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ABSTRACT corrective action is taken that involves thread squash and parallel
. o . . execution resumption. Already companies like Intel and Sun are se-
Speculative parallelization aggressively executes in parallel codegoysly involved in on-chip speculative parallelization [1, 19]; the
that cannot be fully parallelized by the compiler. Past proposalgatter has even announced a chip multiprocessor (CMP) with such
of hardware schemes have mostly focused on single-chip multiprosypport 1AJC). Most of these small-scale designs are conceived
cessors (CMPs), whose effectiveness is necessarily limited by thefpr standalone operation, and are thus not tailored at being integrated

small size. Very few schemes have attempted this technique in thgtg large system configurations. Only [17] is designed for multichip
context of scalable shared-memory systems. configurations.

In this paper, we present and evaluate a new hardware scheme one possible way to address this limitation is to extend a scal-
for scalable speculative parallelization. This design needs relativelyple cache coherence protocol to support speculative parallelization.
simple hardware and is efficiently integrated into a cache-coherenthere have been two proposals in this direction [17, 18, 22, 23, 24].
NUMA system. We have designed the scheme in a hierarchicagoth schemes extend an invalidation-based cache coherence proto-
manner that largely abstracts away the internals of the node. Wgo|. They both yield a flat view of their speculation threads. Neither
effectively utilize a speculative CMP as the building block for our of these proposals is fleshed out enough to show how, if speculative
scheme. CMPs were used as building blocks, it would reconcile its single

Simulations show that the architecture proposed delivers goodByer protocol with many of the self-contained speculation protocols
speedups at a modest hardware cost. For a set of important noff these CMPs.

analyzable scientific loops, we report average speedups of 4.2 for 16 The main contribution of our paper is the design and evaluation
processors. We show that support for per-word speculative state s 3 new scheme for scalable speculative parallelization that requires
required by our applications, or else the performance suffers greatlyg|atively simple hardware and is efficiently integrated next to the
cacme coherkence ﬁrotocotl1 of i’:l conventLonﬁl l\:UMAI mutl)tiprocessor.
We have taken a hierarchical approach that largely abstracts awa
1 INTRODUCTION the internals of the node archit%%ture. In parti%ul)r:\r, we are abley
. . . L to utilize a self-contained speculative CMP as building block, with
Despite advances in compiler technology [2, 6], there is still a larggyinimal additions to interface with the rest of the system. The in-

set of codes that compilers fail to parallelize to an acceptable dewpgration of speculative CMPs into scalable systems seems to offer
gree. Complex data dependence structures caused by non-linear subaat potential.

scripts, double indirections, pointers, or function calls within code ) ) ) )
sections often lead the compiler to conservatively abstain from par- Simulations show that the architecture that we propose delivers
allelizing the code. Many of these codes, particularly in the scientificgood speedups at a modest hardware cost. For a set of important

domain, may still turn out to have a large amount of parallelism.  non-analyzable scientific loops, we report average speedups of 4.2
for 16 processors. We also show that support for per-word specu-

Software transformations are a possible way of extracting some;iive state is required by our applications, or otherwise the perfor-
parallelism from these codes. Some software schemes analyze thence suffers greatly.

dependence structure of the code at run time and try to run parts of | i ) . . .
in parallel protected by synchronization (for example [13]). Other This paper is organized as follows: Section 2 introduces specu-
software schemes speculatively run the code in parallel and latd@tive parallelization and the base speculative CMP that we use as
recover if a dependence violation is detected [5, 15]. While theséulilding block; Section 3 describes our scalable scheme built out of

techniques are certainly promising, they all have various amounts gipeculative CMPs; Sections 4 and 5 present the experimental setup
software overhead, which may limit their scalability. and the evaluation of the scheme, respectively; Section 6 analyzes

On the hardware side, there have been several proposals f(g?lated work; finally, Section 7 concludes the paper.

single-chip speculative multithreaded or multiprocessor architec-

tures [4, 7, 11, 14, 16, 17, 20]. In these systems, the hardware d

tects dependence violations across threads at run time. The co?e SPECULATIVE PARALLELIZATION
is speculatively run in parallel and, when a violation is detected, » 1 Basic Concepts

undeTrh'gsraWn?srkNVg%SY%%%%O{;‘\%,g;{i‘gggﬁ %\,;?g ,\’)f?,3‘[%1@7255”2\%5%%”1“2%5’;3pecu|ative parallelization extracts threads from sequential code and

MIP-9619351, and CCR-9970488, DARPA Contract DABT63-95-C-0097, runs them in parallel, hoping not to violate any sequential seman-

and gifts from 1BM and Intel. tics. The control flow of the sequential code imposes an order on
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The control flow also yields a data dependence relation on the mem-
ory operations. In loop-level speculative parallelization, threads are
typically formed every some number of consecutive iterations, and
the thread order is total. In general, loop-level speculative paral-
lelization is mostly concerned with not violating cross-thread data
dependences. Of course, in loops whose upper limit is not known,
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Figure 2: Organization of the MDT. In this example, mem-
ory lines have 2 words, there are 4 processors, and processors
2 and 1 have performed a load and a store respectively on
word 0 of line 0x2234.

Figure 1: Example of speculative parallel execution with a
RAW dependence violation.

speculative parallelization should also be concerned about not vi-

olating control flow. This is because the exact number of threadgnade to simplify the hardware and general complexity of the spec-
needed to cover the actual number of iterations must be producegyjation protocoi in the chip. With this design, if the threads have
In what follows, we will focus on the aspects of speculative paral-joad imbalance, a thread may finish some cycles before its predeces-
lelization related to cross-thread data dependences. sor has finished and committed. During this time, the processor that

A memory Operation issued by athreadmcu|ativmhen it may WaS I’ur‘lning the thread remains idle. We call this timensic Chlp
have data dependences with others issued, or to be issued, by pf&balance
decessor threads; otherwise ihisn-speculativeLikewise, a thread This scheme includes a multi-ported table called MDT that
is speculative when it has issued, or may issue, speculative memofgcords speculative accesses to data. Specifically, as memory lines
operations. If all operations issued or to be issued by a thread argre being accessed, the MDT allocatelsoad and aStorebit per
known to be non-speculative, the thread itself is non-speculative. word in the line and per processor. The Store bit is set whenever a

A thread is said to retire atommitwhen it has finished its ex- Processor writes to a word, while the Load bit is set only if the pro-
ecution and it is non-speculative. In general, a speculative threagessor reads a word without first writing to it. Later, when another
will become non-speculative only when all its predecessors hav@rocessor loads a word, the Store bits are used to identify the most
committed, which guarantees that all its memory operations are nortp-to-date version among the predecessors. On the other hand, when
speculative. If a thread reaches its end and is still speculative, it mugt Store operation is performed, both bits are used to detect premature
wait to acquire non-speculative status in order to commit. Hence, thoads by successor threads.
thread sequence can be split into two consecutive segments of com- The MDT is placed between the L1 and memory. It is organized
mitted and uncommitted threads. Among the uncommitted threadss an 8-way set-associative structure that maintains state correspond-
only the earliest one is non-speculative. ing to a number of memory lines (Figure 2). In a naive design, the

Speculative stores generate speculatigmesions and speculative table would be searched every time that a memory operation occurs
loads that do not find a local version try to get it from the closestto data that can be speculatively accessed. If an entry matching the
predecessor that holds one. If no speculative version exists, the lodife requested is found, the corresponding bit is updated; otherwise
fetches the non-speculative one. anew entry is created.

As speculative threads execute in parallel, the system must track The MDT is of limited size and cannot evict entries while in use.
memory references to identify any cross-thread dafa dependence i speculative thread stalls if it finds the MDT full upon trying to
olation. WAR and WAW dependence violations do not induce er-allocate a new entry. When a thread commits, all its MDT bits are
rors in systems that support multiple versions for the same dat&!eared. If, as a result, all the bits in one MDT entry become zero,
RAW dependence violations, however, typically cause problems. Ahe entry is deallocated.

RAW dependence violation occurs whenever a speculative thread As said before, to simplify the protocol, the scheme does not al-
has loaded a version of data that is subsequently modified by a pregw dirty data to remain in L1 across speculative thread initiations.
decessor. We then say that the load was premature, since it tried ithjs restriction, which could be eliminated with further support, im-
consume a value that had not yet been produced. Figure 1 showsies that a thread has to write back all its L1 dirty data when it
an example of such a violation. When a RAW dependence violagommits. This is accomplished gradually in two steps. First, when
tion is detected, the thread that performed the premature load mugie thread becomes non-speculative, its L1 is switched to work in a
be squashed Ordinarily, all its successors are also squashed at thigyrite-through mode. This support additionally implies that the non-
time because they may have consumed versions generated by tBgeculative thread does not need to set any MDT bits and, as a resullt,
squashed thread. While it is possible to resolve reference chains agdnnot stall due to lack of free MDT entries — which means that the
selectively squash only threads at fault, it involves extra complexitycode is guaranteed to make progress. Second, when the thread fin-
In any case, when a thread is squashed, all the data produced sp@shes; it writes back all the remaining dirty words.
ulatively must be purged. Then, the thread restarts execution from -

The actual load and store operations proceed as follows. When

the beginning. . L .. athread issues a load, whether it hits or misses in L1, the MDT is
The approach that we use for speculative parallelization within anformed. If the access resulted in a L1 miss, the line is fetched
chip is that of the Memory Disambiguation Table (MDT) scheme. from memory in parallel. Meanwhile, the MDT Store bits of its
In the following sections, we give an overview of the speculationpredecessors are checked in reverse order to search for the closest
protocol used in a MDT-based CMP. Further details can be foundersion. If a non-zero Store bit is found in the MDT, the word is read
in[11]. from the predecessor (Figure 3a) and merged with the rest of the line
in the requestor’s L1. Note that we must check the Store and not the
. Load bits. A set Load bit does not guarantee that the corresponding
2.2 Speculative CMP and the MDT L1 has the word: lines that have only been speculatively loaded can

In a MDT-based CMP, each processor has a private L1 cache thz?te displaced.

can hold speculative versions of data. The memory beyond the chip When a thread issues a store, the MDT Load and Store bits of
is accessible by all processors and does not see any such speculatiesuccessors are scanned, starting from the immediate successor.

versions. All updates that a speculative thread makes must remaibhe search terminates when a successor is found with either bit set.
in its L1 cache until the thread becomes non-speculative. If the Load bit is set, a RAW dependence has been violated: the

. . consumer and its successors are squashed, their speculatively up-
When a thread reaches the end of its execution, the processor Qfyted words invalidated, and their MDT state cleared. If, instead,
which it runs stalls until the thread becomes non-speculative. Thene | oad bit is not set but the Store bit is, a WAW dependence has
the thread commits by writing back all the dirty data inits L1, there- heen violated. However, this is harmless because the system cor-
fore leaving the L1 cache consistent with memory for a future threadyectly supports multiple versions, thus no squashing occurs. In all
At this point, a new, speculative thread can start. The decisions t@ases however, we send an invalidation message to the caches of
stall the processor until the thread becomes non-speculative, and n@fe threads between the one issuing the store and the first succes-
to keep dirty data in L1 when a speculative thread is spawn, wergor with the Load or Store bits set (non-inclusive), as well as to the
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2k i i1 ioHL 2 | Dep. | Order || First Access | Second Access |
% . }) ? . . SUC generates version Vs;

In . mark Vp stale at PRE (send dyinv)

/ Order || PRE generates version Vol \yhen pPRE commits, write Vp back

' to memory and self-invalidate it.
WAW : -
PRE generates version Vp;
Out of : mark it stale.
Order SUC generates version V| \yhen pRE commits, write Vp back

to memory and self-invalidate it.

SUC generates version Vs;

i-1 i i- i In PRE reads most up-to-date| mark Vp stale at PRE (send dyinv)
Order || version Vp. When PRE commits,
self-invalidate Vp.
WAR
out of PRE reads most recent version Vpj
Ut OT1) suC generates version Vs, mark it stale. When PRE commits,
Order ) )
self-invalidate Vp.
Olr?!er PRE generates version Vp.| SUC reads most recent version Vp.
RAW

Figure 3: Handling reads and writes in a single CMP ((a) .

: . B Out of | | SUC reads most up-to-date PRE generates version Vp;
and (b)) andina hlerarchl_cal scalable SyStem ((C) and (d)) In Order || version Vs. P invalidate Vs and squash SUC.
a read, the shaded node is the closest predecessor that wrote
the word while, in a write, it is the closest successor that re-
defined the word before reading it.

Table 1: Handling all types of data dependences due to ac-
cesses to a single word. In the tall#Eand SUCstand for

caches of any squashed threads. This invalidation ensures that the Predecessor and successor thread respectively/aaddV
obsolete word is not used in successor caches. Furthermore, in all 'efer to two versions of the same word created by the prede-
cases, we also senddelayed-invalidatiormessagedyiny) to the cessor and successor thread respectively.

caches of all the predecessor threads. This message marks the data

as stale for any new thread that is later started on those processors. ; :
Such new threads will necessarily be successors to the writing 02-3 MU|t|p|e Versions and Per-Word State

(Figure 3b). The protocol described allows different versions of the same da-
In addition to MDT state, this scheme also needs, for each L1um to reside in different caches simultaneously, and keeps per-word
line, oneDirty, Stale andForwardedbit, plus per-wordnvalid, Safe ~ Load and Store bits in the MDT. Both features are targeted at toler-
Load and Safe Storevits'. The Dirty bit is set when a processor ating situations that would otherwise cause unnecessary squashes.
writes to any one of the words in the line, while the Invalid bit is set AS @ result, in our protocol, only out-of-order RAW dependences
when the word is invalidated. The Safe Load and Safe Store bits afgvolving the same word create squashes. Table 1 shows the opera-
used to avoid having to access the MDT on every load and store. §Ons performed by our speculation protocol in the presence of every
all loads and stores had to be made visible to the MDT, we would irPoSsible data dependence. To gain further insight, let us now con-
practice render the L1 caches read- and write-through, causing mucider other protocols where one of the two supports is missing and
traffic on the bus. Consequently, we use the Safe Load and Safee What additional dependences cause squashes.
Store bits to indicate whether it is possible to perform the operation |n a protocol where per-word speculative state is supported but
in the L1 cache without checking the MDT. The Safe Load bit is setmultiple versions are not, out-of-order WAR and WAW dependences
by the thread's first load to the word, so that subsequent loads to thglso cause thread squashes. Indeed, in these cases, a thread creates
word by the same thread do not need to inform the MDT. Similarly,a version of a datum and, later, a predecessor tries to use (WAR) or
both the Safe Load and Safe Store bits are set by the thread’s firgteate (WAW) an older version of the same datum. If only one spec-
store to the word, so that subsequent loads or stores to the woiglative version were supported by the system, the youngest of the
by the same thread do not need to check the MDT. However, th@yo threads would have to be squashed to accommodate the older
Safe Store bitin a thread is reset when a successor reads the threagégsion that its predecessor is trying to access. If, however, the sys-
version of the word. This way, when the thread later performs a storgem can host both versions simultaneously in such a way that each
to the word again, it will correctly check the MDT and squash thethread manipulates its own copy of the datum, the squash operation
successor. A load that finds the Safe Load bit unset and a store thBécomes unnecessary. Needless to say, the system must be able to
finds the Safe Store bit unset are said teekposed reconcile these multiple versions into a meaningful final state at the

The Stale bit is set for a L1 line when the cache receives £nd of the execution.
delayed-invalidation message for one of the words in the line: al- Consider now a protocol where multiple versions are supported
though still usable by the current thread, the word has become olhut per-word speculative state is not. In this case, the system can-
solete for future threads and, therefore, must be invalidated beforegot determine whether two accesses to the same cache line target
new thread starts. Consequently, at commit time, after the thread hase same or different words. Specifically, all out-of-order RAW and
written back to memory all the valid words in dirty L1 lines, we set WAW accesses to a cache line must now trigger squashes. For exam-
the Invalid bit of all the words in lines with the Stale bit set. Then, ple, consider that a thread reads a datum and, later on, a predecessor
we reset the Stale bit. writes to the same memory line. The system regards it as a RAW

Finally, the Forwarded bit identifies L1 lines with words for- dependence violation and squashes the successor. Consider, instead,

warded from a predecessor, as opposed to loaded from memory. THat the first thread writes a datum and, later on, the predecessor
Forwarded bit is used when a thread is squashed. In this case, all tij#fites to that line (WAW). Since the system cannot eventually com-
words in L1 lines with the Forwarded bit set are invalidated to pre-P'ne the line versions, it squashes the successor.

vent keeping erroneous versions in the cache. The Forwarded bit is To see that both types of support are indeed useful, Table 2 shows
cleared at commit time. whert1her they are”necess(gary iﬂ five importlant da?la zﬁccess platterns.
1 . Each pattern is illustrated with an example in which several con-
L oa(lir,] gr]]?j gg?gtsigﬁé Itmrsotdiﬁlgfsﬂ g:feMgeTa%}\]dg\;;\efec\?\lllreit%bti?: rségll)%c_safetl_gupus 4-word memory lines are accessed by three loop iterations
tively. We feel that the new names are better. That paper also used the stdi?; i1, andi2). Accesses are represented by arrows: straight arrows
and Forwarded bits on a per-word basis. Subsequent performance evalufildicate that we can foresee what accesses the iterations will be per-

tion has shown that these bits can be kept on a per-line basis without arprming with some accuracy; curved arrows mean that the locations
noticeable performance degradation. being accessed cannot be predicted in general. Each pattern lists the
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Multiple | Per-Word NODE
‘ Access Pattern H Versi'z)ns eSrtatZr Appl. ‘
i0. @ Random, unpredictable accesse!
i clustered to some extent. Track
i E.g. small arrays with random Yes Yes | cvica PE Processing Element
accesses, arrays with somewhd L1,2 Level 1,2 Caches
sequential irregular patterns. MEM Main Memory
DIR Directory
i W,R Important subcase of case 1.
i ©) P ° NC Network Controller
; erations often write and then
! W.R read aword. Different iterations APSI L,GMDT b@cal y%‘JObg_ Me'lljglobliy
i ’ ) Y Y Isampiguation
R may access the same word or not. es es BDNA — : g €
E.g. privatizable or quasi-
privatizable data. SCALABLE INTERCONNECT

No, but
e tora) DSMC3D Figure 4: Hierarchical organization for speculative paral-
Random, sparse access patter squashes if Euler Iellzatlon
more than

1 access/line

o @ \ of the protocol operation (Section 3.2), the interaction with the CC-
; , , No, but may NUMA directory (Section 3.3), the support for multiprogramming
d i ! L :

:]K\\ Predictable accesses in a regul ool mgnmentand | psi (Section 3.4), the overall benefits of the approach (Section 3.5) and,

E.g. strided array access. all acoesses to the briefly, the compiler support (Section 3.6).

same line.
:0\ @ All iterations read and/or write 3 . 1 HierarCh |Cal Organization
; to a single location (th il Not . . . . .
IJQ: o PUE ves No | eoesll  To build a flexible scheme, we design our speculative paralleliza-
- tion protocol in a hierarchical manner. Specifically, we add one new
mmm E.g. privatizable or shared data| p. . . p A Yy h
MDT in the machine, for which each speculative CMP node is ab-

stracted away as a single entity. This new MDT relates to the L2
caches in the nodes in a similar way as, within a CMP, the on-chip
MDT relates to the L1 caches. Internally, each speculative CMP
continues to function largely like before. The on-chip MDTs are
A . : . . : now calledLocalMDTs (LMDTSs), while the external MDT is called
applications from Section 4.1 in which we found instances of it. 5 |0paIMDT (GMDT). The GMDT is coupled with the directory of
From the table, we see that the most general case, namely 1, ihe CC-NUMA machine and, like such, it is physically distributed
which nothing is known about the accesses, requires both types @fcross the different nodes of the machine based on address ranges.
support. Case 2, a very important subcase of 1, corresponds to loofonsequently, we will use the termomeGMDT to refer to the sec-
that can be fully (or to a large degree) parallelized through privati-tion of the GMDT in the home node of the data. Overall, this or-
zation — although the compiler is unable to determine this. This casganization stores speculative state like a clustered CC-NUMA holds
also needs both types of support. coherence state: per-processor state within the node, and per-node

When accesses are very sparse (case 3), the system can prob ﬁgte across the system. Figure 4 shows a block diagram of the envi-

do without these two types of support, since access collisions ar ned organization.

occasional. Case 4 can also do without them provided that the itera- A hierarchical approach allows us to abstract away the internals of
tions access different cache lines, which would typically be achievedhe speculative CMP and construct a system-wide speculative pro-
through smart data alignment and loop unrolling. However, if dif- tocol that can work with different classes of nodes. Although the

ferent iterations do access the same cache lines, then both types $yfstem can easily adapt to many different types of nodes including
support may be needed. single processors, CMPs, or SMP clusters, in this work we focus

Finall g : on using speculative CMPs as building blocks. With this approach,
B e e e 0 bl et 1ord St 11 CoMe hop 10 leverage emeraing spectlaie CP technology ke e
It does need support for multiple versions. This corresponds to T)en commetgma_ 1z€ dy Sun Mlcrct)sy?tem_s_|n_thetr|\]/IAJquP|p t[_19].
shared variable, or a variable that looks privatizable except that so sequenty, In our design, we ry to minimize e moaications
accesses are inside dn statement. Overall, based on all this dis- quired to a speculative CMP like the one presented in Section 2.2
cussion, we see that the two supports are very useful for many type@ Incorporate itinto a scalable system.
of patterns. If we use CMPs as nodes and want the GMDT to keep state on

a per-node basis, it is simplest if the threads are assigned to chips
in batches, where a batch ohunkcontains a set of consecutive
3 SCALABLE SPECULATION threads. This way, the threads running on a speculative CMP can
be made to look to the external system as a single execution thread.
Supporting speculative parallelization in a scalable multiprocessoOff-chip predecessors and successors of a given thread will also be
is more challenging than in a CMP. The speculative state is necpredecessors and successors of the thread’s on-chip peers. This ap-
essarily distributed across the nodes. We need a distributed speproach allows each chip to operate as a largely independent specu-
ulative protocol that works over a general interconnect and doefative system and reduces to a minimum the modifications required
noE:i adverseklly affefct convenltional cac“el-coherencg support. To thie an existing speculative CMP.
end, our scheme for speculative parallelization is designed to oper- . . ;
ate largely in parallel V\E)ith a convgntional invalidation-b%sed cacﬁe- ngra!l, at ?”% t'mﬁ; therX 'Shan %r_delﬂnglof t#e thrcsiads and Fa]1|so
coherence protocol and directory structure of a CC-NUMA sys-an- ordering of the chips. At the chip level, chips relate to other
tem. Furthermore, we choose simplicity over all-out performanc ChIpSh through preolleqesscknlr and successor ordering. The chip host-
in many aspects of the design. Finally, we want the resulting syste hg the r;kc])n-spelt_:u ?t_lvetg read, which V\\;\?tﬁ?‘” thehno?];speﬁul?tlve
to be flexible enough to use a speculative CMP as building block P, 'ls the %ar lest In the sequence. Within each chip, the least
Speculative CMPs are specially attractive since such chips alreaié’ecu ative thread is regarded, for all internal operations, as being

Table 2: Access patterns and the protocol support required.

: : : on-speculative. This means that such a thread writes through its
provide some support for speculation and using them at each no cache and does not create LMDT entries. Such a thread can be-

may Igverage costs. _ _ have as non-speculative within its CMP but be speculative across the
_This section describes the following aspects of our scheme: theystem.
hierarchical approach that we take (Section 3.1), different aspects
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The per-node L2 caches across the system play the same role treatheck may be time-consuming in scalable machines, our change
per-processor L1 caches play in the CMP. In the speculative nodespnsists of returning the data to the processor immediately. In the
they keep speculative data from being written back to memory untibackground, a protocol message checks the MDTs. If the check con-
it is safe to do so. The only L2 cache that does not need to hold angludes that the load has used a stale version, a squash is generated.
speculative state and, therefore, could be write-through, is the on@/e expect, however, that the data in the cache will be usually up-
at the non-speculative node. For performance reasons, however, i@ date. Such is the case when data that is not modified by any pro-
keep all these large L2 caches in write-back mode. cessor remains in the caches across thread executions. Note that this

optimization introduces the possibility of loads generating squashes.
However, this technique, which we caljgressive exposed loads
3.2 Protocol Operation attractive due to its latency-hiding ability.

Finally, because all L2 caches are write-back, even actions from
e non-speculative thread in the system must generate and update
MDT entries like any other thread in any chip. As a result, we
uld run the risk of stalling the non-speculative thread due to lack
GMDT space. To avoid this problem, we organize the GMDT as a
che, backing up its data in main memory in a manner very similar
to a directory cache.

To understand the workings of our scheme, we examine several ag-
pects of the protocol, including handling loads and stores, cache lin
replacements, thread mapping, L2 and GMDT support, and commit
and squashes. We mention the modifications required to the CMP
we describe the operations. As indicated before, we have preferre
simplicity over higher performance in many aspects of the design.

3.2.1 Loads and Stores

Loads and stores proceed much as in the CMP (Section 2.2), exce,
that we now have another level in the memory hierarchy. Upon
load by a processor, the CMP first tries to resolve the access locall
by seeking versions in its L1 and in predecessors through the LMD
If it fails, the system repeats the search in L2 and in predecessa
nodes via the GMDT module at the home of the memory line. Like
in the CMP protocol, the most recent version is located at the close
predecessor whose Store bit is set (possibly the requestor itself).
the version is to be fetched from a predecessor, since all threads
that node are predecessors of the requestor, all we need is for i ; .
LMDT to Iocatepthe latest version in tr?e chip and to return it. For alled threads resume execution when they reach non-speculative
this scheme to work, of course, the LMDT of the speculative CMPStatus'

must be enhanced to allow external requests of versions. Lines that have been speculatively loaded but not modified can

A store by a thread proceeds like in the CMP protocol: Copiesalways be displaced from any cache. The reason is that no informa-

in the successor threads up until, but not including, the first redefiniElon is lost: MDTs record what words are being speculatively loaded

tion are invalidated, while predecessors are sent delayed-invalidatiokl‘)ﬁy what threads or chips.

messages. These two actions involve, in the general case, threads i- .
side and also outside the chip (Figure 3d). While the LMDT takes]"?-z-3 Mapping of Threads

care of the threads within the chip, the GMDT is responsible forTlae requirement to minimize the modifications to a speculative

3.2.2 Cache Line Replacements

‘milarly to the CMP case, our scheme maintains versions in the
aches and imposes restrictions as to which levels of the memory
ierarchy these versions can propagate to. Following the speculative
MP protocol of Section 2.2, only the least speculative thread in a
hip is allowed to modify the L2 state. Any other thread in the chip
alls if it tries to displace an updated line from its L1. Likewise,
nly the non-speculative thread in the system is allowed to displace
dated lines from the local L2 into memory. Any other thread in
y chip stalls if it tries to displace an updated line from its local L2.

sending point-to-point messages to the appropriate predecessor P like the one of Section 2.2 introduces some constraints to
successor chips. Again the LMDT must be augmented to SUPPOKyread mapping. As indicated in Section 3.1, to maintain the hi-
such external messages. erarchical abstraction, it is simplest if we assign threads to chips in

We use the existing directory and GMDT states to reduce th&hunks of consecutive threads. Each chunk contains as many threads
number of delayed-invalidations and invalidations that we sendas there are processors in the CMP. Furthermore, since the CMP
How the directory helps is discussed in Section 3.3. As for theprotocol tightly couples the on-chip threads, allowing different pro-
GMDT, note that, if another chip already has its Store bit set in thecessors within the chip to execute threads from different chunks at
GMDT, it means that it has already sent delayed-invalidations andhe same time would require significant CMP changes. As a result,
invalidations to its predecessors and successors respectively. Thet€ only assign a new chunk to a CMP when all its processors have
fore, upon a store operation, we need to send invalidations only if n@ompleted the execution of (although not necessarily committed) the
predecessor Store bit is set, and then only up to the first successprevious chunk.

whose Store bit is set, non-inclusfveSymmetrically, we need to This restriction of waiting until all the threads in a chunk have fin-
send delayed-invalidations only if no successor Store bit is set, anghed before starting a new chunk may lead to some idle time if the
then only down to the first predecessor whose Store bit set. different threads in a chunk have load imbalance. Recall from Sec-

L2 caches contain a Stale and a Forwarded bit per line. ThesHOn 2.2 that the speculative CMP design that we adopted requires
bits are used in a similar way as the Stale and Forwarded bits in L at a processor stall when the thread that it is running finishes and is
(Section 2.2). However, unlike L1 caches, L2 caches do not contaigtill SPeculative. The resulting idle time we called intrinsic chip im-
Safe Load or Safe Store bits. Recall that these bits are used to sag lance. Now, in addition to this, assigning threads in whole chunks
a trip to the LMDT on an L1 hit; if a load finds the Safe Load or IMplies that each processor must also wait for its successor proces-
a store finds the Safe Store bit set, the LMDT is guaranteed to bg®rs in the chip to finish their threads before starting to work on a
up-to-date and, in addition, the store is guaranteed not to generaflW chunk. We call this second source of idle timeuced chip im-
squash, invalidation, or delayed-invalidation messages. We do n alance The combination of intrinsic and induced chip imbalance
include these bits in L2 because there are few scenarios in whickf€ callchip imbalance
they would actually save trips to the GMDT on an L2 hit. More  The equivalent to intrinsic chip imbalance in a scalable system
specifically, the sole presence of the Load bits in the LMDT makesyould be not to start a new chunk on a chip until all the predecessor
the Safe Load bit in L2 redundant. As for sparing the Safe Store bitghunks had finished and committed. This approach, which effec-
in L2, it can be easily shown that most of the unnecessary GMDTiively implies assigning thread chunks to chips statically, would lead
accesses in stores are filtered out by the Safe Store bits in the Ltb poor performance in the presence of load imbalance. Further, its
caches. impact would increase with the number of chips in the system. Con-

One change that we make to the speculative CMP is related to exeeauently, we do notimpose this restriction.
posed loads, namely loads that hit in L1 but find that the Safe Load Instead, when a chip finishes a chunk of threads, it asks for
bit is zero. These loads require performing a check for dependencegother chunk and starts executing it, irrespective of whether the
in the LMDT and, potentially, in the GMDT as well. Since such predecessor chunks have finished.” With this approach, chunks of
hreads are dynamically assigned to chips, therefore reducing idle

2Recall that if the Load bit of that successor is also set, we trigger a squa: me due to load imbalance. The set of contiguous uncommitted
operation and, as part of it, invalidate its copy of the word. ’
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thread chunks that have been assigned to chips to execute, we call
the active window The active window always starts with the non-
speculative chunk. The active window size changes dynamically
and, at any given time, is likely to be larger than the number of chips
in the machine. Its maximum size is set to a hardware-predefined
limit. In general, the only situation in which load imbalance would
become apparent at the system level would be when the active win-
dow has reached its maximum size and we are unable to assign new
chunks. This effect we cadlystem imbalance

Overall, our dynamic chunk scheduling approach is supported
with practically no modification to the speculative CMP hardware.
Most of the modifications are performed on the node’s L2 and lo-
cal GMDT module. Of course, not modifying the CMP hardware
means that the system may potentially suffer from chip imbalance.
Fortunately, however, the magnitude of chip imbalance depends on
the number of processors per chip, and not on the total number of
nodes in the machine. Therefore, its impact stays largely constarifode22 , NodeO  Node8 Node10  NodeO Node 3

3-—Non-Spec

Figure 5: Chunk-to-node mapping structure in the GMDT.
The figure corresponds to a 4-node machine where the non-
speculative chunk (chunk ID 3) has been assigned to node 2,
the next one (chunk ID 4) to node 0, and so forth. Node 1 is
currently assigned 3 chunks.

instead of increasing as we scale up the machine to more nodes. ‘ CMP‘ ‘ CMP‘ 5 ‘ CMP‘ ‘ CMP‘ ‘ cMP “ ‘ CMP‘
r< F2o- le-2

3.2.4 L2 Support GMDT "> [GMDT] % [GMDT|  [GMDT. 5 [GMDT) 5 [GMDT

The speculative protocol within the CMP keeps working as de- @ ()

scribed in Section 2.2: threads in a chunk commit within the chip Fi 6: M involved i . d h
in order and, when they do, they write back all the updated lines in F!9ure 6: Messages involved in a commit (&) and a squas

their L1 to L2. These updates must remain in L2 until the chunk  (0) operation. In the commit, a thread chunk in node 22
commits at the system level. passes non-speculative status to one in node 8. In the squash,

i ) ) the triggering violation occurs in node 3.

Before the chunk commits, however, the chip may be given an-
other chunk to execute. As chunks execute and complete, L2 will
accumulate speculatively updated lines from several chunks. Ther as chunks get squashed. All transactions between the GMDT
state of each chunk must be carefully buffered and kept separateghd the nodes are logged with the corresponding chunk ID, which
from that of the others. When one chunk finally commits at the sys-uniquely identifies the chunk at that moment. In the figure, the chunk
tem level, only its updated lines must be written back from L2 toID can go from 0 to 15. The application must be able to figure out
main memory. what work to do once it is given a chunk ID. This information can be

The problem of buffering data from several threads in the contextoMPuted locally by each node or through a shared data structure,

of speculative parallelization has been addressed in two ways in tHe€Pending on the nature of the application.

literature: using separate write buffers to hold versions from differ- Since the GMDT is distributed, this chunk-to-node mapping
ent threads [7] or extending the cache tags to identify the thread thatructure is replicated in all the GMDT modules. All modifications
owns the version in each cache line [17]. Our scheme uses an apake place in a chunk commit, squash, or assignment. They are ini-
proach similar to the second one, adding chunk IDs to the L2 cachéally recorded in one GMDT module, namely the one in node 0
tags. We will see later that chunk IDs are encoded with number§GMDTO0). The updates are then propagated to the other GMDT
going from 0 tow — 1, therefore usindog, w bits, wherew is the  modules in the background. We now consider these situations.
hardware-defined maximum active window size. These bits are on
a per-line as opposed to a per-word basis to reduce the overhea®.,2.6 Commits
Consequently, when two different chunks update the same line, the& o ) ]
create two line versions even if they update different words. ur protocol attempts to speed up the critical path in commit and
. . . squash operations. In a commit, the committing thread passes the

Since the L2 cache may potentially hold much state from different, 5 _speculative status to its successor thread as fast as possible; in

chunks, it may suffer conflicts. As indicated in Section 3.2.2, th

; O . €3 squash, the threads to be squashed are detected, squashed, and
processor is stalled when a cache conflict is about to displace a lingstarted in parallel.

modified by a speculative chunk. To reduce the chances of stalls, we ] ) ) o
extend L2 by adding a set-associative buffer that acts somewhat like We consider the commit of a chunk first. Within a chunk, thread
a victim cache [8]. This buffer stores speculatively-modified linescommit is always in order. A thread commits exactly like in the
as they are displaced from L2. However, the buffer does not need tgingle CMP protocol of Section 2.2. The effects of the operation do
store speculatively-loaded yet clean lines that are evicted from L2not go past the L2 cache in the node, where all the updates of the

The reason is that the GMDT already has a record of them. on-chip threads committed so far are accumulated.
When the last thread of the chunk has committed, the chip signals
3.2.5 GMDT Support a chunk completion event locally. If the chunk is non-speculative,

node proceeds with a chunk commit. Following the simplified
otocol of Section 2.2, which does not allow dirty data to remain in
§ache across speculative thread initiation, chunk commit involves
iting back the dirty L2 lines to memory. It also involves updating
e Stale, Forwarded, Invalid, and Dirty bits in the L2 tags. We
pxpfect thgs.eff L2 wlrite bﬁ\ckdand tatl)g n;anipulatiohn operatil(l)ns tohbe
Load and Store bits per word in the table and the number of entrieB€"formed efficiently in hardware by the L2 cache controller. The
in the chunk-to-node mapping structure are equabtavhich is a MP is oblivious to the whole chunk commit operation.
limit set in hardware for the number of chunks that can be assigned When all these operations complete or (if the chunk is specula-
at atime. tive) as soon as the chunk finishes, the node sends a message to

Figure 5 shows the chunk-to-node mapping structure. Each entrﬁMDTO asking for a new chunk to execute. In addition, if the com-

Since there can be more thread chunks currently assigned to nod
than nodes in the machine, the GMDT really keeps the Load an
Store bits on a per-assigned-chunk basis as opposed to a per-no
basis. In addition, to locate the nodes to which the chunks have be
assigned, the GMDT keeps a data structure with the mapping fro
the chunks in the active window to the nodes. Both the number o

in the structure keeps the ID of the node to which a chunk has bee 'ettheed|gﬂgp'éa(;%mg&tg%t{‘nfm”;%ﬁ%?esaelﬁgsirg%@gsgf tehteo %ﬁgnr?(‘)iée
assigned. The structure is a circular queue. Two pointers point to . h th hunk 1D in th y i th g |ati
the non-speculative chunk and to the most-speculative one, marking . the next chun 'E in tf e seﬂuence, _passhmgt e non-slpe_cu ative
the boundaries of the current active window. The first pointer moves Atus- We can see, therefore, that passing the non-speculative status
as the GMDT is informed that a chunk has committed, while thel"©™ & chunk in one node to a second chunk in another node can be

! plemented very efficiently with two hardware messages. This is

second one moves as the GMDT assigns new chunks for executldSFﬂOWn with messages 1 and 2 in Figure 6a.
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After this, GMDTO assigns the next available chunk to executefore. With this information, the GMDT modules are updated and the
to the node that just finished the chunk, and sends all these changebunks restarted in parallel. Note that the barrier is needed to ensure
to all nodes. This is done through messages 3 in Figure 6a. Thedbat requests before and after the squash are clearly separated. In-
messages occur in the background, are not in any critical path, andeed, all requests arriving at a GMDT module from squashed chunks
do not use up any processor cycles. In each node, on reception between messages 1 and 3 in Figure 6b should be bounced.
message 3, the GMDT module records the assignment of the new Overall, squashing does not affect the processors running non-

chunk and, if applicable, the commit. In addition, the node that ha

just finished the chunk can now start running the new chunk. Th dqua%_shed threﬁds.d Furtthetrm(t)re,t_ Ollljr proto;:r?l u?jes_ the G|:\/I|D¥hto

messages labeled 4 are acknowledgments of 3. entify, squash, and restart potentially many threads in parallel. The

operation requires a synchronization of the GMDT modules only,

Consider now the node that receives message 2 from GMDTO inAot of the processors.

dicating that one of its chunks is now non-speculative. Two cases

are possible, neither of which requires any involvement of the local

CMP. If, at message arrival, the node is still executing the chunk, n@.3 |nteraction with the Directory

action is taken beyond recording the new status of the chunk. Later,

when the chunk completes, the node will proceed with a chunk comThe GMDT is distributed across the nodes like the directory and is

mit as explained before. connected to it. For the ordinary data, the GMDT is unused. For the

A second case occurs when, at message arrival, the chip has ata marked in the code as speculatively accessed, in principle, the

ready finished executing that chunk. In fact, the chip may have eve 'l\gg'le'l”retﬁ!easveosr&hbeu?lirt'eg;cr)]r)";lguonﬁtslgntz?]lgydilrgcrig?ct:%?othte}m(?;\({liﬁgn
executed and completed several successor chunks since then. In t %r In thi he di d | y I P dificati
case, the node immediately starts a chunk commit. As usual, the | 'ec%%sseesfhg ktaalgecli?lseeé(t)heerelaeccetor?/o?gceo|Sla?neyl Sm%s Tﬁaﬁgcﬁggnf
cal CMP is not involved. The operation includes writing back dirty . o"c0ec\jafive protocol P gely y
L2 data and manipulating the L2 tag bits. However, this operation P P )

applies only to the L2 lines that are tagged as belonging to the non- It is easy to see why the GMDT replaces the directory for data
speculative chunk. The other L2 lines are left untouched. At themarked as speculatively accessed: on a read transaction, the GMDT
end, the node informs GMDTO of the completion of the commit op- identifies the correct version of the variable to supply; on a write
eration but does not ask for a new chunk. transaction, the GMDT identifies the versions to squash. These two

i tions cannot be performed by a conventional directory because
The fact that GMDT modules are updated with some delay may | o _ ! _
cause minor races that our protocol handles gracefully. For exa fhe latter does not support the notions of multiple versions or thread

ple, a newly-assigned chunk may send a request to a GMDT mo order.

ule before the latter knows of its existence. In this case, the re- However, under certain conditions, the GMDT may not be so
quest is bounced back to the sender for retry. Similarly, a new nonefficient when it has to send invalidation and delayed-invalidation
speculative chunk may send a request to a GMDT module beforeessages to remove outdated versions from caches after a write.
the latter knows of its non-speculative status. In this case, loads antihe reason is that the GMDT only keeps correct sharer informa-
stores are processed as usual. Write backs, however, are boundgeh for the data accessed by the currently-active chunks. For that

because speculative chunks are not allowed to write back. data, we can use the GMDT state to reduce the messages, as dis-
cussed in Section 3.2.1. However, no record of sharers is kept for
3.2.7 Squashes the other data because, when a chunk commits, its Load and Store

o . bits in the GMDT are reset. The result is that, for that data, the
The violation that triggers a squash may be detected at a GMDTGMDT may have to conservative send unnecessary invalidation and
module or at a LMDT. If the latter, the local GMDT module is in- delayed-invalidation messages.
formed. In any case, this GMDT module, which we call ihigat- .
ing one, decides which chunks must be squashed: the one that read T Send fewer such messages, the GMDT can use sharer infor-

prematurely and its successors. In general, the GMDT does not ha\E""t'On kept by the directory. This requires that the GMDT keep the

enough information to distinguish between the different threads in &lirectory largely up-to-date on processor reads and writes to data
chunk. Hence, squashing is done at the chunk level. It involvedn@rked as speculatively accessed.

clearing the corresponding Load and Store GMDT bits, invalidating Specifically, when one such read or write reaches the GMDT, the
the dirty and forwarded L2 lines and, if the chunk is still running, directory marks the requesting node as a sharer of the line. Irre-
clearing the whole LMDT and invalidating the dirty and forwarded spective of the type of access, the dirty bit is not set. The reason
L1 lines. is that there may be several different modified versions of the same

The exception is when the violation is detected at the LMDT of variable in different caches, and the directory has only one dirty bit.
the chip running the non-speculative chunk. In such a case, in thigtill: pretending that the nodes are read-only sharers is safe because
chunk, only the violating thread and its successors are squashef!€ directory is never queried to distinguish between versions. Fur-
For the squashed threads, we clear their LMDT bits and invalidatdi€rmore, as a chunk commits, it writes back its updated version of

their dirty and forwarded L1 lines. The L2 and GMDT bits are left (€ variable to memory, keeping the cache in clean state. Atthat time
unmodified also, if the version in the cache was marked with the Stale bit, it is

automatically invalidated. Overall, cache entries eventually become
The actual squash proceeds as follows. When the violation is desonsistent with memory or invalid.
tected, the initiating GMDT module sends a message to all the other ; ; ; ;
' Migaa: e g n reality, for a given memory line, the directory must conserva-
nodes (message 1 in Figure 6b) specifying which chunks to squashy e\, yeep a superset of all the nodes that currently cache it. This is
Those nodes with chunks to squash do so. Note that, for a chun,

. ; cause invalidations cannot remove directory entries: the directory
to be squashed, all its pending memory accesses have to necessagiyy o< information only at a memory-line grain size, whereas invali-

complete or be aborted. In addition, all nodes update their GMDTqions are sent to single words. Furthermore, delayed-invalidations
modules by clearing the state corresponding to the squashed chunitg ot remove direct(?ry entries either: they take gffect with some

Finally, all the GMDT modules synchronize in a barrier: they delay. Despite these considerations, however, the directory informa-
send a message to GMDTO and receive an acknowledgment whdion is still useful to reduce the number of invalidations and delayed-
all have done so (messages 2 and 3, respectively, in Figure 6bjvalidations sent on a write.

The acknowledgment from GMDTO specifies the new assignment of £inay1y. there is another reason why the directory should keep at

chunks to nodes or, possibly, that the assignment of chunks is as bRs,st 5 superset of all the nodes that currently cache the line: specu-

3Although the GMDT may temporarily keep some outdated Store bits sefativé data may be accessed in conventional coherent mode after the

for the non-speculative chunk, correctness is still guaranteed: if a read froriPeculative section completes. As a result, remembering the sharers

a successor is directed to the chip running the non-speculative chunk due gimoothens the transition out of the speculative section.

one of these outdated Store bits, the request will be bounced back to memory . . .

as if the requested line had just been displaced from the caches. At that point Ov_erall, ordinary shared data and p°ter.‘t'a||y Specm.‘"‘tlve da.ta can

or when the non-speculative chunk commits, the outdated Store bitis cleare€main in L1 and L2 as we enter and exit a speculative section of
code. Before we start a speculative section, our simple protocol re-
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Job ID Valid Tag Word 0 Word n-1

T

cause a L2 cache may end up keeping speculative state belonging to
different jobs. As a result, to identify which lines belong to which
job, we need to extend the chunk ID field in the L2 cache tags. The
ID must include, in its most-significant bit positions, the job ID.
Such longer tags are not needed in the conservative scheme.

The performance is likely to be higher in the aggressive scheme
because of its higher flexibility: an idle node will always get a chunk
if one is available in any job. This is not true in the conservative
scheme. However, recall that when a chunk running on a node is
about to displace from L2 an uncommitted updated line from another
chunk, the processor stalls. Consequently, a job running under the
aggressive scheme may stall due to another job. In the conservative
% scheme, instead, a job in a node can only be stalled due to itself.
In neither case, however, deadlock is possible because at least one
non-speculative chunk is making progress, and chunk commit does
not involve the local CMP.

J

L0-L15 50-5151

,
0|
T

1510

-—— Non-Spec

Figure 7:Support required in a GMDT module to run mul-
tiprogrammed loads. In the example, two jobs can locally
allocate potentially speculative data. The machine has four
nodes and a maximum active window size of 16. Job 0 runs :
on nodes 2 and 3, while job 1 runs on nodes 0 and 1. 3.5 Overall GMDT Benefits

The previous discussions have uncovered the pros and cons of the
GMDT. The main attraction of the GMDT scheme is that it effi-

quires that we write back the dirty data from all the caches to makejenly implements a protocol that supports multiple versions of the
them consistent with memory. Before leaving the speculative sec

i d h stent - h ite-b data. Such a protocol uses few messages and is fast. For example, a
Ion, memory and caches are consistent again. cachie Write-bactsa finds the correct version in the machine with a fast, one-lookup
at commit points have updated memory, and invalidations and sel

invalidati h d outdated ; f h Th dfransaction of a single message. In addition, squash signals are sent
invalidations have purged outcated versions irom caches. The Oin naralel to all the threads that need it and, after the squash, the

rectory may be left with a superset of the sharers for each line withy, o4 are restarted in parallel. Finally, by exploiting the state in

speculative data. The final operation that we perform before IeavinI%1e directory (Section 3.3) and GMDT (Section 3.2.1), the protocol

the section is to invalidate from the caches any (necessarily clea i i idati -
line that has some valid and some invalid words, so that the conrnggﬁdlgeigﬁgdmg only few unnecessary invalidations and delayed

ventional, per-line coherence protocol can take over correctly. This ) ) ) o

can be done with a hardware signal that invalidates all such lines in A second attraction of the scheme is that, by keeping a Load bitin

parallel. the GMDT for each speculatively-loaded datum, it allows processors
to displace speculatively-loaded, unmodified data from their caches
without causing stalls.

3.4 Support for Multiprogramming The main disadvantage of the GMDT scheme is that we need
) . . . keep its distributed state consistent. Fortunately, although keep-
With simple extensions, our scheme supports multlprogramme:{ﬁg the state consistent involves extra messages at chunk commit,

loads where jobs may or may not use speculative parallelizatio : ; ; o ;
Recall that, in our design, we want to use the unmodified specuI%ﬁt‘;‘%sur;’ui?ggaéfé%g?seonrtfy%gé’ this activity occurs in the background

tive CMP of Section 2.2. This necessarily implies that, once a threa
chunk that uses speculative parallelization starts running on a CMP,
it has to run to completion before releasing it. Completion implies

that the speculative state is moved to L2, not that the chunk commits:.3

If the chunk is preempted before completing, it has to be squashegye expect that the code is annotated, typically by the compiler, to
since the speculative state in the L1 caches will be lost. mark the sections where speculative parallelization should be en-

All hardware changes needed are limited to the GMDT and, op-abled. Within these sections, it is more efficient if we mark the data
tionally, the L2 caches. In each GMDT module, we now keep athat will be accessed speculatively. Note that it is perfectly possible
chunk-to-node mapping structure for each job that has locally alloto access all data speculatively. However, it is probably inefficient
cated pages of potentially speculative data (Figure 7). In additiongue to the extra overheads involved in dealing with speculative data
we allow all these jobs to insert entries in the GMDT table that keepgind may also hurt performance if there are cache or LMDT over-
the Load and Store bits. To identify the entries belonging to eactilows. In any case, our system allows data to change roles across
job, the table is extended with an extra field. This field, called  sections. The ability for data to be accessed speculatively in one
ID, keeps the ID of the job that owns the entry. Note that there issection and non-speculatively in another allows better use of the re-
no overlap between the address tags of entries belonging to differesources.

jobs. Furthermore, since this table is backed up in memory (Sec- a go0d way to differentiate speculative from plain accesses is to

tion 3.2.1), letting several jobs use the same table can at most cauggend the ISA to have speculative memory instructions. Of course,

more overflows into memory. Finally, associated with each chunk given memory line cannot have both kinds of data. An alternative

to-node mapping structure, we have a software structure with thg5nroach is to mark virtual memory pages to be dealt with as specu-

list of nodes that are currently running chunks belonging to this jobative or as plain shared data. However, this approach needs careful

(Node Lis}. data placement to make sure that speculative and plain data do not
Two approaches to multiprogramming the machine are possibleshare the same page.

In the most aggressive one, a free node can be assigned a chunk from

any job. In a second, more conservative approach, a free node, if it

still has uncommitted chunks from a job in its L2 cache, canonlybed EXPERIMENTAL SETUP

assigned a chunk from that same job. Since the GMDT knows the . .

current assignment of chunks and their status for all the jobs, it cad.1 App|lC8.tI0nS

enforce the second policy if required. Note that, in the conservative L

scheme, the Node List for a given job may change with time butTo evaluate our scheme, we choose two Perfect Club applications,

the Node Lists for two jobs may not overlap at any time. For thenamely Track and BDNA, one SPECfp95 applicatiomPS|, and

aggressive scheme, the Node List for a job may change with timévo HPF-2 applications, namelsulerandDSMC3D. The input sets

and the Node Lists for two jobs may overiap at any time. used for these applications are the standard ones provided with the

e . suites. The exception idPSI/ which uses a 512x1x64 grid size.

The two schemes differ in the support required and the perfor-rhese applications are representative of sequential scientific work-

mance expected. The aggressive scheme needs more support Reds. We choose them because they all spend a large fraction of

.6 Compiler and ISA Support
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Application|| Loopto | %of Seq. | Avg. Iterations | Speculative Memory Param. Value
pplicat Parallelize Time per Invocation | Data (KB) ‘ Y
k fil Processor Param.[Valugl | |[11,12,vC size 32KB,1MB, 64KB
Tracl nfilt_300 41 502 240 L1.L2.VC assoc. 2-way,4-way, 8-way
APS run_20 21 64 40 Issue width 41| | [LLL2.VC line size 64B,64B,64B
DSMC3D || move3 200 33 758972 24767 Instruction wind L1,L.2,VC latency 1,12,12 cycles
nstruction winaow
Euler dflux_100 90 2494 686 size 64 L1,12,VC banks 232
BDNA actfor_240 32 1499 7 No. functional 220 Local memory latency 75 cycles
units (Int,FP,Ld/St) l 2-hop memory latency 290 cycleg
L L . N ) 3-hop memory latency 360 cycles
Table 3: Characteristics of the applications studied. The registers (IntFP)  |32:32| || LMDT.GMDT size 512,2K entrieg
fraction of time spent in the loop to parallelize speculatively o oendin LMDT,GMDT assoc. 8-way,8-way
is given as a percentage of the total sequential time of the me-nﬁ’ory Op%_ (Ld,st) 816| || LMDT,GMDT lookup 4,20 cycleq
application on a SGI server. L1-to-LMDT latency 3 cycles
LMDT-to-L2 latency 8 cycles|
Max. active window 8 chunks|
o Parameter RAW WAR WAW
Application | (Average) || Same [ oo | Same [ o [ Same [ .o Table 5: Parameters of the processor and memory system
Word Word Word
models.
Number 0.1 4869 0.1 47 0 4880
Track -
Distance 1.0 16 1.0 31 0 16 ) o ) ] )
Nurmber 0 0| 95232| 333312| 95232| 333312 consists of classifying each variable into one of three classes: vari-
APS | "Distance 0 0 10 10 10 10 able allocated in a writable memory line that is possibly accessed in
Number || 147390 | 9350766] 102912| 509315| 85343| 8939798 two or more iterations; variable allocated in a memory line that is
DMC3D o e | 26203| 224.91260050.8 | 2280473 26082 89.2 at most accessed in one iteration or is read only; and private or pri-
Number o 104066 0 0 0| 104066 vatizable variable. We mark the first class as speculative, so that
Bller  —Sigance ol 4150 0 0 ol 4150 they trigger our protocol in our simulations. This class includes
Number 0 0l 32422| 28518| 998500 1492510 the data with potential cross-iteration dependences. In addition, it
BDNA -~ oiance 0 0 10 10 10 10 also includes situations where the compiler is sure that no two iter-

ations access the same word of a line. In this case, however, since
) ) ) . different words of the line may end up being buffered in different
Table 4: Static cross-iteration data dependences exhibited | 1 caches by speculative threads, we cannot use the ordinary, line-
by the loops that we parallelize speculatively. based cache coherence protocol. Variables are privatized whenever
the compiler finds it safe and convenient, so that the loop runs more
efficiently in parallel. Once the loop is instrumented, we perform de-

their sequential execution time on loops that cannot be parallelizegyjled execution-driven simulations. In our base experiments, each
by state-of-the-art compilers. These loops have dependence strugread is composed of a single loop iteration.

tures that are either too complicated to be analyzed at compile time,

or unknown because they depend on input data. For example, many

of them have doubly-subscripted accesses to arrays. As a result, t i i i

Polaris compiler [2] is unable to parallelize them. In our evaluation,lzls:2 Simulation Environment

we perform speculative parallelization on these loops and analyzeur execution-driven simulation environment is based on an ex-
how they are sped up. tension to MINT [21] that includes a superscalar processor model

Table 3 shows, for each application, the loop that we attemptith non-blocking memory operations [10], and supports dynamic
to parallelize speculatively, the fraction of the sequential executiorsPaWn, squash, restart, and retire of light-weight threads. We use
time taken by this loop on a SGI server, the average number of itthese threads to attempt speculative parallelization on the loops in
erations executed in the loop per loop invocation, and the size ofable 3.
the data accessed through speculative referespes(lative data The processor model is that of a 4-issue dynamic superscalar with
From the table, we see that these loops account for 21-90% of thesgister renaming, branch prediction, and non-blocking memory op-
total execution time. In a parallel system, their weight will likely be erations. The left section of Table 5 shows some of the parame-
even higher if a parallelizing compiler is used to reduce the executers used in the processor model. Processors are grouped into 4-
tion time of the other parts of the code. Note that speculative threadgrocessor chips.

m ffer in their hes not | h latively modifi
ust buffer in their caches not just the speculatively modified data The memory system models the organization in Figure 4: a CC-

butall the data that they modﬁy. ) . NUMA multiprocessor whose nodes include speculative CMPs. The
Table 4 shows the static cross-iteration dependence structure gichitecture of the speculative CMP is as described in Section 2.2.
the loops that we parallelize speculatively. RAW, WAR, and WAW Each CMP includes 4 processors with their private L1 caches and a
dependences are classified based on whether the two dependemIDT. Each node in the machine has a CMP, an L2 cache shared
references access the same wdsdrnfe Worglor different words by all the local processors, a portion of the global memory and di-
(Falsg of a memory line. The memory line size used is 16 words.rectory, a network controller, and a GMDT module. The machine
For each type of dependence, the table shows the average numberigfequipped with a directory-based cache coherence protocol in the
dependences found for each invocation of the loop, and the averagges of DASH [12]. In addition, our memory system implements the

dependence distance in number of iterations. speculation protocol outlined in Section 3.2.” The system simulated
From the table, we see that same-word RAW dependences aR&s 4 CMPs, for a total of 16 processors.
relatively scarce, except fddSMC3D This is unlike same-word The right section of Table 5 lists the main parameters of the mem-

WAR and WAW, of which there is plenty. As for false dependences,ory system model. In the table, L1, L2, VC, and memory laten-
all three kinds manifest themselves more abundantly. We observgies are round-trip times from the processor. VC stands for Victim
that, many times, all these dependences have very short average digache. All latencies are in processor cycles and do not include con-
tances, which means that they can easily occur out of order. Evetention effects. We accurately model contention everywhere except
large average distances like BSMC3D hide short instances. Re- in the scalable interconnect, where a fixed time is assumed for each
call that our protocol handles all types of in-order and out-of-orderhop.

dependences without triggering a thread squash except for out-of- . . o
Y ggenng q P In our evaluation, we apply speculative parallelization only to the

order, same-word RAW dependences. -

. . . loops of Table 3. To assess the impact of our scheme on the whole
_Inour experiments, we proceed as follows. The Polaris compilepplication, our resulting speedup numbers should be weighted us-
identifies and instruments the loops in Table 3. The instrumentatioing the fraction of the execution time taken by the loops as shown in
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Track APS| DSMC3D Euler BDNA

ing in squashes. Fortunately, no other application wastes much time

Other due to squashes.
1007 Il imbalance Commit time, which is also part dDverhead has a very mi-
Overhead nor role across all the applications. The reason is two-fold. On the
- one hand, these loops have relatively large iterations, which result
L] memory in threads spending much more time executing than committing. On
| Y the other hand, only the on-chip commit of threads has a significant

effect on processor time; chunk commit is done in the background,
except in the case when the CMP has not already started working on
a new speculative chunk (Section 3.2.6).

Overall, among the different components@¥erhead the only
significant ones are L1 overflow and, if the application has short-
distance, same-word RAW dependences, thread squashes. The sim-
plest improvement toward diminishing overhead would be to pro-
Fi % Fi g_ Fi g g g Fi (%_ vide storage mechanisms to capture L1 overflows. However, this

would require changing the architecture of the speculative CMP,
which is not an option in our approach.

Finally, we consider load imbalancémbalanceaccounts for a
significant 10-30% of the execution time in the parallelized loops.
Practically all of this time is due to what we called chip imbalance
in Section 3.2.3, which comes from the way threads are scheduled
Table 3. within CMPs. As pointed out before, the only way to reduce the

) . o . impact of chip imbalance is to significantly change the architecture

Since we want to measure loop speedups in a scenario in whichf the speculative CMP. Nevertheless, as indicated in Section 3.2.3,
other parts of the code have been parallelized by the compiler, th@e expect the impact of chip imbalance to remain roughly constant
data must be necessarily distributed across the nodes even in the e we scale up the machine to large numbers of nodes.
periments that run the loop sequentially. In order to keep the same

data distribution for all experiments, we use a static round-robin Q se(lz?]nd sr(])LfJ_rqehofdimbaIance is relatlsd to idle time Wh"el the
page allocation policy across the nodes. node, although finished, cannot start working on a new speculative

chunk. This system imbalance can only be caused by the overflow
of the active window, which happens very rarely in our case.

50

Normalized Execution Time

0-.

Figure 8: Execution time breakdown and speedups. The
numbers on top of the bars are the speedups of the loops over
the sequential execution.

5 EVALUATION

5.1 Overall Performance 5.2 Effect of Loop Unrolling

We start by quantifying the speedups delivered by our speculativé the prévious section, speculative parallelization was performed
parallelizafion scheme. Figure 8 compares the execution times %smg single-iteration threads. Unrolling the loops and giving one of
the loops under sequential executi®eq and under our specula- ese bigger iterations to each thread may improve the performance

tive parallelization for 16 processorSgeg. On top of each bar we ©f our architecture. Specifically, loop unrolling may enable a higher
quantify the speedups of the loops over the sequential execution. "€USe of the cached data if consecutive iterations access similar sets

o ) . of memory lines. Loop unrolling may also reduce cross-thread data
_ For each application, the bars are normalized to sequential execdtependences and even reduce chip imbalance. Finally, observe that
tion and broken down into the following components of the execu-loop bodies smaller than ours could also benefit from exposing more
tion time: execution of instruction®8(sy); stall due to memory ac- |LP.
cessesNlemory); overhead associated with speculative paralleliza- .
tion, including thread commit time, thread squash time, and stalls_©N the other hand, loop unrolling may also degrade perfor-
caused by L1, L2, VC, and LMDT overflow©gerheay:; idle time mance. For example, having fewer threads reduces the amount of
waiting for other threads to completenpalance; and conventional parallelism that can be exploited. Also, the resulting bigger itera-

pipeline hazards@ther). The contribution of each category is mea- tions may be more imbalanced and cause a higher chip imbalance.
sured at the grain size of issue slots [10]. Squashes, too, may have a more severe impact on performance, as

! . the average work to be redone is greater. Finally, loop unrolling in-
From the figure, we see that our scheme delivers speedups thateases the amount of dirty state that must be buffered in the caches,
range from 1.5 to 5.6. Over the five applications, the averagevhich increases the probability of overflow-induced stalls.
speedup is 2.8. Interestingly, the results show that, in all applica- . . . L
In this section we evaluate the impact of loop unrolling in our

tions but one BDNA), the main obstacle to better speedups is not > .
related to the speculative aspect of the parallelization, but simply t6P0PS: Figure 9 compares the result from the previous secBpaq
the stall time due to memory accessk&(nory. is now relabeledlkl) to configurations where threads are composed

. . ” . of blocks of 2 or 4 base iterationBlk2 andBIlk4, respectively). For

The overheads associated with speculative paralleliza@eert  each application, the bars are normalize®liol and broken down
heag account for a quarter of the time BDNA and, less impor-  as in Figure 8. As before, the numbers on top of the bars are the
tantly, for about 10% ilAPSI andDSMC3D. In BDNA, practically ~ speedups of the loops over the sequential execution. Note that we
all this overhead is caused by stall due to overflows in L1. The dll"[ydo not a[tempB|k4for APSI| because, as shown in Table 3, its |00p
working set of this application is too large for the 32KB L1. Recall has only 64 iterations.
that our protocol does not allow displacements of dirty data and any N
attempt to do so causes a processor stall. L1 overfiow also cause§The results show that loop unrolling improves the performance
most of the overhead IAPSI Our experimental results reveal that O our architecture. The speedups improve significantly: if we use

no application suffers from LMDT overflows. Also, the victim cache 2 @nd 4 base iterations per thread, speculative parallelization deliv-
in L2 successfully absorbs most L2 overflows. ers average speedups over the sequential execution of 3.4 and 4.2,

. ) respectively. Furthermore, some applications perform very well. In
In DSMC3D, practically all overhead is caused by thread particular, Track reaches a speedup of 8.7.

squashes. This includes the time required to drain all the pending h for the i ion in th
transactions in squashed threads, synchronize all the GMDT mod: The reasons for the improvement are a reduction in the memory
ules, and restart the threads. As shown in Tabl®8MC3D has ime and, to a lesser extent, a reduction in chip imbalance. The mem-
same-word RAW dependences, the only ones that cause squasheS[ time decreases to various degrees in all applications, sometimes
our protocol if they happen out of order. Despite the long averages!dnificantly as in, for exampleAPSl Indeed, cached data is be-
distance that these dependences hav®BMC3D (Table 4), some N9 reused more effectively. Chip imbalance also decreases in most

of them have short distances and actually occur out of order, resul@Pplications thanks to the load averaging effect of performing loop
unrolling. The exception i\PS/ wherelmbalanceincreases. The
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The numbers on top of the bars are the speedups of the loops
over the sequential execution. )
Figure 10: Effect of keeping the speculative state on a per-
line basis as opposed to on a per-word basis. The numbers on
reason is that the loop has so few iterations after blocking that, at the top of the bars are the speedups over the sequential execution.
end of the loop, some nodes have to wait a long time for the others
to finish. For example, iBIk2, each node only executes 2 chunks.

The only category that increases with loop unrollingOser-
head This effect, which takes place in practically all applications, I ) Sguashes by
is largely due to an increase in the stall time due to L1 overflows. Application | Grain || SAUASNES | ) oy o)
Loop unrolling has increased too much the amount of dirty state that
must be buffered in the caches. This effect is specially noticeable in Track | ord 0.04 0
BDNA. Line 1279 28
. Word 0 0
Overall, the data shows that loop unrolling can be a very useful APS Linre 737 0
technique. However, care must be taken to estimate the increase of Word 13164 22
the dirty working set and its corresponding pressure on the caches. DSMC3D o -
Line 650473 7.3
Euler Word 0 0
5.3 Granularity of Speculative State Linfz 4429 2
Wor 0 0
Our protocol keeps speculative state on a per-word basis in the BDNA Line 118410 0

MDTs and, to some extent, in the caches. It is interesting, however,
to consider what happens if, in the whole machine, we only kept ) )
state at the grain size of a memory line. The protocol is otherwise ~ Table 6:Number of squash events per loop invocation.
mostly unchanged and, in particular, still has support for multiple

versions of a given memory line. ) ) .
quential case. The main reason for the slowdown is the many

In general, if the state is kept per line, we need to performsqyashes suffered by thene protocol. They are responsible for
squashes on every out-of-order RAW and WAW dependence, bmﬁw large increase iBusy Memory andOverheadtime relative to
false and due to same-word accesses. This is in contrast to OWhe Word protocol. TheBusyand Memorytime increase because
scheme which, by keeping the state per word, only suffers squashe the instructions and memory accesses repeatedly performed by
in case of same-word out-of-order RAW dependences. The per-linfhe squashed threads. TBwerheadtime increase is mostly due
protocol needs to set both the Load and the Store bits upon creafy thread squash overhead, including draining pending transactions
ing a version, so that the two cases mentioned are handled correctiy squashed threads, synchronizing GMDT modules, and restarting
Also, Safe Store bits in L1 need to be turned off. threads. Even if squashes did not incre@serhead the repeated

As for in-order RAW and WAW dependences in the line-basedwork would render the.ine protocol much slower than thé/ord
protocol, the thread performing the second access is forwarded thene.
entire line from the predecessor writer. This way we can reconcile g gain further insight, we can compare the number of squash
versions correctly. events recorded in the two protocols. The column lab&ggashes

If we look at Table 4, we see that the number of WAW and RAW in Table 6 shows the average number of squash events per loop invo-
dependences, both same-word and false, is much higher than tigation for each application in tHeéne andWord protocols. Inword,
number of same-word RAW dependences in all loops. Again, deonly DSMC3D and, to a much lower degréeack suffer squashes.
pendence distances are often short, which implies that these depehhese were the only two applications with same-word RAW depen-
dences can easily occur out of order. Consequently, the data suggeggnces in Table 4. Ihine, however, all applications suffer many
that the protocol with the per-line state will suffer more squashessquashes. This was expected from the many false RAW and both

than the one with per-word state and, therefore, have lower perforsame-word and false WAW dependences in Table 4. Note that, in
mance. all but one loop, the number of squashes is higher than the number

of iterations in Table 3. We conclude, therefore, that maintaining

Figure 10 compares the execution times of our loops using oUfer_jin lativ is undesirable for th lication
protocol Vord) and a variation with per-line state onliige). Re- per-line speculative state is undesirable for these applications.

call that the line size is 16 words. For each application, we use Finally, the last column of Table 6 shows what fraction of the
the best degree of unrolling observed in Section 5.2: 4 base itersgquashes are triggered by loads. Recall from Section 3.2.1 that the
tions per thread ifrack DSMC3D, andEuler, and 2 base iterations loads in our protocol, if they hit in L1, return the data to the pro-
per thread inAPSI and BDNA. The bars are normalized and bro- cessor immediately, even if the Safe Load bit is zero. In the latter
ken down as usual. Again, the number on top of the bars shows thease, to hide latency, the MDTs are checked in the background. If
speedup of the loops over sequential execution. the check shows that a stale version was used, a squash is generated.

. L . While the latency hiding effect of this approach can be beneficial, if
__Figure 10 shows that maintaining the speculative state on a peE is to help, it should not cause too many squashes. Fortunately, we
line basis results in poor performance. The numbers on top Of4, see from Table 6 that only a small fraction of the squashes in our
the bars show that the loops now run even slower than the S&rotocol {Nord) are due to loads. The fraction is higherLime.
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6 RELATED WORK

An early proposal for hardware support for a form of speculative par- (3]
allelization was made in [9] in the context of functional languages.
More recently, the Multiscalar processor [16] was the first major
work to use speculation within a single-chip multithreaded architec-
ture, initially with the Address Resolution Buffer [3] and later with
the Speculative Versioning Cache [4]. Other related designs have
also been proposed [11, 14, 17, 20]. In most cases, the system 5]
are designed with a tightly-coupled architecture in mind and do not
scale beyond a small number of processors. Only [17] is designed[6]
purposedly for scalability. More recently, speculative CMPs have
caught the attention of chip designers [1, 19].

The MDT-based CMP [11] is one example of such a speculative (7]
CMP. We borrow the MDT concept in our study and use this specu-
lative CMP as the building block. Our scalable scheme, however, is
not dependent on the MDT-based CMP and could easily accommo-
date the other speculative CMP proposals mentioned above.

The work in [17, 18] and in [22, 23, 24] presents extensions to
a cache coherence protocol to accommodate speculation in scalable
systems. Both designs yield a flat view of their speculation threads. [
Neither of these proposals is fleshed out enough to show how, if
speculative CMPs were used as building blocks, it would reconcile
its single layer protocol with many of the self-contained specula-[10
tion protocols of these CMPs. Our work, instead, takes a hierar-
chical approach that largely abstracts away the internals of the node
architecture. We have worked out a complete system that uses a
self-contained speculative CMP as building block with minimal ad- (11
ditions to interface with the rest of the system.

One difference with [17, 18] is that their work has taken the path
of extending an existing cache-coherence protocol to handle spegi2]
ulation, while we have opted for the approach of adding a specu-
lation protocol with minimal overlap over the existing cache coher-
ence protocol. Finally, our protocol supports multiple versions and
full per-word speculative state, which makes it less susceptible tq13]
squashing. In particular, out-of-order false dependences, whether
RAW, WAR, or WAW, never cause a squash in our system. Their
applications do not appear to require similar support. [14]

Compared to the other scalable schemes, the work in [22, 23, 24
takes a slightly different approach. It has been specially designed t
effectively handle workloads of threads that have much load imbal-
ance and large working sets that overflow caches. In addition, it also
provides support for parallel reduction operations. All this is done
at the expense of utilizing more complex hardware than the othef16l
systems.

(4]

(8]

(17]

7 CONCLUSIONS 18]

In this paper, we addressed the problem of extending speculative par-
allelization to scalable shared-memory systems. We presented a new
scheme that requires relatively simple hardware and is efficiently[19]
integrated next to the cache coherence protocol of a conventional
NUMA multiprocessor. We used a hierarchical approach to largely[20]
abstract away the internals of the node architecture. We were able to
utilize a speculative CMP as building block with minimal additions

to its interface with the rest of the system.

Detailed simulations of our scheme showed good overall perfor-[21]
mance. For a set of important non-analyzable scientific loops, we
obtained average speedups of 4.2 for 16 processors. We found that
assigning groups of iterations to each thread can improve perfor-[zz]
mance. Finally, we showed that support for per-word speculative
state is required, at least by our applications, to avoid excessive
squashes. Overall, we feel that our design lies at a good complexity-
performance design point. (23]
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