
1

CSE583: Programming
Languages

David Notkin
29 February 2000

notkin@cs.washington.edu

http://www.cs.washington.edu/education/courses/583

University of Washington • CSE583 • D. Notkin © 2000 2

Visual programming and
program visualization

● In visual programming people use non-textual
representations to write programs
– Left: VIPR example while statement [Citrin et al.]

● In program visualization people use non-textual
representations to understand programs
– Right: Field example screen [Reiss]

University of Washington • CSE583 • D. Notkin © 2000 3

VC++ and similar beasts

● In general, many of
the “visual”
programming
environments are not
supporting visual
programming

● Rather, they are
mostly window-based
environments to
support textual
programming

University of Washington • CSE583 • D. Notkin © 2000 4

Visual programming

● People write
programs almost
solely using text

● Rich I/O devices were
rare

● Technologies (e.g.,
parsing) were
developed to support
textual input

● “A picture is worth
1000 words”

● “Would we not be more
productive and would the
power of modern
computers not be
accessible to a wider
range of people if we
were able to instruct a
computer by simply
drawing for it the images
we see in our mind's eye
when we consider the
solutions to particular
problems ?”
 —M. Boshernitsan

University of Washington • CSE583 • D. Notkin © 2000 5

To VP or not to VP?

● In small groups, take about 5-10 minutes
to list the top three reasons that
– visual programming should (in the long term)

dominate textual programming
– textual programming should (in the long

term) dominate visual programming
– textual programming does (now) dominate

visual programming

University of Washington • CSE583 • D. Notkin © 2000 6

Does anybody in 584 use VP?

● If so, how?

2

University of Washington • CSE583 • D. Notkin © 2000 7

Flowcharts

● A very early visual
notation for program
– Goldstein and von

Neumann [1947]

● Well-defined icons
● Supported in

– physical templates
– general drawing tools
– specific flowchart

tools (including layout
and “generate from
code”)

Ainsworth & Partners, Inc.

University of Washington • CSE583 • D. Notkin © 2000 8

A little more history

● Haibt developed a system that could
take Fortran or assembly language
programs and generate [1959]

● Knuth developed a system
integrating documentation with
source code, also automatically
generating flowcharts [1963]

University of Washington • CSE583 • D. Notkin © 2000 9

Example
icons

Pro cess D ec is ion D ocum e nt

D ata
Pre defined

Pro cess
S to red
D ate

Interna l
S to rage

Se q.
D ata

D irect
D ata

M an ual
Inp ut

C ard Pa per
Ta pe

D isp la y M an ual
O p er.

O ffp age
C on nector

P ro cess D ec is ion D ocum e nt

D ata
Pre defined

Pro cess
S to red
D ate

Interna l
S to rage

Se q.
D ata

D irect
D ata

M an ual
Inp ut

C ard Pa per
Ta pe

D isp la y M an ual
O p er.

O ffp age
C on nector

University of Washington • CSE583 • D. Notkin © 2000 10

Robert Luttman & Associates

University of Washington • CSE583 • D. Notkin © 2000 11

RFG Quality Consultants

● In part an ISO 9000 consultancy
● “You can use flowcharts to make your quality

system more user-friendly: they say a picture is
worth a thousand words! A flowchart has a
major advantage over written procedures,
because it is gives an immediate overview of the
method required to the person reading it. It is
also usually better to look at and often takes up
less pages than its written equivalent.”

University of Washington • CSE583 • D. Notkin © 2000 12

FlowLynx, Inc. [1998-99]

● “Visual FlowCoder (VFC) provides a high
performance flowchart browser and editor that
frees you from the drudgery of working directly
within a text code editor. Flowchart enhanced
source code makes any code (yours or
someone else's) significantly faster to
understand, navigate, learn, reuse, re-engineer
and edit. You'll find that Visual FlowCoder
delivers the most intense visual programming
experience that you've ever seen!”

3

University of Washington • CSE583 • D. Notkin © 2000 13

“Key benefits” include

● Visually documents code so
anyone can understand it

● Allows concurrent work on
the flow and the code ...

● Makes it easy to understand
and optimize machine
generated code

● Flowchart any code using
only eleven symbols - short
learning curve

● Flowcode thousands of
lines of code in seconds

● Designed for optimal speed
when working with
thousand object flowcharts

● Helps the entire
programming team
understand and share code

● Places all programming
languages on an equal
visual footing making it
just as easy to learn many
languages

● Helps engineers optimize
their code by highlighting
iteration and logical
processing

● Visually enhances mining
and retrieval of information
from legacy code

University of Washington • CSE583 • D. Notkin © 2000 14

Nassi-Shneiderman diagrams (1973)

● ,QWHQGHG�WR�DVVLVW

LQ�GHILQLQJ

SURFHGXUHV�WKDW

FDSWXUH�DOJRULWKPV

● $�JUDSKLFDO

UHSUHVHQWDWLRQ�RI�D

VWUXFWXUHG

IORZFKDUW

± (VVHQWLDOO\�
IORZFKDUWV�PHHW
VWUXFWXUHG
SURJUDPPLQJ

● $OVR�FDOOHG�SURJUDP

VWUXFWXUH�GLDJUDPV

In it ia lize

T ru e F a lse

C o nt in ue p rocess ing

In pu t is e m pty

A sk fo r ad d ition a l
inp ut

W h ile th ere is s till inp ut

P rocess the inp ut

C o m pu te in c rem e nta l resu lts

S to re inc rem e nta l resu lts

T ru e F a lse
C lose e no ug h?

E xit w ith a pp ro x im ate re su lt C o nt in ue

In it ia lize

T ru e F a lse

C o nt in ue p rocess ing

In pu t is e m pty

A sk fo r ad d ition a l
inp ut

W h ile th ere is s till inp ut

P rocess the inp ut

C o m pu te in c rem e nta l resu lts

S to re inc rem e nta l resu lts

T ru e F a lse
C lose e no ug h?

E xit w ith a pp ro x im ate re su lt C o nt in ue

University of Washington • CSE583 • D. Notkin © 2000 15

Potential benefits

● Debugging, self-documentation and maintenance
● The scope of iteration and of conditionals is well-defined

and visible
● The conditions embedded within compound conditions

can be seen easily
● The scope of local and global variables is obvious
● Arbitrary transfers of control are impossible

– Based on Böhm & Jacopini
● Complete structures should fit on one page (with no off-

page connectors)
● Recursion has a trivial representation

University of Washington • CSE583 • D. Notkin © 2000 16

A larger example

http://wwwis.cs.utwente.nl:8080/dmrg/MEE/misop013/index.html

University of Washington • CSE583 • D. Notkin © 2000 17

Flowcharts redux

● Flowcharts surely do not satisfy most of
the claims in the previous slides

● At the same time, they are surely useful in
some situations
– We do find them scrawled on whiteboards

now and then

● But it’s not clear at all that they can be
used in any direct way to actually
effectively write software

University of Washington • CSE583 • D. Notkin © 2000 18

Related diagrams

● Dataflow diagrams
● UML diagrams

– General purpose concepts/use-case diagram
– Class diagram- types of classes,

relationships, visibility & properties
– State-transition diagram- states & transitions,

nested states
– Sequence diagram
– Collaboration diagram
– Component/deployment diagrams

Other diagrams?

4

University of Washington • CSE583 • D. Notkin © 2000 19

Dataflow diagrams

Gangolly,
U. Albany

University of Washington • CSE583 • D. Notkin © 2000 20

Dataflow diagram

University
of Pisa

University of Washington • CSE583 • D. Notkin © 2000 21

UML class diagram example
(rational.com)

University of Washington • CSE583 • D. Notkin © 2000 22

UML sequence diagram

University of Washington • CSE583 • D. Notkin © 2000 23

A little VP history

● Sketchpad [Sutherland 63]
– A simple constraint-based graphics system
– Followup work by W. Sutherland

• Visual creation, debugging, execution of dataflow
diagrams

● Pygmalion [D.Smith 75]
– Attempt to allow programming that corresponded to

the creative thought processes
– Icon-based programming paradigm
– Essentially “programming-by-example” to generate

text programs

University of Washington • CSE583 • D. Notkin © 2000 24

vs. conventional languages

● In conventional languages, tokens are
concatenated to form a program

● In VPLs, icons correspond to tokens
– But construction rules are explicit

• horizontal concatenation
• vertical concatenation
• spatial overlay

● Analyze these programs
– Using picture grammars, graph grammars, …
– The result is parse/abstract syntax trees
– The compiler works symbolically, not with icons

5

University of Washington • CSE583 • D. Notkin © 2000 25

Taxonomy [Chang, Shu, Burnett]

● Pure visual language systems
– Graphical representations only for creation,

manipulation, execution, debugging
– VIPR, Prograph, PICT/D, Cube, …

● Hybrid languages
– Create programs visually and then

manipulate textually
– Or add graphical elements to a textual

language
– Rehearsal World, C2, work by Erwig, …

University of Washington • CSE583 • D. Notkin © 2000 26

More taxonomy

● Programming by example systems
– Rehearsal World, Pygmalion, …

● Constraint-oriented and physical
simulation systems
– ThingLab, ARK, …

● Form-based languages
– Use a spreadsheet metaphor
– Forms/3, …

University of Washington • CSE583 • D. Notkin © 2000 27

VIPR

● Visual Imperative Programming
– Citrin et. al at the U. Colorado

● Intended for completely visual
general purpose programming

● Uses nested series of concentric
rings to visualize programs
– Instead of icons, forms or other

traditional graphical representations

University of Washington • CSE583 • D. Notkin © 2000 28

Network of pipes

● Each step in a computation merges
two rings in the presence of a state
object that is connected to the
outermost ring

● Walk down a network of pipes that
branches off in different directions,
changing the state based on actions
written on the inside of the pipes

University of Washington • CSE583 • D. Notkin © 2000 29

VIPR program

University of Washington • CSE583 • D. Notkin © 2000 30

Motivation and semantics

● Create an OO language that is
relatively easy to learn and use

● VIPR includes most of OO
constructs, including inheritance,
polymorphism and dynamic dispatch

● Has relationship both to C++
semantics and also to simple (λλ-
calculus based rewriting rules)

6

University of Washington • CSE583 • D. Notkin © 2000 31

VIPR if-then-else

University of Washington • CSE583 • D. Notkin © 2000 32

VIPR case statement

University of Washington • CSE583 • D. Notkin © 2000 33

VIPR while

University of Washington • CSE583 • D. Notkin © 2000 34

VIPR function call and return

University of Washington • CSE583 • D. Notkin © 2000 35

VIPR recursive call

University of Washington • CSE583 • D. Notkin © 2000 36

VIPR class definition

7

University of Washington • CSE583 • D. Notkin © 2000 37

ARK (Alternate Reality Kit)
[R. Smith 86-92]

● A 2D animated environment for creating
interactive simulations

● The goals were
– to teach users about fundamental laws of physics
– to allow non-expert programmers to develop

interactive simulations

● Objects have visual representation, mass and
velocity

● Laws of nature are objects that can be
manipulated and changed
– Very much like the meta-object protocol

University of Washington • CSE583 • D. Notkin © 2000 38

Prograph [Pietryzkowski & Cox/ Pictorius]

● OO pictorial programming environment
● Describe procedures as control-flow diagrams

and method invocation as pattern-matching
– low-level programming using method definitions
– high-level programming by combining methods into

classes and then hierarchies of classes (libraries)

● Each ADT encapsulated in a class
– objects instantiated from classes

University of Washington • CSE583 • D. Notkin © 2000 39

Prograph examples

Topological sort
(method definition on right)

University of Washington • CSE583 • D. Notkin © 2000 40

ARK: planetary orbit simulation

University of Washington • CSE583 • D. Notkin © 2000 41

Cube [Najork]

● First 3D VPL, using dataflow
● 3D allows more information in an

environment to be displayed in given
screen size

● Cube programs are composed of holder
cubes, predicate cubes, definition cubes,
ports, pipes and planes

University of Washington • CSE583 • D. Notkin © 2000 42

Cube example

8

University of Washington • CSE583 • D. Notkin © 2000 43

Example explanation (factorial)

● Ports represent input/output
– Left-hand is “input”; right-hand is “output”
– Ports are bidirectional for constraint-like

computations

● Holder cubes contain data
● Ports connected through pipes to holder cubes
● Each plane is a dataflow diagram

– The bottom plane represents the recursive base case,
with default values for ports and indications of type

University of Washington • CSE583 • D. Notkin © 2000 44

More explanation

● If the value at the input port is 0, then the
bottom plane is active and the value 1
flows to the output port

● If the input > 0, then 1 is subtracted from
the input by the bottom branch of the
upper dataflow diagram

● This result is fed to the recursive call to
factorial, multiplying the original input by
the result

● The product flows to the output port

University of Washington • CSE583 • D. Notkin © 2000 45

Program visualization

● Use visualization to understand (as
opposed to manipulate) programs

● "The purpose of computing is
insight, not numbers" [Hamming 62]

University of Washington • CSE583 • D. Notkin © 2000 46

Why use visualization [cs.arizona.edu]

● Physical size needs scaling for comprehension
● Time scale needs changing for comprehension
● Features need to be emphasized or de-

emphasized
● Interpretation is needed for comprehension
● Subject hidden from view
● Subject not in visible spectrum
● Subject is not physical in nature
● Subject is imaginary

University of Washington • CSE583 • D. Notkin © 2000 47

Program visualization

● Scientific and engineering
visualizations

● Algorithm animation
– Algorithms in action

● Software visualization
– Focus on the structure of software

University of Washington • CSE583 • D. Notkin © 2000 48

Algorithm animation

● 1966 Knowlton, Bell Labs, Animation of linked-list
language

● 1981 "Sorting our Sorting" Baecker, U. Toronto
● 1984 Balsa, M. Brown, Brown U., full-fledged algorithm

animation system
● 1988 UW Illustrating Compiler R. Henry, UW, automatic

insertion of animation code during compilation
● 1990 Tango, John Stasko, Brown U., full-fledged

algorithm animation system
● 1991 Zeus (successor to Balsa)
● 1993 Polka, J. Stasko, Georgia Tech (extension of Tango

to parallel computation)

9

University of Washington • CSE583 • D. Notkin © 2000 49

Visualization

● Pecan, Field, Plum,
Imagix 4D, McCabe,
etc.
– Field’s flowview is

used here and on the
next few slides...)

● Provide a graphical
“unparsing” of
aspects of a software
system

● Note: several of these are
commercial products

University of Washington • CSE583 • D. Notkin © 2000 50

Visualization...

University of Washington • CSE583 • D. Notkin © 2000 51

Visualization...

University of Washington • CSE583 • D. Notkin © 2000 52

Visualization...

● Provides a “direct” view of the source
code
– Or of an extracted model of the source code

● View often contains too much information
– So, use elision
– With elision you usually describe what you

are not interested in, as opposed to what you
are interested in

• Some work in fish-eye views helps reduce this
problem

University of Washington • CSE583 • D. Notkin © 2000 53

Reverse engineering

● Rigi, various clustering algorithms
(Rigi is used above)
– http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml

University of Washington • CSE583 • D. Notkin © 2000 54

Reverse engineering...

10

University of Washington • CSE583 • D. Notkin © 2000 55

Clustering

● The basic idea is to take one or more
models of the code and find
appropriate clusters that might
indicate “good” modules
– Coupling and cohesion are at the heart

of most clustering approaches

● Many different algorithms

University of Washington • CSE583 • D. Notkin © 2000 56

Mathematical concept analysis

● Define relationships between (for instance) functions and
global variables [Snelting et al.]

● Compute a concept lattice capturing the structure
– “Clean” lattices = nice structure
– “ugly” ones = bad structure

University of Washington • CSE583 • D. Notkin © 2000 57

An aerodynamics program

● 106KLOC Fortran
● 20 years old
● 317 subroutines
● 492 global

variables
● 46 COMMON

blocks

University of Washington • CSE583 • D. Notkin © 2000 58

Dominator clustering
[Girard & Koschke]

● Rigid body simulation; 31KLOC of C code; 36 files; 57
user-defined types; 480 global variables; 488 user-
defined routines

University of Washington • CSE583 • D. Notkin © 2000 59

Automatic clustering

● Automatic clustering approaches must try to
produce “the” design
– One design fits all

● User-driven clustering may get a good result
– May take significant work (which may be unavoidable)
– Replaying this effort may be hard

● Tunable clustering approaches may be hard to
tune

● Unclear how well automatic tuning works

University of Washington • CSE583 • D. Notkin © 2000 60

Summarization

● e.g., software reflexion models

11

University of Washington • CSE583 • D. Notkin © 2000 61

Summarization...

● A map file specifies the correspondence
between parts of the source model and
parts of the high-level model
[file=HTTCP mapTo=TCPIP]
[file=^SGML mapTo=HTML]
[function=socket mapTo=TCPIP]
[file=accept mapTo=TCPIP]
[file=cci mapTo=TCPIP]
[function=connect mapTo=TCPIP]
[file=Xm mapTo=Window]
[file=^HT mapTo=HTML]
[function=.* mapTo=GUI]

University of Washington • CSE583 • D. Notkin © 2000 62

Summarization...

University of Washington • CSE583 • D. Notkin © 2000 63

Summarization...

● Condense (some or all) information in
terms of a high-level view quickly

● Use a high-level view selected by the
programmer

● Some evidence that it scales effectively

University of Washington • CSE583 • D. Notkin © 2000 64

Case study: A task on Excel

● A series of approximate tools were used
by a Microsoft engineer to perform an
experimental reengineering task on Excel

● The task involved the identification and
extraction of components from Excel

● Excel comprises about 1.2 million lines of
C source
– About 15,000 functions spread over ~400 files

University of Washington • CSE583 • D. Notkin © 2000 65

The process used

Model
Mapping

Extraction
Tool

1

2

3

4

RM
Tools

Reflexion
Model

System
Artifacts

Source
Model

77,746
calls

170 entries

13 nodes
~19 arcs

University of Washington • CSE583 • D. Notkin © 2000 66

An initial Reflexion Model

● The initial
Reflexion Model
computed had 15
convergences, 83,
divergences, and 4
absences

● It summarized 61%
of calls in source
model

Graph

Sheet

File

0

36734

912

1210

...

...

12

University of Washington • CSE583 • D. Notkin © 2000 67

An iterative process

● Over a 4+ week
period

● Investigate an arc
● Refine the map

– Eventually over 1000
entries

● Document exceptions
● Augment the source

model
– Eventually, 119,637

interactions

Mode l
M a p p i n g

Extract ion
Too l

1

2

3

4

R M
Tools

Ref lex ion
Mode l

Sys tem
Arti facts

Source
Mode l

University of Washington • CSE583 • D. Notkin © 2000 68

Graph

Sheet

File

0

36734

912

1210

...

...

A refined Reflexion Model

Sheet

File

Wks_Fi le

4 9 75

1 2 4 2

2 2 0 7

8 8

6 9

1 1 6 0

8 7

7 1 3

...

...

...

Sheet

File

Wks_Fi le

4 9 75

1 2 4 2

2 2 0 7

8 8

6 9

1 1 6 0

8 7

7 1 3

...

...

... ● A later Reflexion
Model summarized
99% of 131,042 call
and data interactions

● This information was
used to reason about,
plan and automate
portions of the task

University of Washington • CSE583 • D. Notkin © 2000 69

Results

● Microsoft engineer judged the use of the Reflexion Model
technique successful in helping to understand the
system structure and source code

● “Definitely confirmed suspicions about the structure of
Excel. Further, it allowed me to pinpoint the deviations. It
is very easy to ignore stuff that is not interesting and
thereby focus on the part of Excel that I want to know
more about.” — Microsoft A.B.C. (anonymous by choice)
engineer

University of Washington • CSE583 • D. Notkin © 2000 70

Learning styles

● An apparent aside

University of Washington • CSE583 • D. Notkin © 2000 71

Learning styles [Felder & Solomon]

● Different people learn in different ways
– At least four identifiable dimensions
– http://www2.ncsu.edu/unity/lockers/users/f/felder/

public/ILSdir/styles.htm

● Significant research has been done on
these styles

● It isn’t that one style is better or worse
– It may be that technical and engineering

fields are somewhat self-selective in terms of
learning styles

University of Washington • CSE583 • D. Notkin © 2000 72

Active vs. reflective learners

● “Active learners tend to retain and
understand information best by doing
something active with it--discussing or
applying it or explaining it to others”
– [Electrifying program representations]

● “Reflective learners prefer to think about
it quietly first”

13

University of Washington • CSE583 • D. Notkin © 2000 73

Sensing vs. intuitive learners

● “Sensing learners tend to like
learning facts”

● “Intuitive learners often prefer
discovering possibilities and
relationships”

University of Washington • CSE583 • D. Notkin © 2000 74

Sequential vs. global learners

● “Sequential learners tend to gain
understanding in linear steps, with each
step following logically from the previous
one”

● “Global learners tend to learn in large
jumps, absorbing material almost
randomly without seeing connections,
and then suddenly `getting it’”

University of Washington • CSE583 • D. Notkin © 2000 75

Visual vs. verbal learners

● “Visual learners remember best what
they see--pictures, diagrams, flow
charts, time lines, films, and
demonstrations”

● “Verbal learners get more out of
words--written and spoken
explanations”

University of Washington • CSE583 • D. Notkin © 2000 76

Results for: David Notkin

ACT X REF

 11 9 7 5 3 1 1 3 5 7 9 11

SEN X INT

 11 9 7 5 3 1 1 3 5 7 9 11

VIS X VRB

 11 9 7 5 3 1 1 3 5 7 9 11

SEQ X GLO

 11 9 7 5 3 1 1 3 5 7 9 11

University of Washington • CSE583 • D. Notkin © 2000 77

What’s my point?

● It is not a priori obvious (in a cognitive
sense) whether either a textual or a visual
approach should in fact dominate

● That is we don’t know that
– “A picture is worth 1000 words”

 nor that

– textual programming is inherently superior

University of Washington • CSE583 • D. Notkin © 2000 78

Synopsis

● This was a quick, high-level overview of
two very large areas
– Visual programming
– Program visualization

● We haven’t covered many of the systems
that exist
– We haven’t covered any of the systems in

detail

14

University of Washington • CSE583 • D. Notkin © 2000 79

Key question

● What domains (of computation and
of users) would especially benefit
from visualization?
– This requires, I believe, some

understanding of learning styles, some
empirical HCI studies, some
understanding of the computational
domain, etc.

University of Washington • CSE583 • D. Notkin © 2000 80

Next week

● Domain-specific languages
– How can we leverage particular

domains in which we’ll be doing a set
of related computations?
• CLP(R) is one example we’ve seen of a

DSL

