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Similarity Search with DNA
Using DNA to do things silicon computers have traditionally done



Overview

What is similarity search?

Why would you want to use DNA?

How do you use DNA?

How could we make this better?

How do you use Cas9 to perform similarity search?

Musings on the intersection of Comp Bio, Molecular Computing, SynBio



What is similarity search?
Input Output



• Parallelism 


• DNA information density


• DNA longevity


• Ease of distributing DNA 
databases


• Sometimes faster


• Sometimes more energy 
efficient

Why would you want to use DNA?

In that faint pink smear is ~10TB of data
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*Content-Based Similarity Search in Large-Scale DNA Data Storage Systems. Bee et al. BioRXiv 2020 



Curse of high dimensionality:
Exact indexing schemes in high-
dimensionality spaces are no better than 
a costly linear or “brute force” search, 
which is infeasible for large databases

Similarity Search
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Tradeoff:
Rather than finding exact nearest 
neighbors, our goal is to maximize the 
number of near neighbors retrieved while 
minimizing the number of irrelevant 
results



How do we do similarity search with DNA ?
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How do we do similarity search with DNA ?
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C. Sets of retrieved images for select read depth thresholds B. Retrieval as a function of read depthA. Distribution of similarity across read depths
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• More energy efficient


• Faster


…what if we used Cas9?

How can we improve?



Using Cas9
Hybridization and Bead Extraction Cas9
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*Cas9 Binding Predictor

*Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Jones et al. Nature Biotechnology Sept. 2020 
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Using Cas9
Cas9

20 features Data ID

We sequence every strand that’s cut by Cas9A
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Using Cas9
Cas9

20 features Data ID

We sequence every strand that’s cut by Cas9

Hard to do in wet lab

20 features Data ID 20 features

We sequence every strand that’s cut at BOTH Cas9 regions…AND logic!
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Using Cas9
Cas9

20 features Data ID

We sequence every strand that’s cut by Cas9

Hard to do in wet lab

20 features Data ID 20 features

We sequence every strand that’s cut at BOTH Cas9 regions…AND logic!

What if we allow for nested queries??

20 features Data ID 20 features80 features
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The lines are still being drawn


My two cents for people in any of 
these three fields:


• If you’re a computation-centered 
person, get comfortable talking to 
wet lab-centered people


• vice-versa 


• Bigger computational AND 
molecular toolboxes tend to 
make it easier to design 
experiments


• We need more tools

Comp Bio ∩ Molecular Computing ∩ SynBio
Computational Biology Synthetic Biology

Molecular Computing
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Things to think about

• What are some tools you’d like to see developed?


• What are things you’d like to see standardized?


• Are there times when having a deeper background in a different field (i.e., 
biology) would have helped you?


• Anything other wishes for the future? 


