
h
or

B

uch
t to
ly

art
ue
LB
al
d a

ve

a
the
ve
nd
ack
to
in

test
In
ur

ow
ion

trix

he

ite
ta

as
e 1
z

ks
e

Recency-Based TLB Preloading

Ashley Saulsbury
Sun Microsystems Laboratories

901 San Antonio Road,
Palo Alto, CA, USA

ashley.saulsbury@sun.com

Fredrik Dahlgren
Ericsson Mobile Communications AB

Mobile Phones and Terminals
SE-221 83, Lund, Sweden

fredrik.dahlgren@ecs.ericsson.se

Per Stenström
Dept. of Computer Engineering
Chalmers Univ. of Technology

SE-412 96 Gothenburg, Sweden
pers@ce.chalmers.se
ABSTRACT
Caching and other latency tolerating techniques have been quite
successful in maintaining high memory system performance for
general purpose processors. However, TLB misses have become a
serious bottleneck as working sets are growing beyond the capacity
of TLBs.

This work presents one of the first attempts to hide TLB miss
latency by using preloading techniques. We present results for
traditional next-page TLB miss preloading - an approach shown to
cut some of the misses. However, a key contribution of this work is a
novel TLB miss prediction algorithm based on the concept of
“recency”, and we show that it can predict over 55% of the TLB
misses for the five commercial applications considered.

1 INTRODUCTION
Contemporary processing systems supporting paged virtual
memory employ an MMU to validate memory references and
translate them to physical addresses. To efficiently perform this
task, the MMU caches translations in its TLB. There are several
options for the placement of the TLB [16], however, most systems
today favor placing it in parallel with the first-level cache to avoid
the synonym problem [2,20,10]. While previously considered
acceptable [5,7], trends toward greater instruction level parallelism
and higher clock frequencies have made TLB performance critical
[1], especially when the TLB is software loaded [11].

To meet the demands of larger working sets, one can use the
same methods for TLBs as for traditional cache hierarchies. Simply
increasing the TLB capacity unfortunately leads to higher TLB
access time which may directly affect the overall performance. This
can be mitigated by changing organization to say a set associative
design. Naturally, attempts toward multi-level TLB hierarchies
have also been made. Micro-TLBs typically containing one or two
translation entries, filter memory accesses from the main TLB,
which can now afford a slightly longer latency, and hence larger
capacity, to service those accesses which miss the micro-TLBs. The
logical extension is a two-level TLB hierarchy, (for example the
AMD K-7 [24], or HAL SPARC64-III [25]), to provide even
greater capacity. Increasing TLB span, by using larger page sizes
also helps if supported by the operating system. These methods for

increasing TLB capacity can work well for applications with hig
spatial and temporal locality, but are only a partial solution to po
TLB performance.

In this paper, we take an orthogonal approach of hiding TL
miss latency by predicting andpreloading (or prefetching)
translations through hardware mechanisms. There has been m
research in the area of instruction and data cache prefetching, bu
the best of our knowledge little has been related to TLBs. The on
work we are aware of particularly addresses certain cold st
effects of TLB misses[13,15]. By contrast, the prefetch techniq
we propose and evaluate aims at addressing capacity-related T
misses. We consider two prefetching algorithms; a convention
linear predictor, (as suggested for data cache prefetching [8]), an
novel technique that exploits history information about the relati
recent usage of pages to predict future TLB misses.

Our first observation in Section 2 is that the TLB is already
performance bottleneck in some commercial codes by showing
impact of TLB misses on performance. Fortunately, we ha
observed that TLB misses exhibit a fairly predictable behavior, a
the model we use to detect this behavior, which is based on st
algorithms [14], is presented in Section 3. Our main contribution
exploit this behavior is a novel prefetching scheme presented
Section 4. Section 5 describes the simulation methods used to
our algorithm, giving the results and analysis in Section 6.
Section 7 we cast our work in a broader context. After giving o
conclusions in Section 8 we consider options for future work.

2 TLB T HRASHING IN REAL CODES
In this section we first demonstrate through a simple example h
TLB thrashing arises and then show its impact on the execut
times in some commercial applications.

2.1 A TLB thrashing example
Consider the example code below which sums a column in a ma
of bytes. It is well known that by making the matrix row width a
non-power of two (e.g. 8192 + 32 as in the example) cac
thrashing effects (due to limited associativity) can be avoided.

for (i=0; i<N; i++) {
sum += data[i * (8192+32)];

}
Indeed the entire loop may be iterated several times for qu

large values of N without risk of thrashing even the first level da
cache. (In this case with a 16KB data cache, N may be as large
512). Clearly such a code sequence is a classic TLB killer. Figur
below illustrates the effect of running this code on a 200 MH
UltraSPARC-II system for increasing values of N.

The UltraSPARC-II has a 64-entry fully-associative TLB, with
a pseudo-LRU replacement policy, and Solaris permanently loc
down 4 TLB entries for mapping the kernel nucleus. In Figure 1 w

Alan Berenbaum
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-117 $5.00

Alan Berenbaum
117

te
e
ces
the
ly

e in
sed

no
and

of
m

t a
an
r of
the
ee

a

ort
re,
of
can clearly see the effect (at 60 pages) when the TLB starts to
thrash. The impact in this case is over a factor of 50 in effective
memory latency, and is only this low because rapid repetitive use
quickly brings the software TLB reload handler and all the
required Translation Table Entries (TTEs) into the system caches.

Figure 1 Per-iteration load latency in TLB killer loop.

2.2 TLB thrashing in commercial codes
If we turn our attention to real application codes we can see that
TLB thrashing is not restricted to contrived benchmarks. Figure 2
shows the measured TLB miss rate (on the same machine) for a
highly used commercial Computational Fluid Dynamics code from
a company called Fluent, described in Section 3.2. This shows an
average of around 500,000 TLB misses per second during the
whole of the execution. Each miss takes a minimum of 50 machine
cycles (as measured above), although often significantly more as
the reload handler itself incurs cache misses. Thus in any second,
our 200 MHz machine is spending a minimum of 50*500,000 /
200,000,000 = 12.5% of its cycles simply executing the TLB
reload handler. Actual measurements reveal this closer to 20%
because of cache misses - precise values vary a couple of percent
according to L2 cache size, and OS version.

Another application which exhibits very similar behavior is
the Vortex benchmark from the SPEC ‘95 suite. Vortex’s TLB miss
rate is shown in Figure 3. Again, this application spends some 15%
of its execution time in the TLB reload handler. Yet, both Fluent
UNS and Vortex are relatively small applications.

This brings us to two important points: First, software-
reloaded TLBs should be avoided. Our observations conform with
those of previous researchers [18,19,11,17] concerning the
performance overhead of software-loaded TLBs. Second,
hardware-reloaded TLBs alone are not a remedy for the problem of
larger problem/working-set sizes leading to increased TLB miss
ratios. Our approach is to extend hardware reloaded TLBs with a

prefetching1 scheme based on a novel heuristic. However, before
describing the prefetching technique, we provide, in the next
section, a background into the kind of history information our
hardware heuristic algorithms exploit.

3 TLB ENTRY RE-USE IN CODES
In this section we use the LRU stack algorithm [14], briefly
introduced in Section 3.1, to model capacity-related TLB misses.
Based on a case study containing five commercial applications,
described in Section 3.2, we find in Section 3.3 that there is a high
likelihood of TLB entries to be re-used at certain temporal
distances. We use this observation to discuss the potential for a
recency-based preloading scheme in Section 3.4.

3.1 TLB miss prediction using an LRU stack
An LRU stack algorithm [14] can be used to predict the miss ra
of a fully-associative TLB with an LRU replacement policy. To se
how, recall that an LRU stack maintains a list of address referen
ordered according to how recently they were accessed with
most recent at the top. Suppose that the LRU stack is infinite
large and that we want to model anN-entry fully-associative TLB
having LRU replacement. We examine each address referenc
the order presented to the TLB. If the address has been u
before, it resides at levelR in the stack. We call this therecencyof
the reference. IfR<N the reference results in a TLB hit. This entry
is removed and pushed onto the top of the stack. If there is
match, the address reference is pushed onto the top of the stack
the entry at levelN becomes the victim for replacement.

Figure 2 TLB miss rate for Fluent UNS

Figure 3 TLB miss rate for SPEC ‘95’s Vortex

Using the stack algorithm we can determine the miss rates
all possible TLB sizes in one pass. To do this we build a histogra
table to count the number of times an address is found a
particular recency, i.e. depth, in the stack. From this table we c
deduce that entry 0 in the histogram table indicates the numbe
times an address was found with recency 0, i.e. at the top of
stack, and so would hit in a single entry TLB. In general, we s
that by summing elements 0 throughN-1 of the histogram table,
we can determine the number of hits in a TLB ofN entries. We
now apply this methodology to analyze the TLB miss rates for
suite of applications.

3.2 Applications
This study investigates the benefit of hardware prefetching supp
in cases where conventional TLB performance is poor. Therefo
for this study, we have attempted to choose workloads

1We use the terms prefetching and preloading interchangeably throughout
this paper.

40 50 60 70

N - number of "pages" of loop span

0

100

200

300

L
oa

d
la

te
nc

y
in

 n
s.

0 500 1000 1500 2000 2500

execution time (seconds)

0.0

0.5

1.0

1.5

D
-T

L
B

 m
is

se
s

pe
r

se
co

nd
 (

m
ill

io
ns

)

1 second average
1 minute average

0 100 200 300 400

execution time (seconds)

0.0

0.2

0.4

0.6

D
-T

L
B

 m
is

se
s

pe
r

se
co

nd
 (

m
ill

io
ns

)

1 second average
1 minute average

Alan Berenbaum
118

by
en
is
io

te
)
it is
nd
de

5
te
so
and
In
k

he
a
ge
et.
e

is
es

e
ee
th at
he
to
n.
e
4
iss
significant commercial interest that have TLB performance
problems. This choice was not trivial; virtually all of the Spec ‘95
suite, for example, has benign TLB behavior. In other cases license
agreements limit or prohibit publication of results.

The following programs were selected from a broad range of
application areas solely because they exhibit bad TLB behavior.
By accident rather than design, all of the codes have small
instruction footprints, and so instruction referenced TLB misses
were practically insignificant. For this reason the impact of
instruction TLB misses is not considered further in this paper.

Fluent UNS is a highly used commercial Computational
Fluid Dynamics code from Fluent International [21]. The chosen
problem set simulates the exhaust flow through an engine valve.
This is an iterative application with a run-time of over 45 minutes
on a 300MHz UltraSPARC-II system (180 billion instructions).

LightWave is a commercial rayshader/renderer (used for TV
shows and movies) from NewTek [22]. The chosen problem was
the rendering of a typical (in complexity) frame from an animated
TV short.

Sphinx is a natural speech recognition system developed
CMU. Typical of speech recognition systems, it uses a hidd
Markov model database for recognition decisions. For th
application the problem set is around 1 minute of spoken aud
from National Public Radio.

PNMRotate is a trivial image manipulation operation taken
from the netpbm toolkit [23]. It uses the 3-shear method to rota
an uncompressed raw 24-bit RGB image (2Kx1K pixels
clockwise by 90 degrees. This application was chosen because
representative of the genre of image manipulation algorithms, a
therefore easily attackable via software or hardware stri
prediction.

Vortex is a database manipulation code from the SPEC ‘9
benchmark suite. It is practically the only application in this sui
that stresses TLB design. Its commercial significance is not
much as a database code, but as part of the SPEC’95 suite,
therefore used as a metric for microprocessor design.
accordance with SPEC’95 rules, it was compiled for pea
UltraSparc-I performance.

Figure 4 .The TLB miss rates and recency probability distributions forPNMRotate

3.3 Application behavior
We now apply the stack-algorithm methodology described in
Section 3.1. to the applications described in Section 3.2.

3.3.1 PNMRotate: An illustration
To aid understanding we start with a trivial application,
PNMRotate. If we look at the memory reference trace generated by
running the application in a simulator, we can use the stack
algorithm to ascertain the performance of all possible TLB sizes.
These results are given in Figure 4 for page sizes of 8KB, 16KB
and 64KB respectively

Each of these graphs depicts the probability of a TLB miss as
a function of the TLB size for a fully-associative LRU based TLB.
As the number of TLB entries increases the probability of a TLB
miss decreases, however the probability function is far from linear.
There are three distinct areas in each of the graphs. Starting with

small values and increasing the size of TLB, we can see t
probability of a TLB miss rapidly drop off to a few percent. Thus
tiny TLB of less than 10 entries or so is sufficient to cover the pa
translation requirements of the most active part of the working s

From between 10 to 1000 TLB entries we hardly see th
probability of a TLB miss drop at all. This demonstrates that th
application has very bad TLB behavior. Indeed the miss rate do
not begin to drop off again until the TLB can map practically th
entire application working set. At the end of the graph we s
another tiny plateau generated by references to data made bo
the start and end of execution, but not used at all during t
execution. Thus, only the largest TLBs would be big enough
hold these page translations from start to finish of the applicatio

From these probability graphs we can quickly read off th
miss rate for any given TLB. An UltraSPARC-II system has a 6
entry TLB (with 4 reserved entries). From the graphs we see a m

1 10 100 1000

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

TLB size in 8KB pages TLB size in 16KB pages TLB size in 64KB pages

P
ro

ba
bi

lit
y

of
 a

 m
is

s
P

ro
ba

bi
lit

y
of

a
re

-u
se

at
a

gi
v-

en
 r

ec
en

cy

Alan Berenbaum
119

00
ers

es
xt
the
ty.
ed

cy
e

a
).
y
he
,

d to

s’
ith

(see
ial)
to
s
s. It
red-
ly

ents
re
s in
probability of between 5% to 1% as the page size is varied from
8KB pages to 64KByte pages.

More interesting than the miss probability graphs are the
stack histograms used to create them. These are depicted
underneath the probability graphs for the 8KB, 16KB and 64KB
page sizes. The histograms depict the probability density function
of an address reference as a function of its recency.

We can quickly see that the most frequent memory references
have very low recency (typically less than 10), which tells us that a
small TLB will capture the most active working set. Unfortunately
between recencies from 20 to around 1000 there is a very low
probability of a memory reference (remember these are log-log
graphs). This indicates that a TLB much larger than around 10-20
entries will not do very much for us.

Surprisingly, an interesting feature appears at a recency of
about 4000, for 8KB pages, 2000 for 16KB pages and 1000 for
64KB pages. Here we see a very sharp “spike”, which indicates
that there are a very large number of accesses to pages which have
essentially the same recency value. It is this feature which we
make use of for our pre-load algorithm.

Of all the memory references made, those in the “spike” with
recency 4000 (for 8KB pages) constitute around 0.5% - which we
can read directly from the graph. However, if we consider only
those accesses with a recency value greater than a modest TLB

size (say 20 entries), we see that the “spike” at recency 40
dominates the other accesses with a probability almost two ord
of magnitude higher.

If, having filtered away the low recency re-use access
(which we do with a TLB), we were to guess at what the ne
memory reference is to be, the obvious choice is the one with
recency value of the “spike” - the one with the highest probabili

This strongly indicates that some form of recency-bas
prefetching would be beneficial.

3.3.2 Other applications
Figure 5 shows the TLB miss probability graphs, and recen
probability density functions for the other real workloads we us
during the course of this paper.

We quantitatively see that all of these applications exhibit
high TLB miss-rate for conventional sized TLBs (10s of entries
Typically the miss-rates do not fall below 1% of all memor
accesses until the TLB is of the order of 100 entries or more. In t
case ofFluent UNS, we need over 1000 TLB entries. Therefore
substantial increases over conventional TLB sizes are neede
impact these miss-rates.

However, this figure also shows that our application
probability distributions share the characteristic spikes, seen w
PNMrotate, that indicate prefetching benefit.

Figure 5 TLB Performance of real applications

3.4 Discussion
All prefetching schemes rely on some predictable access behavior.
We therefore consider our recency-based prefetching scheme in
the context of various application access behaviors. We group
application behaviors into three main categories:Linearly
Predictable, Non-Deterministic andDeterministic Iterative:

Linearly Predictable access behavior generally results from
large dense regular data structures which are walked through in a
linear fashion. Examples are scientific or image processing.

Several cache-based prefetching techniques that exploit such
reference patterns have been proposed in the past. The most

notable ones are sequential prefetching and stride prefetching
[8] and the references contained therein). Linear (or sequent
prefetching is a simple heuristic that predicts that the next page
miss in the TLB is the next virtual page. This simple heuristic ha
been used to prefetch code blocks into cache in many processor
has also been evaluated in context of data caches for sha
memory multiprocessors [8]. Linear prefetching essential
exploits spatial locality. As we will show, while it works well in
some cases it is restricted to applications that access all elem
of huge data structures. Linearly predictable applications a
expected to be easily attackable via simple prefetching scheme

1 10 100 1000

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000 10000

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00
1 10 100 1000

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000
1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000
1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1 10 100 1000 10000
1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

TLB size in 8KB pages

P
ro

ba
bi

lit
y

of
 a

 m
is

s
P

ro
ba

bi
lit

y
of

a
re

-u
se

at
a

gi
ve

n
re

ce
nc

y

Fluent Lightwave Sphinx2 Vortex

Alan Berenbaum
120

a
g
is

n

the
ted

r
pu
ict

- a
he

be
x
ck-
lute
h
an
rks
he

e-
either hardware or software. As a comparative metric, we consider
linear prefetching in our evaluations.

A Non-Deterministic access behavior has almost no
discernible behavior pattern. Typically, both working set, and order
of working set access are arbitrarily determined by input data.
These characteristics make prefetching and prediction extremely
difficult if at all possible.

A Deterministic Iterative access behavior results from a
large class of applications which typically iterate over a more or
less constant data set. In such applications the data itself need not
be regularly ordered, the only ordering is temporal through re-use.
It is this kind of application which is expected to lend itself best to
a recency-based prefetching scheme.

4 RECENCY-BASED TLB PREFETCHING
In this section we present our TLB prefetching technique by first
providing a rationale for it in Section 4.1 after which we propose
an implementation in Section 4.2.

4.1 Rationale
Quite simply, our algorithm speculates that after a given TLB miss
the required translation for the next TLB miss will most likely
have the same (or similar) recency.

One can see how this might make sense. If an application
iteratively ploughs through a set of data structures, then there is a
temporal ordering between the structures even though there may
be no ordering in either the virtual or physical address space.

For example, consider three data structures A, B and C. A
deterministic iterative application might loop through these
structures in the same order several times during a computation -
for example if they were connected on a linked list. After the first
iteration, it is clear that A preceeded B which preceeded C, which
has now preceeded A again. As we return to A we can determine
that the program last accessed A two structures previously
(notional recency 2), and as the computation progresses to A we
predict that the computation will eventually move to the structure
which is now two structures temporally behind A - i.e. correctly
predicting the move to B, and so forth to C and round again.

Often the temporal ordering will remain the same, even
though the actual content of data structures is altered as part of the
computation. In order to maintain recency ordering we can use an
LRU stack as described in Section 3.1. For a simulator there is no
problem to maintain a full LRU stack for temporal address
ordering, recency values of translations can be determined, and the
reverse of a translation for a recency value can also be determined.
Thus the effectiveness of a recency-based predictor is easy to
evaluate, but how might this be practically implemented?

4.2 A hardware implementation
Speculative TLB preloading algorithms may be implemented in
either a software or a hardware TLB reload handler. In the case of
software, while flexible, the cost of implementation is a direct
increase in the latency of handling a TLB reload.

However, in the case of a hardware implementation, the
fundamental TLB miss can be serviced, the CPU restarted, and
then any speculative operations can proceed concurrently with
continued CPU execution. With this in mind, we propose and
evaluate ahardwareprefetching implementation for ahardware

TLB reloader1.
Such a system consists of the conventional MMU

components; the TLB and reload hardware, augmented with
small buffer for pre-fetched TLB entries and the prefetchin
engine itself. With the prefetcher in operation, a load or store
likely to be handled by the MMU in one of three ways:

i) A match in the TLB results in the conventional translatio
of addresses, and update of the TLB’s entry replacement state.

ii) A miss in the TLB may match in the prefetch buffer.
Address translation occurs as in i), the CPU is restarted,
matching entry is transferred to the TLB, and the prefetcher star
to prefetch another entry.

iii) A miss in the TLB does not match in the prefetch buffe
either. The correct TLB entry has to be fetched, whereupon the c
is restarted. The prefetcher can use this miss information to pred
new translation entries for the prefetch buffer.

Figure 6 Augmented Translation Table Entry

Figure 7 Recency stack implemented within existing page table

4.2.1 Implementation of a recency stack
To start with, the TLB reload mechanism remains the same

page table walk, or hash table, for example, is used in t
conventional way to find translation entries for the TLB.

A key observation enables a recency based predictor to
built on top of this mechanism without the need for comple
hardware support: For recency-based prediction, unlike the sta
based miss-rate calculation, we are not interested in the abso
recency position of a translation entry in the LRU stack whic
maintains temporal ordering. Instead, we are only interested in
entry’s nearest neighbors in the stack. We shall see how this wo
shortly, but first it is important to see how to build and manage t
LRU stack used for recency prediction.

1,but without the loss of generality which would preclude a software impl
mentation.

protVPN PFN misc prev next

Original TTE

Virtual Page number

Physical Page number

Protection bits

misc (history etc.)

previous and next
pointers used to

build doubly linked-
list for recency ac-
cess stack - within
existing page table

structure

New TTE Fields

T
T

E
 h

as
h

us
in

g
vi

rt
ua

l a
dd

re
ss

 ‘Y
’

X

Y

Z

X

Y

Z

(a) TTE identified in
conventional page
table (e.g. by hash)

(b) TTE unhooked from re-
cency stack

Alan Berenbaum
121

d
ne
e at
’

ck

’
+1
a
s

its
ct.
he
no

the
tly

ide
el
a
en
s
the

an
is
the
he

Us
d
the
.
e

To build the LRU stack, on top of the conventional reload
mechanism, we use a doubly-linked list, each element in the list is
a page translation table entry as used by the reload mechanism.

Thus we have the conventional page tables for a normal
MMU, except that each Translation Table Entry (TTE) (or virtual
to physical translation) is augmented withprevious and next
pointers, (Figure 6), so it may be also threaded into a doubly-
linked list which forms the recency stack.

Next we note that the only manipulation of the recency stack
that occurs is the removal of an element from an arbitrary position
in the stack to place on the top of the stack - all elements with
lower recency values being propagated down the stack. All
elements with higher recency values maintain their position. The
simple doubly-linked list structure enables the extraction of
individual elements with O(1) time to maintain the integrity of the
list. Similarly O(1) time is required to insert elements to the top of
the stack. There is no movement of data going on here, merely
simple pointer manipulation.

Thus, upon a TLB miss the required TTE is selected by
hardware in the usual manner, for example by table walk, or hash
table - as depicted in Figure 7a. Once found, the translation is
supplied to the TLB and the CPU restarted. Then, the previous and
next pointers in the TTE, and those of the respective previous and
next TTEs are manipulated to remove the TTE from its current
position on the stack (Figure 7b), ready for insertion as the new
head of the stack.

Figure 8 Hardware TLB maintains temporal ordering for us

To maintain temporal ordering of virtual page references in
this way for every load and store instruction is clearly not a
practical solution. Even though no work has to be done for top of
stack (recency=0) references, the job is still impractical.

Key to resolving this is the observation that the TLB itself
implements the upper N elements of our recency stack. This can be
seen in Figure 8 where entry P is already in the TLB when
accessed, so only the TLB’s LRU ordering is updated leaving the
remainder of the recency stack untouched.

The memory-based LRU stack is only manipulated on a TLB
miss, when a translation from outside the TLB is moved to the top
of the “stack”; as a consequence, the replaced TLB entry falls out
of the TLB down on to the top of the in-memory LRU stack. This
is depicted in Figure 9. Thus, the only in-memory recency stack
manipulations required are those related to TLB misses.

4.2.2 Predicting the next TTE
Although our algorithm bases the prediction of the next miss on
the same (or similar) recency to the preceeding miss, the actual

recency value is not required.
According to the stack algorithm, a required TTE is plucke

from the LRU stack and moved to its top, the TTEs above the o
selected move down the stack making room for the selected on
the top. From Figure 9 it can be seen that any arbitrary TTE ‘Y
with recencyR, once selected and moved to the top of the sta
gains recency 0. Meanwhile the TTE ‘X’ immediately prior to ‘Y’,
previously with recencyR-1, moves down the stack taking over the
position with recencyR. Also, the TTE (‘Z’) with recencyR+1
remains the same.

Figure 9 Actions taken on actual TLB miss

Trivially then, once a TTE ‘Y’ is selected to fulfil a TLB
miss, the predicted TTE with the same recency is the TTE ‘X
immediately above in the recency stack. The TTE with recency
is the TTE (‘Z’) below. In fact predicted TTEs with recencies +/-
small amount are easily found by simply following the previou
and next pointers from the selected TTE.

4.2.3 Handling the predicted TTE
A predicted TTE is only a guess, and cannot be moved from
position in the recency stack until it has been confirmed as corre
If it were moved to the top of the recency stack regardless, t
correct temporal ordering of TTEs would be perturbed and
longer viable for prediction.

For the same reason (as the TLB models the upper part of
recency stack on our behalf) a predicted TTE cannot be direc
loaded into the TLB.

Instead the only additional hardware we recommend is a s
buffer to hold prefetched TTEs. This buffer is checked in parall
with the main TLB. If a TLB match occurs no action is taken. If
TLB miss occurs and nothing in the predictor buffer matches, th
a conventional TLB reload is required. If however on a TLB mis
there is a match in the prefetch buffer, the matching contents of
buffer can be used to allow the cpu’s load or store to complete.

Once a prefetched TTE match occurs, the matched entry c
be inserted into the TLB, and the unhooking from the LRU stack
taken care of in the background by the hardware TLB loader, at
same time as inserting the evicted TLB entry on to the top of t
LRU stack.

4.2.4 Non LRU TLBs
For speed and complexity reasons most contemporary CP
implement only an approximation to a Least Recently Use
algorithm. Some approximations are better than others, and
deviation from a true LRU algorithm will affect the results
However this may be positive for some applications - forcing som

QQ
R
P
S

A
B
C
X
Y
Z

P
Q
R
S

A
B
C
X
Y
Z

P

R

S

A
B
C
X
Y
Z

Before During After

C
P

U
’s

 T
LB

re
ce

nc
y

st
ac

k
m

ai
n-

ta
in

ed
 in

 m
ai

n
m

em
o-

P
Q
R
S

A
B
C
X
Y
Z

Y
P
Q
R

S
A
B
C
X
Z

P
Y

Q
R

S

A
B
C
X

Z

2) Selected
TTE is loaded

into TLB

3) TTE dis-
placed from
TLB isadded
to head of re-
cency stack

1) Selected
TTE is un-

hooked from
recency stack

Before During After

Alan Berenbaum
122

ic
of
ner
re

ted
e.
ily
d to

of
d
se.
a

le
ata
is

ng
ften
and

for
he
ese
ach
nd

he
to
ing
a
ge
n

ly
is
g

ous
otal
.
e

ext

or
re
ge
the
tride
TLB replacements to have greater temporal regularity for given
translations; for other applications the effect will be worse.

It is the responsibility of a CPU architect to determine the
impact of the actual replacement scheme when related to recency-
based prefetching. On the positive side, most early ejections from
the TLB as a result of a sub-optimal replacement policy are likely
to be quickly fetched back into the TLB without progressing too
far down the recency stack to the point where most recency
prefetches will occur.

5 EXPERIMENTAL APPARATUS
The research in this paper is based on the use of execution-driven
simulation to obtain measured results of the prediction accuracy
for the applications introduced in Section 3.2. Compared to trace-
driven simulation this provides a greater versatility for the non-
intrusive measurement of a range of systems, some of which may
not be actually realizable.

Moreover, there is no dependence on captured trace files
which, for size reasons, often only represent a snap shot of
complete application behavior. Further, although TLB misses are
fairly frequent events, the kind of data re-use we were interested in
often would only occur after many billions of instructions, making
traces huge and impractical. We next consider the prefetch
schemes we have evaluated and then the experimental setup used.

5.1 Evaluated prefetch schemes
For the results presented, the following prefetching algorithms are
used.

5.1.1 Linear prefetching
Predicts a future miss based on the virtual page address of a
current miss. Upon each TLB miss, thedata virtual address
causing the exception is shifted to extract the virtual page number
concerned. A prediction of the next TLB miss to occur is then
made using the extracted virtual page number plus or minus one or
two page frame offsets. The virtual-to-physical translation is also
loaded at the same time into a TLB prefetch buffer, from where it
is inserted into the TLB automatically (according to the TLB
replacement algorithm) if the prediction proves to be correct.

If the prediction is incorrect, a TLB exception occurs as usual.
If the prediction is correct, then the predicted (correct) virtual page
number is then used to predict again with the same constant.

5.1.2 Recency-based prefetching
This prefetcher would maintain an LRU stack in memory, as
described earlier. The stack enables the measure of recency for
virtual page addresses (and their translations).

Upon a TLB miss, the required virtual page is found in the
LRU stack, and its recency noted. The stack is adjusted with the
selected entry migrated to the top as per the algorithm described
earlier. Then, a prediction of the translation required for the next
miss is made based on the recency of the miss currently being
handled. The page translation with the same recency value is
selected and held in a TLB prefetch buffer until the next TLB miss
occurs.

Just as the linear prefetcher above, if the prediction is correct
it is moved to the TLB and also used for the next prediction. If
incorrect, then a full TLB reload occurs, and the next miss
prediction is based on the correctly loaded translation.

5.2 Simulation environment
The Shade-V [4] execution-driven simulator enables the dynam
re-compilation of complete applications, enabling the insertion
custom monitoring code. This code can be used either to gar
trace information, or in our case to simulate the target architectu
as the program executes.

Simulation measurements were taken for a range of simula
TLB sizes, and TLB page sizes ranging from 8KB to 64KB in siz

Very big pages (or superpages) were not simulated; primar
because, although large, the benchmarks are small compare
such pages, and the results would be un-representative.

Superpages essentially rely on an extremely high degree
spatial locality for efficient use, which works for well behave
applications with linear data structures, but not in the general ca
Intuitively we can see that for real applications, where even
super-page is a small fraction of the data set size, it is of litt
benefit to have a page much larger than the program’s intrinsic d
structure size since the probability of reuse before eviction
small. This is analogous to the diminishing benefits of increasi
cache line sizes. So, still today, the use of such superpages is o
restricted to special purpose operations, such as frame buffers
kernel mappings.

6 RESULTS

6.1 Prediction Accuracy
Each of our five target applications was executed using Shade
each of our prefetching scheme simulators, to track t
performance of the prefetchers themselves. The results from th
experiments are presented in Figure 10 through Figure 14. E
figure represents a single application, but using different TLB a
page-size configurations as well as different predictors.

Along the X-axis of each graph results are grouped at t
coarsest level into four different simulated page sizes from 8KB
64KB pages. For each page size we have simulated four increas
TLB sizes, from 64 to 512 fully-associative entries each with
least-recently-used replacement algorithm. Finally, for each pa
size and TLB-size combination we show three predictio
effectiveness bars.

The left-most bar depicts the percentage of correct
predicted TLB misses for recency-based prefetching. This bar
itself subdivided to show the prediction rate of preloading usin
pages with the same recency (“recency prefetcher”) as the previ
miss, pages with recency-1 and pages at recency+1. The t
height of the bar is then the effect of prefetching all three pages

The right-most of each group of three bars shows th
equivalent statistics for a linear predictor. The Predictors are n
page, next page+1, and previous page.

Finally the (always) smaller bar between the two predict
bars indicates the correctly predicted TLB misses which we
predicted byboth the same-recency predictor and the next-pa
predictor. Using this measure, we can see whether or not
recency predictor chooses pages also predicted using a linear s
predictor.

Alan Berenbaum
123

s
he
lso
ata

ther
to
he
1/4

y
tion
ake
lity
can
cy
ach

r
r the
ta
l in
tor
tial
It is
to
of

t

Figure 10 PNMRotate

The simplest of our target applications is PNMRotate. It has a
very regular stride data access, which is easy to predict. Note in
Figure 10 there are no correctly predicted “next page” prefetches
for 8KB pages. We observe therefore, that the dominant miss rate
has a stride larger than a single 8KB page, since for 8KB pages, the
next page prefetcher has no success, but yet the next page +1 (next
next page) prefetcher has a success rate. Yet, when we move to the
larger page sizes, the next page prefetcher starts working. All of
these are results we would expect for both predictors - the linear
array access by the application means a big potential win for the
linear next page predictor. Similarly, the regular temporal reuse of
data makes the recency based scheme consistently successful.

It is interesting to note however that while one could use a
stride predictor to tackle such applications, the recency predictor
essentially performs as well, but without the need for significant
extra hardware to compute and retain predicted stride patterns.
This indicates that a recency-based predictor could do well for
regular array computational codes - when compiler inserted
software prefetching is not an alternative.

Figure 11 Vortex

Vortex has high (almost 20%) correct prediction of TLB
misses for small TLB and pages sizes. However, as the TLB reach
(page size and capacity) increases the benefit of recency
prefetching decreases. This is also true for the next-page (stride)
predictor. Looking back to the probability density function of
access recency for Vortex (shown in Figure 5) we see that Vortex
has a relatively small application working set, of only a few
thousand 8KB pages, and with the majority of accesses
concentrated in the most recent few hundred pages. There are no

real characteristic “spikes” in this density function which implie
that outside of the core few hundred pages of working set, t
remainder of data is accessed in no particular temporal order. A
we can see from the performance of the next page predictor, d
access appears not to be spatially linear either. Therefore nei
predictor will work well once the TLB has a large enough span
cover the core working set of this application. For example, t
64K x 128 TLB has the same span as 1024, 8K pages, which is
of the entire data set.

Figure 12 Sphinx2

For Sphinx, both prefetchers perform well, with the recenc
based scheme slightly better in each instance. For this applica
not only is there data reuse which the recency prefetcher can t
advantage of, but the data appears to have good spatial loca
across pages so that the linear prefetcher also does well. We
see that for the most part, both the linear and the recen
prefetchers are predicting the same pages - the middle bar of e
triplet of results.

Figure 13 LightWave

For LightWave (shown in Figure 13), the recency predicto
does extremely well. This makes sense, because as a ray-shade
core of the application will traverse the same internal da
structures in more or less the same order to compute each pixe
the final rendered scene. However, the linear (next page) predic
does poorly in comparison because there is apparently little spa
locality between the allocated objects in the scene database.
not until the page sizes become significant and the TLB starts
cover most of the application working set that the performance
both predictors once again begins to roll off.

Finally Fluent UNS (shown in Figure 14) shows a significan
prediction rate for the recency based TLB prediction.

0

10

20

30

40

50

60

70

8K
 x 64

8K
 x 128

8K
 x 256

8K
 x 512

16K
 x 64

16K
 x 128

16K
 x 256

16K
 x 512

32K
 x 64

32K
 x 128

32K
 x 256

32K
 x 512

64K
 x 64

64K
 x 128

64K
 x 256

64K
 x 512

%
ag

e
co

rr
ec

tly
 p

re
-

di
ct

ed
 T

LB
 m

is
se

s

y p
page -1 prefetcher
next page +1 prefetcher
next page prefetcher

drecency and next page overlap

recency-1 prefetcher
recency+1 prefetcher
recency prefetcher

f h

0

10

20

30

8K
 x 64

8K
 x 128

8K
 x 256

8K
 x 512

16K
 x 64

16K
 x 128

16K
 x 256

16K
 x 512

32K
 x 64

32K
 x 128

32K
 x 256

32K
 x 512

64K
 x 64

64K
 x 128

64K
 x 256

64K
 x 512

0

10

20

30

40

50

60

8K
 x 64

8K
 x 128

8K
 x 256

8K
 x 512

16K
 x 64

16K
 x 128

16K
 x 256

16K
 x 512

32K
 x 64

32K
 x 128

32K
 x 256

32K
 x 512

64K
 x 64

64K
 x 128

64K
 x 256

64K
 x 512

0

10

20

30

40

50

60

8K
 x 64

8K
 x 128

8K
 x 256

8K
 x 512

16K
 x 64

16K
 x 128

16K
 x 256

16K
 x 512

32K
 x 64

32K
 x 128

32K
 x 256

32K
 x 512

64K
 x 64

64K
 x 128

64K
 x 256

64K
 x 512

Alan Berenbaum
124

he
er
the
s

del
g
ce,

le
t.

B
s
ing
eir

he
all

LB
ily
4.
B

a
has
01
PI

is
B

g
n to
Figure 14 Fluent UNS

Importantly, as this is the largest of all the applications with a
working set of some 200 MBytes, we do not see the roll off in
prediction with increased TLB and page size. This is because the
span of the TLB never becomes a significant fraction of the
application working set size. Moreover, the prediction rate
improves with greater TLB span, presumably because as the TLB

grows we see fewer misses from the inner working set of t
application which interfere with the more regular misses at high
recency values - note that in Figure 5 we see a step down in
miss probability density function at around 500 (8KB) page
suggesting at least one inner and outer working set.

6.2 Performance Impact
From these results we can use a relatively simple analytical mo
to determine the impact on performance of our TLB pre-loadin
scheme. There are so many factors determining CPU performan
that it is often most useful to consider the impact of a sing
component in terms of its Cycles Per Instruction (CPI) impac
Therefore, for this model, we compute the CPI impact of TL
misses both with and without the benefit of TLB pre-fetching. A
CPI components are additive, we can then treat the remain
components of the CPU as a whole, and abstractly describe th
performance as a single additional CPI value - this value is t
performance of the CPU core, caches, branch predictors and
other components aside from the MMU.

Figure 15 Speedup ratios for recency based prefetching

Based on this reasoning, we can plot the following ratio:

as a function of the number of cycles delay caused by a TLB
reload, and as a function of the additional processor CPI
component CPIcore. This ratio gives us an upper bound for the

speedup potential of our TLB prefetching technique.
Figure 15 shows the results of this computation for each of

our applications, for a 64 entry fully associative TLB with 8KB
pages. The two sets of curves are for; prefetching a predicted page
translation with the same recency as the preceeding TLB miss, and
prefetching three translations with the same recency, recency-1,

and recency+1 as described earlier. Curves for the other T
combinations simulated are omitted for brevity, but are eas
drawn using the miss rates given in Figure 10 through Figure 1

Even conservatively, from Figure 15, if we choose a TL
reload delay of around 100 cycles - as representative of
contemporary CPU - then the simple same-recency prefetcher
the potential to improve performance by a factor of between 1.
to 1.35 depending on the application (TLB miss rate) and core C
performance of the CPU.

These figures are encouraging, however more interesting
the trend for improving performance potential as both the TL
load delay increases, and as the CPU’s core CPI decreases.

For future CPU designs, with main memory latency laggin
the increases in core clock frequency the number of cycles take

0

5

10

15

20

25

8K
 x 64

8K
 x 128

8K
 x 256

8K
 x 512

16K
 x 64

16K
 x 128

16K
 x 256

16K
 x 512

32K
 x 64

32K
 x 128

32K
 x 256

32K
 x 512

64K
 x 64

64K
 x 128

64K
 x 256

64K
 x 512

50 100 150 200

1.2

1.4

1.6

1.8

PNM Rotate

Speedup

50 100 150 200

1.05

1.10

Vortex

50 100 150 200

1.05

1.10

Sphinx2

50 100 150 200

1.1

1.2

1.3

LightWave

50 100 150 200

1.02

1.04

1.06

1.08

Fluent UNS

recency -1,0,1 prediction : core CPI 0.500000
recency -1,0,1 prediction : core CPI 0.750000
recency -1,0,1 prediction : core CPI 1.000000
recency -1,0,1 prediction : core CPI 1.500000
recency -1,0,1 prediction : core CPI 2.000000
recency -1,0,1 prediction : core CPI 3.000000
same recency prediction : core CPI 0.500000
same recency prediction : core CPI 0.750000
same recency prediction : core CPI 1.000000
same recency prediction : core CPI 1.500000
same recency prediction : core CPI 2.000000
same recency prediction : core CPI 3.000000

Figure Key:

TLB load delay (cycles)

CPIcore CPIWithoutTLBPrefetch+

CPIcore CPIWithTLBPrefetch+
--

Alan Berenbaum
125

hey
ns
the
n
LB
y

nto

l
in

nel
e
n
uch

B
hat
ted
m

s to
ent

e

ost
ta
the
y in
.
[26])

an
ide
ain
les
g
dly

e
ints

-
d,
m
of

of
pt
of
lity
a

his
eir
of
w

ns
satisfy a TLB miss is likely to increase, therefore increasing the
performance potential for TLB prefetching.

Also, as core CPU designs improve, with greater instruction
level parallelism, larger caches with fewer misses, and better
speculative prediction, then the remaining CPI components of
performance begin to diminish with respect to the TLB re-loading
impact. We can see in Figure 15 the dramatic effect such
improvements are likely to have on the relevance of TLB
prefetching as the core CPI component decreases.

7 DISCUSSION AND RELATED WORK
We have described our preloading algorithm as a mechanism for a
hardware reloaded TLB. Yet, it is also applicable to software
reloaded TLBs. However, observations in recent studies
[18,19,11,17], suggest that software TLB reloading is an expensive
operation, and increasing this software burden may outweigh the
benefits of prefetching.

A study by Jacob and Mudge [11] has shown that for modern
microprocessors software-based reload handling is expensive for a
range of different reload strategies (or Operating System page-
table layouts), and that a simple hardware-reload mechanism can
have better performance because its operation can sometimes be
performed concurrently with CPU execution. In another study
[17], Qiu and Dubois have shown that for contemporary CPU
designs, software reload routines have significant execution
expense beyond executing the reload code itself. Their study
details a method of hiding some of the cost of entering the reload
code by handling the exception as late as possible.

Instead of increasing the TLB size with its associated latency
penalty, other approaches include (i) using larger pages, (ii) multi-
level TLBs, and (iii) using virtually-addressed caches. Larger
pages, or super-pages [9,18,19], like larger cache line sizes exploit
spatial locality in an application. At page frame granularities larger
pages are highly dependent on application locality, especially
while the page size is still only a tiny fraction of the program data
set size. As for multi-level TLBs, there are several limitations.
Like increased TLB size, they consume die area. Indeed the
inclusion property essentially wastes die area. Moreover, they do
not eliminate the TLB miss penalty for the lowest level.

Another alternative is to consider virtually-addressed caches
[2,3,10,16,20] to minimize the number of required references to
the MMU. Only cache misses require translations which
potentially enables larger, slower TLBs. This can work well for
certain kinds of applications, however the synonym problem (of
one physical page frame being simultaneously mapped to two
different virtual addresses) arises for others. While there are
techniques for resolving the synonym problem, they are sometimes
expensive (e.g. forcing cache flushes), and moreover synonyms are
being found useful for certain optimizations such as zero-copy
TCP/IP implementations [6].

As with data caches the TLB miss rate determines the
efficacy. Thus, the widely used 3C-model (Compulsory, Capacity,
and Conflict misses) is useful to contrast different techniques.

Compulsory TLB misses have been attacked using
prefetching techniques [13,15]. In [13] the Kernel has prior
knowledge of likely future page faults and can preemptively create
additional mappings and avoid the expense of each page being
faulted. This work also shows how the fine-grain structure of
micro-kernel based Operating Systems leads to excessive page re-
mapping and sharing between the many communicating virtual

address spaces. To mitigate the cost of such (re)mapping t
“prefetch” by speculatively calculating the new page translatio
for the recipient virtual address space upon each trap into
micro-kernel for communication. The results of this speculatio
are then cached in a kernel software table and used by the T
reload handler to avoid a full blown page fault. Interestingly the
also note that the translations might instead be placed directly i
the TLB to avoid the reload trap.

Unfortunately this technique really only applies to potentia
manipulations of processes’ virtual address spaces particularly
relation to the excessive message communications of micro-ker
operating systems. In addition, this technique may still b
applicable to zero-copy TCP/IP [6] and other communicatio
operations between peer-applications in specialized situations s
as web-servers.

[15] evaluates a prefetching technique for compulsory TL
misses implemented in a software reloaded TLB. For reasons t
have been mentioned, the efficiency of such a scheme is impac
by the overhead of software-loaded TLBs. Our prefetch algorith
attacks the more difficult capacity miss class. Other approache
attacking capacity misses target the selection and replacem
algorithms. LRU approximating algorithms tend to perform
sufficiently well for a wide range of applications, therefore w
have not explored this option.

Finally, conflict misses are more difficult to handle for TLBs
than in caches, since the virtual address space usage is alm
entirely under the control of the application; whereas for a da
cache the physical address space is under the control of
Operating System. Thus there is pressure for a high associativit
TLB design - thereby reducing the potential for conflicts
Techniques such as skewed accesses (as used for data caches
may yet show promise here.

8 CONCLUSIONS
In a conventional processor each access to virtual memory
application makes must be handled via the Translation Lookas
Buffer. This means that the pressure on the TLB scales with m
memory capacity, while the speed of handling a TLB miss sca
only with the memory latency. TLB performance is becomin
more and more critical as the capacity of system memories rapi
outpaces reductions in latency.

Unfortunately, the TLB is often on the critical path for cach
access validation within a processor, which places extra constra
on its speed, and hence its capacity.

In this paper, we have focused on the possibility of pre
loading (or prefetching) TLB translations before they are require
thereby avoiding TLB misses and their impact on syste
performance. We have considered this principally in the context
a hardware TLB reload mechanism.

We have used a stack algorithm to study the performance
applications for all possible TLB sizes, and introduce the conce
of recency. By plotting frequency of access as a function
recency, we see, rather than a smooth linear function, probabi
density functions for most applications which strongly suggest
component of data accesses which are temporally regular. T
indicates that a large class of applications iterate around th
working set several times with only small deviations in the order
access. This temporal regularity is the foundation of the ne
recency based prefetching algorithm we present and evaluate.

We show that a temporally ordered stack of page translatio

Alan Berenbaum
126

-
n

0

d
ory

n
in

hi-

s-
-

-
le

g

nd

-

g

-
.

-

r

for

s

/

.

e
i-
is easily implemented and maintained by hardware, and then used
to simply “guess” the required translation for an upcoming TLB
miss based on the assumption it has the same or similar recency to
the preceeding miss.

Quantitatively we consider the effectiveness of TLB
prefetching, using both a simple linear “next page” predictor and
our recency based predictor. The next page prefetcher relies on
spatial locality rather than temporal locality for its operation.

We have concentrated on a range of commercially significant
applications for our study. Our stack based studies of these
applications show that, despite their diverse nature, TLB
performance is important for all. Our results show that a simple
preloading scheme can reduce TLB misses by over 50%.

In those applications where a linear or stride predictor would
yield significant benefit, we have seen that the recency-based
predictor also predicts the same required translations. As a
consequence the recency-based predictor frequently outperforms
the linear predictor in terms of correctly predicted potential misses.

As the trend towards faster processors exploiting more
instruction-level parallelism continues, the impact of TLB misses
is likely to become worse. Following this trend, results from a
simple analytical model illustrate an increasing performance
potential for recency based prefetching. Therefore, TLB
preloading techniques will likely be in future processor designs.

9 A NOTE ON FUTURE WORK
To date most prefetching techniques have been focused on
reducing the impact of data and instruction cache misses during
the execution of program code. However, there is a close
relationship between the Memory Management Unit and the
system caches. We feel that schemes, such as recency-based
prefetching, which are based on the temporal behavior of
applications, offer the opportunity to identify phase changes in
application execution. If we can successfully predict such changes
for the TLB, we are implicitly given information about which data
is also expected from caches.

Using recency-based prefetching (in its presented form)
directly for caches is likely to be awkward, because of the
relatively higher miss rates, and much finer granularity of data
caches. However, such a prefetcher, while benefiting TLB
performance, might also be used to guide or filter data cache
prefetches from a multiple of more conventional prefetching
algorithms - thereby improving efficiency and lowering the
prefetch bandwidth requirement.

10 ACKNOWLEDGMENTS
Grateful thanks to Sun Labs staff for their support and comments
on this work. Per Stenström is supported by the Swedish Research
Council for Engineering Science (TFR). Contract 221-97-593.

11 REFERENCES
[1] T. Austin and G. Sohi, “High-Bandwidth Address Translation

for Multiple-Issue Processors,” inProceedings of the 22nd
Ann. Int. Symp. on Computer Architecture,pp. 158-167, 1995.

[2] M. Cekleov and M. Dubois, “Virtual-Address Caches, Part 1:
Problems and Solutions in Uniprocessors” pp. 64-71, inIEEE
Micro, Nov/Dec 1997.

[3] J. Chase, H. Levy, and M. Feeley, “Sharing and Protection in
a Single-Address-Space Operating System,” inACM Trans.
on Computer Systems, pp. 271-307, Nov. 1994.

[4] B.Chemlik, “The SHADE simulator”, Sun Labs T.R. 1993.

[5] J. Chen and A. Borg, “A Simulation Based Study of TLB Per
formance,” in Proceedings of the 19th Ann. Int. Symp. o
Computer Architecture, pages 114-123

[6] H.K.J. Chu, “Zero-Copy TCP in Solaris”, in1996 USENIX
Annual Technical Conference, January 22-26, 1996, San
Diego, California

[7] D. W. Clark and J.S. Emer, “Performance of the VAX-11/78
Translation Buffers: Simulation and Measurement,” inACM
Trans. on Computer Systems, vol. 3, no. 1, 1985.

[8] F. Dahlgren and P. Stenström “Evaluation of Stride an
Sequential Hardware-based Prefetching in Shared-Mem
Multiprocessors,” inIEEE Trans. on Parallel and Distributed
Systems, Vol. 7, No. 4, pp. 385-398, April 1996.

[9] J. Huck and J. Hays, “Architecture Support for Translatio
Table Management in Large Address Space Machines,”
Proceedings of the 20th Ann. Int. Symp. on Computer Arc
tecture, pp. 39-50, May 1993.

[10] B. Jacob and T. Mudge, “Software-Managed Address Tran
lation,” in Proceedings of the 3rd Int. Symp. on High-Perfor
mance Computer Architecture, pp. 156-167, Feb 1997.

[11] B. Jacob and T. Mudge, “A Look at Several Memory Manage
ment Units and TLB-Refill Mechanisms and Page Tab
Organizations,” in ASPLOS-VIII, pp. 295-306. 1998.

[12] http://www.speech.cs.cmu.edu/speech/sphinx.html
[13] K. Bala, M.F. Kaashoek, W.E.Weihl, “Software Prefetchin

and Caching for Translation Lookaside Buffers”, inProceed-
ings of the First Symposium on Operating System Design a
Implementation, November 1994.

[14] R.L. Mattson, J. Gecsei, D. Slutz, and I.L. Traiger, “Evalua
tion Techniques for Storage Hierarchies”, inIBM Systems
Journal 9 (2):pp.78-117, 1970

[15] J. S. Park and G. S. Ahn, “A Software-controlled Prefetchin
Mechanism for Software-managed TLBs,” inMicroprocess-
ing and Microprogramming, Vol .41, No 2. pp. 121-136, May,
1995.

[16] X. Qiu and M. Dubois, “Options for Dynamic Address Trans
lation in COMAs,” inProceedings of the 25th Ann. Int. Symp
on Computer Architecture,pp. 214-225, June 1998.

[17] X. Qiu and M. Dubois, “Tolerating Late Memory Traps in
ILP Processors,” inProc. of 26th Ann. Int. Symp. on Com
puter Architecture,pp. 76-87, 1999.

[18] M. Talluri and M. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” inPro-
ceedings of the Sixth Int. Conf. on Architectural Support fo
Programming Languages and Operating Systems,Oct 1994.

[19] M. Talluri, S. Kong, M. Hill, and D. Patterson, “Tradeoffs in
Supporting Two Page Sizes,” inProceedings of the 19th Ann.
Int. Symp. on Computer Architecture,May 1992.

[20] B. Wheeler and B. N. Bershad, “Consistency Management
Virtually Indexed Caches,” inProceedings of the Fifth Int.
Conf. on Architectural Support for Programming Language
and Operating Systems,Oct 1992.

[21] http://www.fluent.com
[22] http://www.newtek.com
[23] pnmrotate, part of Net PBM distribution, version 7: ftp:/

wuarchive.wustl.edu/graphics/graphics/packages/NetPBM
[24] AMD K-7 Product announcement at microprocessor forum

http://www.amd.com/products/cpg/k7/micropforum.html
[25] HAL SPARC64-III, Microprocessor Report, Dec 8, 1997

http://www.hal.com/home/sparc64-3_mda.html
[26] A. Seznec, “A Case for Two-Way Skewed-Associativ

Caches”,Proc. 20th Annual Symposium on Computer Arch
tecture, pp. 169-178, May 1993

Alan Berenbaum
127

	1 Introduction
	2 TLB Thrashing In Real Codes
	2.1 A TLB thrashing example
	2.2 TLB thrashing in commercial codes

	3 TLB Entry Re-use in Codes
	3.1 TLB miss prediction using an LRU stack
	3.2 Applications
	3.3 Application behavior
	3.4 Discussion

	4 Recency-based TLB prefetching
	4.1 Rationale
	4.2 A hardware implementation

	5 Experimental apparatus
	5.1 Evaluated prefetch schemes
	5.2 Simulation environment

	6 Results
	6.1 Prediction Accuracy
	6.2 Performance Impact

	7 Discussion and Related Work
	8 Conclusions
	9 A note on future work
	10 Acknowledgments
	11 References
	Recency-Based TLB Preloading

