Similarity Search with DNA

Using DNA to do things silicon computers have traditionally done
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Overview

What is similarity search?

Why would you want to use DNA?

How do you use DNA?

How could we make this better?

How do you use Cas9 to perform similarity search?

Musings on the intersection of Comp Bio, Molecular Computing, SynBio



What is similarity search?
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Why would you want to use DNA?

* Parallelism
 DNA information density
 DNA longevity

» Ease of distributing DNA
databases

e Sometimes faster

 Sometimes more energy
efficient

In that faint pink smear is ~10TB of data



Similarity Search

C. Training loop
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*Content-Based Similarity Search in Large-Scale DNA Data Storage Systems. Bee et al. BioRXiv 2020
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Similarity Search

A. Document similarity as geometric space Curse of high dimensionality:
Exact indexing schemes in high-
dimensionality spaces are no better than
a costly linear or “brute force” search,
which is infeasible for large databases

Tradeoft:

Rather than finding exact nearest
neighbors, our goal is to maximize the
number of near neighbors retrieved while
minimizing the number of irrelevant
results




How do we do similarity search with DNA ?

A. Document similarity as geometric space
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How do we do similarity search with DNA ?

A. Document similarity as geometric space B. Similarity-preserving DNA encoding
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How do we do similarity search with DNA ?

A. Document similarity as geometric space
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B. Similarity-preserving DNA encoding
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How do we do similarity search with DNA ?

A. Document similarity as geometric space

B. Similarity-preserving DNA encoding
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How do we do similarity search with DNA ?

A. Document similarity as geometric space B. Similarity-preserving DNA encoding i RP
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It works!

A. Distribution of similarity across read depths B. Retrieval as a function of read depth C. Sets of retrieved images for select read depth thresholds
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How can we improve?

 More energy efficient

e Faster

...what if we used Cas9?



Using Cas9

Hybridization and Bead Extraction

C. Training loop
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*Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Jones et al. Nature Biotechnology Sept. 2020

One-hot *
sequences Hybridization
0N ® Predictor
— N M NN OO
. v
(C; Predicted
Yield
[co NN O)
~— AN M (S S e'e)
A
T
g )
|
> Encoding <
Error




Using Cas9

C. Training loop
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Using Cas9

C. Training loop
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We sequence every strand that’s cut at BOTH Cas9 regions...AND logic!
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Using Cas9

Cas9

Hard to do in wet lab
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What if we allow for nested queries??




Comp Bio n Molecular Computing n SynBio

The lines are still being drawn Computational Biology Synthetic Biology

My two cents for people in any of
these three fields:

* |f you’re a computation-centered
person, get comfortable talking to
wet lab-centered people

* Vice-versa

* Bigger computational AND
molecular toolboxes tend to
make it easier to design |
experiments Molecular Computing

e \We need more tools



Comp Bio n ‘J‘
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Things to think about

 What are some tools you’d like to see developed?
 What are things you’d like to see standardized?

* Are there times when having a deeper background in a different field (i.e.,
biology) would have helped you®?

* Anything other wishes for the future?



