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Overview
• Background

• Microbes and Metabolism and 
Methane, oh my!

• Dataset and previous project
• A hunt for strong promoters

• Idea/early work on new project
• more nuanced promoter tools
• Would love Feedback!
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Nature has the instructions saved… in DNA!
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Synthetic Biology: rewiring Nature’s instructions to 
engineer novel biological systems
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Synthetic 
Biology

Engineering

Chemistry

Biology

Computer 
Science

Mathematics

Engineer novel 
biological 
systems



What is “Metabolic Engineering”…?

Sugar cane

Useful molecules!

Glucose 
(entry point)

Microorganism 
factory
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Yeast



Skywalker Ranch

Connect metabolic maps between organisms!

??

Expand local map by connecting to a node in another map!

Microbe metabolic map
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pinene
spider silk 

protein
artemisinin

Other interesting molecules!



Artemisinin: an early SynBio success story!
Microbe metabolic map

9

pinene
spider silk 

protein
artemisinin

Other interesting molecules!

Artemisinin:
anti-malaria drug

Sweet wormwood

Sugar cane

artemisinin 
genes



Metabolic Engineering: 
The Big Picture
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If you can identify the DNA instructions 
that encode that pathway, hypothetically

you can try to put it in a microbe.

For any molecule made by any organism 
in Nature, there exists some metabolic 

pathway to get there…



Gene A
Transcription

Translation

Central Dogma

RNA

DNA

Protein

Metabolism is like a graph

Gene X
Molecule Z

Molecule Y

gene gene

Gene C

Gene BGene A

molecule

molecule

molecule

Artemisinin

Gene D

Sweet wormwood

sugar

Host Microbe += 
[A, B, C, D, E]
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I do the 
work!



To install new pathways, insert new genes
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Insert protein-coding 
DNA



DNA sequences encode many important signals for 
regulating genes!

Gene X
ACTGCGTATATGGCTCATATCTCCGCTAATCGATGATCGCCATGTCGATTACGTATATGCGTCTCTCCTAATAGATCGATGCTAGCTGTACGTGATCGT

promoter
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Regulatory signals (transcription factor 
binding sites, stability elements, etc)

Should a gene be:
• turned OFF
• turned ON

• a little 
• very strongly

OFF ON



When installing new pathway genes, must also 
install regulatory signals
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Insert protein-coding 
DNA

Drive gene expression 
with regulatory DNA



To engineer a microbe, build out a genetic 
engineering toolkit
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Variety of 
promoters



Sugar + microbe + science = sustainable products!
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Renewable 
Feedstock

(Sugar cane)

Useful molecules!
(Jet fuel, medicine, flavors & fragrances 

any molecule found in nature!)

Microorganism 
factory
(yeast)



Sugar + microbe + science = sustainable products!

Waste 
Stream

(Methane)

Microorganism 
factory

(Methanotroph)
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Renewable 
Feedstock

(Sugar cane)

Useful molecules!
(Jet fuel, medicine, flavors & fragrances 

any molecule found in nature!)

Microorganism 
factory
(yeast)

• Greenhouse gas from 
both natural and human 
activity

• 2nd greatest contributor 
to anthropogenic climate 
change behind CO2

• 20-30x more potent than 
CO2

Methane (CH4)

https://www.globalcarbonproject.org https://www.science-sparks.com/know-your-greenhouse-gases/

https://www.globalcarbonproject.org/
https://www.science-sparks.com/know-your-greenhouse-gases/


My research focus: Computationally decode the 
language that methanotrophs use to control their genes
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Biomolecule
production

Methane Waste
(CH4)

Engineer
methanotroph 

genome

ATGCTAGCTGCACGCTAG
CTAGCTACGATCGATCGA
TCGATCGATCGATCGATC
GTACGATATATTACGGCT
AGCACCGATCGTAGCTAG
CTAGCATCGATGTTATGC
TAGCTAGCTAGCCCGGCT
CGTAGCTTGTTTCTAAGC

Decode
methanotroph 

“genetic 
grammar”

Gene A

Gene B

Gene C

Gene D

CGTAGCTTGTTTCTAAGC
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102 RNA-seq experiments

Lidstrom Lab: ~100 RNA-seq datasets 
a unique opportunity?

Low O2

fast growth
Low CH

4

Max 
growth

Low Cu

MeOHW/o 
Lanthanum
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High O2

slow growth

No Cu

With 
Lanthanum

Medium 
Cu

High CuExtra NO3

Low O2 fast 
growth

Low CH4

Max 
growth

Low Cu

MeOH

W/o 
Lanthanum

High O2

slow growth
No Cu

With 
Lanthanum

Medium Cu

High Cu

Extra NO3

“5G”

ChemE
Microbiology



What do the data look like?
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What do the data look like?
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What do the data look like?
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12 574 78

201 99 5
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Average TPMs 
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~4,000 genes x 12 
conditions



Previous project:
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Accepted last week! 



Previous project main message: 

25

Strong, constitutive 
promoters



Previous project – the gist 
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Gene A
Gene B
Gene C
Gene D

Search upstream seqs for promoter signal

Gene A
Gene B
Gene C

Set of “top” 
genes

…

102 RNA-seq experiments

Gene A
Gene B
Gene C

Predict best “core promoter” for 
each top gene

…

TTGACAGCTGCACGCTAGGTAGCTATAAT

TATACAGCGGTCAAGCTAACTGCTACTAT

TTTACAGCTGGCTAAGTCGTAGCTATTAT

Compile “strong core 
promoter” consensus

27 - 30bp

Validate predictions
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New project – extending a genetic toolkit

29

Strong, constitutive 
promoters

Prev. Project Next Project 



New project direction: 

a deep learning approach to 
identify useful sequences for 

creating more nuanced 
promoter tools
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Why nuanced promoters?
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Reviewer 2

Inducible promoters are 
way more useful than 
constitutive

Strong promoters are a good 
start… but:

Ø“fire hose” expression approach has 
biological limits

ØRange of promoter strengths à more fine-
tuned expression control

ØInducible promoters à key innovation for 
producing molecules at large scales



Why deep learning?
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Deep learning is pretty good at:

Ø learning important features without 
prior knowledge

Øfinding small, relevant patterns in 
larger contexts

Ø learning non-linear combinations of 
features



Big Goal: identify important 
regulatory motif patterns
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More specifically: sequence patterns that 
promote or repress gene expression in 

specific, controllable conditions
(can be used as an expression tool for 

met. engg.)

Most specifically (given our lab’s data): a sequence pattern that 
promotes/represses expression in response to Copper

(useful as a metabolic switch tool?)



Recall: the data in play
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Extract upstream sequences as approximate 
promoter regions

Gene A

~regulatory signals 
generally live here~
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Extract upstream sequences as approximate 
promoter regions

Gene A
take sequence slice: 

geneA[start-300 : start-1]

-1-300
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For each gene, we know: 
TPM expression, experimental condition, upstream seq

Upstream Seq Condition

Given this: Can I predict this?
TPM expression

Upstream Seq ConditionTPM expression

Regression

Multi-task 
Regression
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Deep learning approaches on DNA inputs 
is not new

Use deep learning on 
DNA sequences to predict 

regulatory features

Typically classification
tasks using ChIP-seq

Zhou 2015

Basset/Basenji
Kelley 2016/2018

Presence/ 
absence of 

TFBS

Promoter or 
NOT 

promoter

Often 
eukaryotes
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Random seq library 
à predict strength



A basic 
DNA deep 
learning 
framework

CNN LSTM Combo?

TPM 
expression

Exp. 
condition

One-hot 
encoded DNA

Regression

Given this:

Upstream Seq Condition

Can I predict this?

TPM expression
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CNN LSTM Combo?

TPM 
expression

Exp. 
condition

One-hot 
encoded DNA

Multi-task 
Regression

A basic 
DNA deep 
learning 
framework

Given this:

Upstream Seq

Condition

Can I predict this?

TPM expression
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Final set of text-heavy slides
1. Rough sketch of project plan

2. What if this worked??

3. Expected challenges 

4. Current status

5. Open questions!
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A rough sketch:
1. Decide on a suite of model 
types to try and compare

• Baselines: (probably should be bad?)
o just predict average
o linear regression by position
o linear regression by k-mer counts

• Deep learning:
o CNN
o LSTM
o combo CNN+LSTM
o others?

2. Model evaluation:
• MSE? (error on TPM 

predictions?)

3. Feature analysis for bio 
insights (eg. ID important motifs)

• CNN filter activations
• Feature attribution 

• DeepLift
• DeepShap
• Scrambler Networks
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What would this mean if it worked?
1. Given a new upstream sequence, now you can predict how it may influence 
gene expression across a range of conditions

• Use specific promoter sequence in front of heterologous genes when 
installing pathways?

2. Once a model is trained and “good”, go back and analyze model features
for biological insights? (CNN filters? Feature Attribution methods?)

• Perhaps could reveal small, testable regulatory motifs?

3. Once a model is trained and “good”, could you freeze the parameters and 
use it to design a sequence for a particular objective?

• If you want a gene to express in a certain pattern across variable 
experimental set ups?
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Possible Challenges
Too few examples?

• ~2,000 genes (4,000 genes minus possible “in-operon genes” filtered out)

Some genes are MEGA expression outliers (orders of magnitude)
• MSE error could be GIANT during training?

Looking for novel motifs… but I don’t actually know what they look 
like… how to be confident enough to ask an experimentalist to test?

Similar papers seem to mostly use ChIP-seq or other “peak” related 
data… I’ve got bulk RNA-seq

Noisy Data – cobbled dataset, large promoter windows
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Current status
Ø Learning PyTorch!

• Synthetic DNA seq dataset
• Practice connecting tubes

Ø Plan to submit to “Proposal” 
track of Climate Change AI 
Workshop??
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Open questions for you!
Ø Given the data I have (type and 

amount), do these regulatory motif 
questions sound answer-able?

Ø Does this approach sound reasonable? 
Useful?

Ø Any big “gotchas” I’m missing?
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Mojave Desert, CA

Thanks for listening!



https://www.science-sparks.com/know-your-greenhouse-gases/

https://www.science-sparks.com/know-your-greenhouse-gases/


products!
CH4

Engineer 
genome

ATGCTAGCTGCACGCTAG
CTAGCTACGATCGATCGA
TCGATCGATCGATCGATC
GTACGATATATTACGGCT
AGCACCGATCGTAGCTAG
CTAGCATCGATGTTATGC
TAGCTAGCTAGCCCGGCT
CGTAGCTTGTTTCTAAGC

genetic 
grammar

Gene A

Gene B

Gene C

Gene D


