;Y=15;Z=16;
NO

� How many steps to find the solution?
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Furthermore

solution(X,Y,Z) :-
test(X,Y,Z),p(X),p(Y),p(Z).

test(X,Y,Z) :- Y = X+1,Z = Y+1.

 

solution(A,B,C)?

B = C – 1

A = C - 2
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Fibonacci: Prolog vs. CLP(R)

fib(0,0).

fib(1,1).
fib(N,F) :-

N > 1, N1 is N-1, N2
is N-2,

fib(N1,F1),
fib(N2,F2),

F is F1 + F2.

 
fib(10,L)?

fib(N,55)?
  // instantiation error

fib(0,0).

fib(1,1).

fib(N,F1 + F2) :-

N > 1,
fib(N-1,F1),
fib(N-2,F2).

 

fib(10,L)?

fib(N,55)?

fib(X,X)?   //0,1,5
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Slides

� Most of tonight’s slides are taken
(with implicit permission) from slides
produced by Marriott and Stuckey as
support material for their text book
Programming with Constraints: An
Introduction

� This is a great place to look for more
material, if you’re interested
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Constraints

� What are constraints?
� Modeling problems
� Constraint solving
� Tree constraints
� Other constraint domains
� Properties of constraint solving
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Constraints

Variable: a place holder for values

X Y Z L U List, , , , ,3 21

Function Symbol: mapping of values to values

Relation Symbol: relation between values

+ − × ÷, , , , sin,cos,||

= ≤ ≠, ,

University of Washington • CSE583 • D. Notkin © 2000 20

Constraints

X

X Y

≥
+ =

4

2 9

Primitive Constraint: constraint relation with
arguments

Constraint: conjunction of primitive constraints

X X Y Y≤ ∧ = ∧ ≥3 4
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Satisfiability

Valuation: an assignment of values to variables

θ
θ

=
+ = + × =

{ , , }

( ) ( )

X Y Z

X Y

� � �3 4 2

2 3 2 4 11

Solution: valuation which satisfies constraint

θ ( )

( )

X Y X

true

≥ ∧ = +
= ≥ ∧ = + =

3 1

3 3 4 3 1

Very similar to unification
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Satisfiability

Satisfiable: constraint has a solution

Unsatisfiable: constraint does not have a
solution

X Y X

X Y X Y

≤ ∧ = +
≤ ∧ = + ∧ ≥

3 1

3 1 6

satisfiable

unsatisfiable

University of Washington • CSE583 • D. Notkin © 2000 23

Constraints: syntactic issues

� Constraints are strings of symbols
� Parentheses don't matter

� Order does matter

� Some algorithms will depend on order

( ) ( )X Y Z X Y Z= ∧ = ∧ = ≡ = ∧ = ∧ =0 1 2 0 1 2

X Y Z Y Z X= ∧ = ∧ = /≡ = ∧ = ∧ =0 1 2 1 2 0

University of Washington • CSE583 • D. Notkin © 2000 24

Equivalent Constraints

Two different constraints can represent the same
information

X X

X Y Y X

X Y Y X Y X

> ↔ <
= ∧ = ↔ = ∧ =

= + ∧ ≥ ↔ = + ∧ ≥

0 0

1 2 2 1

1 2 1 3

Two constraints are equivalent if they have the
same set of solutions
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Modeling with constraints

� Constraints describe idealized
behavior of objects in the real world

I
I1

I2

V

+

--

+

V1
V2

--

R1 R2

V I R

V I R

V V

V V

V V

I I I

I I I

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

= ×
= ×

− =
− =
− =

− − =
− + + =
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Modelling with constraints
Bu ild ing  a House

Doors
2  days

Stage B

In terior W alls
4  days

Ch im ney
3  days

Stage D

Stage E

Tiles
3  days

Roof
2  days

W indows
3  days

Stage C

E xterior W alls
3  days

Stage A

Foundations
7  days

Stage ST

T T

T T

T T

T T

T T

T T

T T

T T

S

A S

B A

C A

D A

D C

E B

E D

E C

≥
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +
≥ +

0

7

4

3

3

2

2

3

3

start

foundations

interior walls

exterior walls

chimney

roof

doors

tiles

windows
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Constraint Satisfaction

� Given a constraint C, two questions
– satisfaction: does it have a solution?
– solution: give me a solution, if it has

one?

� The first is more basic
� A constraint solver answers the

satisfaction problem

University of Washington • CSE583 • D. Notkin © 2000 28

Constraint Satisfaction

� How do we answer the question?
� Simple approach: try all valuations.

X Y

X Y false

X Y false

X Y false

>

•
•
•

{ , }

{ , }

{ , }

� �

� �

� �

1 1

1 2

1 3

X Y

X Y false

X Y true

X Y false

X Y true

X Y true

>

•
•

{ , }

{ , }

{ , }

{ , }

{ , }

� �

� �

� �

� �

� �

1 1

2 1

2 2

3 1

3 2
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Constraint Satisfaction

� The enumeration method won’t work
for reals

� A smarter version will be used for
finite domain constraints

� How do we solve constraints on the
reals?

� ⇒ Gauss-Jordan elimination
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Gauss-Jordan elimination

� Choose an equation c from C
� Rewrite c into the form x = e
� Replace x everywhere else in C by e
� Continue until

– all equations are in the form x = e
– or an equation is equivalent to d = 0 ^ (d != 0)

� Return true in the first case else false
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Gauss-Jordan Example 1
1 2

3

5

+ = + ∧
− = ∧

+ = +

X Y Z

Z X

X Y Z

Replace X   by   2Y+Z-1

X Y Z

Z Y Z

Y Z Y Z

= + − ∧
− − + = ∧

+ − + = +

2 1

2 1 3

2 1 5

Replace   Y   by   -1

X Z

Y

Z Z

= − + − ∧
= − ∧

− + − − = +

2 1

1

2 1 1 5

1 2+ = +X Y Z

− =2 2Y

− =4 5

Return
false
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Gauss-Jordan Example 2
1 2

3

+ = + ∧
− =

X Y Z

Z X

Replace X   by   2Y+Z-1

X Y Z

Z Y Z

= + − ∧
− − + =

2 1

2 1 3

Replace   Y   by   -1

X Z

Y

= − ∧
= −

3

1

1 2+ = +X Y Z

− =2 2Y

Solved form: constraints in
this form are satisfiable
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Solved Form

� Non-parametric variable: appears on
the left of one equation.

� Parametric variable: appears on the
right of any number of equations.

� Solution: choose parameter values
and determine non-parameters

X Z

Y

= − ∧
= −

3

1
Z = 4 X

Y

= − =
= −

4 3 1

1
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Tree Constraints

� Tree constraints represent structured
data

� Tree constructor: character string
– cons, node, null, widget, f

� Constant: constructor or number
� Tree:

– A constant is a tree
– A constructor with a list of  > 0 trees is a tree
– Drawn with constructor above children
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Tree Examples

order

part quantity date

77665 widget 17 3 feb 1994

red moose

order(part(77665, widget(red, moose)),
quantity(17), date(3, feb, 1994))

cons

cons

cons

red

blue

red

cons

cons(red,cons(blue,con
s(red,cons(…))))
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Tree Constraints

� Height of a tree:
– a constant has height 1
– a tree with children t1, …, tn has height

one more than the maximum of trees
t1,…,tn
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Terms

� A term is a tree with variables replacing
subtrees

� Term:
– A constant is a term
– A variable is a term
– A constructor with a list of  > 0 terms is a

term
– Drawn with constructor above children

� Term equation: s = t   (s,t terms)
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part Q date

77665 widget 3 feb Y

C moose

order

order(part(77665, widget(C, moose)),
Q, date(3, feb, Y))

cons

cons

L

red

B

red

cons

cons(red,cons(B,cons
(red,L)))

Term Examples
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Tree Constraint Solving

� Assign trees to variables so that the
terms are identical
– cons(R, cons(B, nil)) = cons(red, L)

� Similar to Gauss-Jordan
� Starts with a set of term equations C and

an empty set of  term equations S
� Continues until C is empty or it returns

false

{ , ( , ), }R red L cons blue nil B blue� � �
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Tree Constraint Solving

� unify(C)
– Remove equation c from C
– case x=x: do nothing
– case f(s1,..,sn)=g(t1,..,tn): return false
– case f(s1,..,sn)=f(t1,..,tn):

• add s1=t1, .., sn=tn to C

– case t=x (x variable): add x=t to C
– case x=t (x variable): add x=t to S

• substitute t for x everywhere else in C and S
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Tree Solving Example

cons Y nil cons X Z Y cons a T

Y X nil Z Y cons a T

nil Z X cons a T

Z nil X cons a T

X cons a T

true

( , ) ( , ) ( , )

( , )

( , )

( , )

( , )

= ∧ =
= ∧ = ∧ =

= ∧ =
= ∧ =
=

true

true

Y X

Y X

Y X Z nil

Y cons a T Z nil X cons a T

=
=

= ∧ =
= ∧ = ∧ =( , ) ( , )

C S

� � � �

Like Gauss-Jordan, variables are parameters or non-parameters.
A solution results from setting parameters (i.e., T) to any value.
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One extra case

� Is there a solution to X = f(X) ?
� NO!

– if the height of X in the solution is n
– then f(X) has height n+1

� Occurs check:
– before substituting t for x
– check that x does not occur in t



8

University of Washington • CSE583 • D. Notkin © 2000 43

Other Constraint Domains

� There are many
– Boolean constraints
– Sequence constraints
– Blocks world

� Many more, usually related to some
well understood mathematical
structure
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Boolean Constraints

Used to model circuits, register allocation problems, etc.

X

Y

Z
O

A N

An exclusive or gate

O X Y

A X Y

N A

Z O N

↔ ∨ ∧
↔ ∧
↔ ¬ ∧
↔

( )

( & )

( & )

Boolean constraint
describing the xor circuit
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Boolean Constraints
X

Y

Z
O

A N

¬ ↔ ↔ ∨ ∧
¬ ↔ ↔ ∧
¬ ↔ ↔ ¬ ∧
¬ ↔ ↔

FO O X Y

FA A X Y

FN N A

FG Z N O

( ( ))

( ( & ))

( )

( ( & )

Constraint modeling the circuit  with faulty variables

¬ ∧ ¬ ∧ ¬ ∧
¬ ∧ ¬ ∧ ¬

( & ) ( & ) ( & )

( & ) ( & ) ( & )

FO FA FO FN FO FG

FA FN FA FG FN FG
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Boolean Solver

let m  be the number of primitive constraints in C

epsilon is between 0 and 1 and

determines the degree of incompleteness

for i := 1 to n do

generate a random valuation over the variables in C

if the valuation satisfies C then return true endif

endfor

return unknown

n

m
m

:
ln( )

ln( ( )
=

− −

















ε

1 1
1
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Boolean Constraints

� Something new?
� The Boolean solver can return unknown
� It is incomplete (doesn’t answer all

questions)
� It is polynomial time, where a complete

solver is exponential (unless P = NP)
� Still such solvers can be useful!
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Blocks World Constraints

Objects in the blocks world can be on the floor or on another
object. Physics restricts which positions are stable. Primitive
constraints are e.g. red(X), on(X,Y), not_sphere(Y).

floor

Constraints don't have to be mathematical
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Blocks World Constraints

A solution to a Blocks World constraint is a picture

with an annotation of which variable is which block

yellow Y

red X

on X Y

floor Z

red Z

( )

( )

( , )

( )

( )

∧
∧

∧
∧

Y

X

Z
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Solver Definition

� A constraint solver is a function solv
that takes a constraint C and returns
true, false or unknown depending on
whether the constraint is satisfiable
– if solv(C) = true then C is satisfiable
– if solv(C) = false then C is unsatisfiable
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Properties of Solvers

� We desire solvers to have certain
properties

� well-behaved:
– set based: answer depends only on set of

primitive constraints
– monotonic: is solver fails for  C1 it also fails

for  C1 /\ C2
– variable name independent: the solver gives

the same answer regardless of names of vars
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Properties of Solvers

� The most restrictive property we can
ask:
– complete: A solver is complete if it

always answers true or false
• (never unknown)
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Constraints Summary

� Constraints are pieces of syntax
used to model real world behavior

� A constraint solver determines if a
constraint has a solution

� Real arithmetic and tree constraints
� Properties of solver we expect (well-

behavedness)
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Simplification, Optimization and
Implication

� Constraint Simplification
� Projection
� Constraint Simplifiers
� Optimization
� Implication and Equivalence
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Constraint Simplification

� Two equivalent constraints represent the
same information

� But one may be simpler than the other
X X Y X

X Y X

X X Y

X Y X

X Y Y

X Y Y

≥ ∧ ≥ ∧ = +
↔ ≥ ∧ = +
↔ ≤ ∧ = −
↔ = − ∧ ≤

↔ = − ∧ ≤ −
↔ = − ∧ ≤ −

1 3 2

3 2

3 2

2 3

2 3 2

2 1

Removing redundant
constraints, rewriting a
primitive constraint, changing
order, substituting using an
equation all preserve
equivalence
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Redundant Constraints

� One constraint C1 implies another C2 if
the solutions of C1 are a subset of  those
of C2

� C2 is said to be redundant with respect to
C1

X X

Y X Y X

cons X X cons Z nil Z nil

≥ → ≥
≤ + ∧ ≥ → ≥

= → =

3 1

2 4 1

( , ) ( , )
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Redundant Constraints

� We can remove a primitive
constraint that is redundant with
respect to the rest of the constraint

X X X

Y X X Y Y X Y

cons X X cons Z nil Z nil cons X X cons Z nil

≥ ∧ ≥ ↔ ≥
≤ + ∧ ≥ ∧ ≥ ↔ ≤ + ∧ ≥
= ∧ = ↔ =

1 3 3

2 1 4 2 4

( , ) ( , ) ( , ) ( , )

Definitely produces a simpler constraint
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Solved Form Solvers

� Since a solved form solver creates equivalent
constraints, it can be a simplifier

cons X X cons Z nil Y succ X succ Z Y Z nil

X nil Z nil Y succ nil

( , ) ( , ) ( ) ( )

( )

= ∧ = ∧ = ∧ =
↔ = ∧ = ∧ =

For example, using the term constraint solver

Or using the Gauss-Jordan solver
X Y Y X T Z X Y Z T

X Y Z T

= + ∧ + − = ∧ + = ∧ + =
↔ = ∧ = ∧ = −

2 2 4 5

3 1 5
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Projection

It becomes even more important to simplify when we are
only interested in some variables in the constraint

I
I1

I2

V

+

--

+

V1
V2

--

V I R

V I R

V V

V V

V V

I I I

I I I

R

1 1 1

2 2 2

1 0

2 0

1 2 0

1 2 0

1 2 0

1 5

= ×
= ×

− =
− =
− =

− − =
− + + =

=
Simplified w.r.t. to V and I

V I=
10
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Constraint Simplifiers

� constraints C1 and C2 are equivalent wrt
variables V if
– taking any solution of one and restricting it to

the variables V, this restricted solution can be
extended to be a solution of the other

� Example X=succ(Y) and X=succ(Z) wrt {X}

X succ Y X X succ Z

X succ a Y a X succ a X succ a Z a
= =( ) { } ( )

{ ( ), } { ( )} { ( ), }� � � � �

� � � � �
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Optimization

� Often given some problem that is
modeled by constraints we don’t want
just any solution, but a “best” solution

� This is an optimization problem

� We need an objective function so that we
can rank solutions
– That is, a mapping from solutions to a real

value
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Optimization Problem

� An optimization problem (C,f) consists of a
constraint C and objective function f

� A valuation v1 is preferred to valuation v2
if f(v1) < f(v2)

� An optimal solution is a solution of C such
that no other solution of C is preferred to
it
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Optimization Example

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

An optimization problem

( , )C X Y f X Y≡ + ≥ ≡ +4 2 2

Find the closest point to the
origin satisfying the C.
Some solutions and f value

{ , }

{ , }

{ , }

X Y

X Y

X Y

� �

� �

� �

0 4 16

3 3 18

2 2 8

Optimal solution
{ , }X Y� �2 2
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Optimization

� Some optimization problems have
no solution
– Constraint has no solution

– Problem has no optimum — for any
solution there is more preferable one

( , )X X X≥ ∧ ≤2 0 2

( , )X X≤ 0
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Simplex Algorithm

� The most widely used optimization
algorithm

� Optimizes a linear function wrt to
linear constraints

� Related to Gauss-Jordan elimination
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Simplex Algorithm

� A optimization problem (C, f) is in
simplex form:
– C is the conjunction of CE and CI
– CE is a conjunction of linear equations
– CI constrains all variables in C to be

non-negative
– f is a linear expression over variables in

C
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Simplex Example

minimize  subject to3 2 1

3

3 2 1

0 0 0 0

X+ Y-Z+

X Y

X Y Z T

X Y Z T

+ = ∧
− − + + = ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

An optimization problem in simplex form

• An arbitrary problem can be put in simplex form by

• replacing unconstrained var X by new vars

• replacing ineq               by new var s and

X X+ −−

e r≤ e s r+ =
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Simplex Solved Form

� A simplex optimization problem is in basic
feasible solved (bfs) form if:
– The equations are in solved form
– Each constant on the right hand side is non-

negative
– Only parameters occur in the objective

� A basic feasible solution is obtained by
setting each parameter to 0 and each non-
parameter to the constant in its equation
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Simplex Example

minimize  subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

An equivalent problem to that before in bfs form

We can read off a solution and its objective value
{ , , , }X T Y Z

f

� � � �3 4 0 0

10=
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Simplex Algorithm

starting from a problem in bfs form

repeat

    Choose a variable  y  with negative coefficient in the obj. func.

    Find the equation x = b + cy + ... where c<0 and -b/c is minimal

    Rewrite this equation with y the subject y = -b/c + 1/c x + ...

    Substitute -b/c + 1/c x + ... for y in all other eqns and obj. func.

until no such variable y exists or no such equation exists

if no such y exists optimum is found

else there is no optimum solution
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Simplex Example
minimize  subject to10

3

4 2 2

0 0 0 0

− −
= − ∧
= + − ∧

≥ ∧ ≥ ∧ ≥ ∧ ≥

Y Z

X Y

T Y Z

X Y Z T

Choose variable Y, the first
eqn is only one with neg.
coeff

minimize  subject to7

3

10 2 2

+ −
= − ∧
= − − ∧

X Z

Y X

T X Z

Choose variable Z, the 2nd
eqn is only one with neg.
coeff Z X T= − −5 0 5.

minimize  subject to2 2 0 5

3

5 0 5

+ +
= − ∧
= − − ∧

X T

Y X

Z X T

.

.

No variable can be chosen,
optimal value 2 is found
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Another example

0 1 2 3 4

1

2

3

4

Y

X

-2 -1 0

1

2

preferred
solutions

minimize   subject toX Y

Y

X

X

−
≥ ∧
≥ ∧
≤ ∧

0

1

3

An equivalent simplex  form is:

32

3

1

1

3

2

≥≥≥≥≥
∧=++−
∧=+
∧=−

SYX

SX

SX

An optimization problem
showing contours of the
objective function
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Implication and Equivalence

� Other important operations involving
constraints are:

� implication: test if C1 implies C2
– impl(C1, C2) answers true, false or unknown

� equivalence: test if C1 and C2 are
equivalent
– equiv(C1, C2) answers true, false or unknown
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Implication Example
B u ild in g  a H o u s e

D oo rs
2  d a ys

S ta g e  B

In te rio r W a lls
4  d a ys

C h im n e y
3  d a ys

S ta g e  D

S ta g e  E

Tiles
3  d a ys

R o of
2  d ays

W in d o w s
3  d a ys

S ta g e  C

E xterio r W alls
3  d ays

S ta g e  A

F o u n d at io n s
7  d a ys

S ta g e  S

For the house constraints CH, will
stage B have to be reached after
stage C?

CH T TB C→ ≥
For this question the answer if
false, but if we require the house
to be finished in 15 days the
answer is true

CH T T TE B C∧ = → ≥15
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Simplication, Optimization and
Implication Summary
� Equivalent constraints can be written in

many forms, hence we desire
simplification

� Particularly if we are only interested in the
interaction of some of the variables

� Many problems desire a optimal solution,
there are algorithmms (simplex) to find
them
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Some more CLP(R) examples

� To try to tie this all together
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Rules

I
I1

I2

V

+

--

V

R1 R2

A user defined constraint
to define the model of the
simple circuit:

parallel_resistors(V,I,R1,R2)

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

And the rule defining it
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Using Rules

parallel_resistors(V,I,R1,R2) :-

V = I1 * R1, V = I2 * R2, I1 + I2 = I.

Behavior with resistors of 10 and 5 Ohms

parallel_resistors( , , , )V I R R R R1 2 1 10 2 5∧ = ∧ =

Behavior with 10V battery where resistors are the same

parallel resistors
It represents the constraint (macro replacement)
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Modeling

� Choose the variables that will be used to
represent the parameters of the problem
(this may be straightforward or difficult)

� Model the idealized relationships between
these variables using the primitive
constraints available in the domain
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Modelling Example

W

P

A traveler wishes to cross a
shark infested river as
quickly as possible.
Reasoning the fastest route
is to row straight across and
drift downstream, where
should she set off

width of river: W
speed of river: S
set of position: P
rowing speed: R

R

S
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Modelling Example

Reason: in the time the rower rows the width of
the river, she floats downstream distance given
by river speed by time. Hence model

river(W, S, R, P) :- T = W/R, P = S*T.

Suppose she rows at 1.5m/s, river speed is 1m/s
and width is 24m.

river(24, 1, 1.5, P).

Has unique answer P = 16
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Modeling Example Cont.

If her rowing speed is between 1 and 1.3 m/s
and she cannot set out more than 20 m
upstream can she make it?

1 <= R, R <= 1.3, P <= 20,
river(24,1,R,P).

Flexibility of constraint based modeling!
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More Complicated Model

� A call option gives the holder the right to
buy 100 shares at a fixed price E

� A put option gives the holder the right to
sell 100 shares at a fixed price E

� pay off of an option is determined by cost
C and current share price S

� e.g. call cost $200 exercise $300
– stock price $2, don’t exercise payoff = -$200
– stock price $7, exercise payoff = $200
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Options Trading

0 1 2 3 4 5 6 7

call, buying
call, selling-200

-100
0

100
200

call C=200, E = 300              put C=100, E = 300

0 1 2 3 4 5 6

butterfly
-100
-50

0
50

100
Butterfly strike:
buy call at 500
and 100 sell 2
puts at 300

0 1 2 3 4 5 6 7

put, buying
-200
-100

0
100
200
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Modeling Functions

call payoff S C E
C S E

S E C S E
_ ( , , )

/

/
=

− ≤ ≤
− − ≥





if 

if 

0 100

100 100

buy_call_payoff(S,C,E,P) :-

0 <= S, S <= E/100, P = -C.

buy_call_payoff(S,C,E,P) :-

S >= E/100, P = 100*S - E - C.

Model a function with n arguments as a predicate with n+1
arguments.  Tests are constraints, and result is an equation
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Modeling Options

Add an extra argument B=1 (buy), B = -1 (sell)

call_option(B,S,C,E,P) :-

0 <= S, S <= E/100, P = -C * B.

call_option(B,S,C,E,P) :-

S >= E/100, P = (100*S - E - C)*B.

call_option(1, 7, 200, 300, P)

has answer P = 200

The goal (the original call option question)

University of Washington • CSE583 • D. Notkin © 2000 87

Using the Model

butterfly(S, P1 + 2*P2 + P3) :-

Buy = 1, Sell = -1,

call_option(Buy, S, 100, 500, P1),

call_option(Sell, S, 200, 300, P2),

call_option(Buy, S, 400, 100, P3).

P >= 0, butterfly(S,P).

has two answers
P S S S

P S S S

= − ∧ ≤ ∧ ≤
= − + ∧ ≤ ∧ ≤

100 200 2 3

100 400 3 4
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Wrap up

� LP and CLP are not general purpose
computing paradigms
– Even though they are Turing equivalent, there

is no way you’d do most general purpose
programs in them

� However, there are a number of important
problems for which this is a good match
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Domains

� But the expense of building a solver,
simplifier, etc. for a given domain is
not small
– So the narrow domain must provide

enough benefit to justify this effort

University of Washington • CSE583 • D. Notkin © 2000 90

Next week

� Visual programming and program
visualization

� Final week: domain specific
languages


