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Abstract

Value locality, a recently discovered program attrib ute
that describesthe lik elihood of the recurrenceof previ-
ously-seenprogram values,hasbeenstudied enthusias-
tically in the recent published literatur e. Much of the
energy hasfocusedon refining the initial efforts at pre-
dicting load instruction outcomes,with the balanceof
the effort examining the value locality of either all reg-
ister-writing instructions, or a focusedsubsetof them.
Surprisingly, there hasbeenvery little published char-
acterization of or effort to exploit the value locality of
data words stored to memory by computer programs.
This paper presentssuch a characterization, proposes
both memory-centric (basedon messagepassing)and
producer-centric (basedon program structur e) predic-
tion mechanismsfor stored data values,intr oducesthe
conceptof silent storesand newdefinitions of multipr o-
cessorfalse sharing basedon theseobservations, and
suggestsnew techniques for aligning cachecoherence
protocols and microarchitectural store handling tech-
niquesto exploit the valuelocality of stores.Wefind that
realistic implementationsof thesetechniquescansignif-
icantly reducemultipr ocessordata bus traffic and are
more effective at reducing addressbus traffic than the
addition of Exclusivestateto a MSI coherenceprotocol.
Wealsoshow that squashingof silent storescanprovide
unipr ocessor speedupsgreater than the addition of
store-to-load forwarding.

1 .0 Intr oduction

A flurry of recent publications have examined the program
attributeof valuelocality. Valuelocality describesthelikelihood
of recurrenceof previously-seenprogramvalueswithin computer
storagelocations.Most of this work hasfocusedon exploiting
this propertyto acceleratetheprocessingof instructionswithin a
superscalarprocessor,with the goal of exposinggreaterinstruc-
tion-level parallelismand improving instruction throughput.In
fact, valuelocality makesit possibleto exceedtheclassicaldata-
flow limit, which is definedastheprogramperformanceobtained
whenmachineinstructionsexecuteassoonastheir operandsare
available.Indeed,value locality allows instructionsto execute

beforetheir operandsareavailableby enablingthepredictionof
the operandvaluesbeforethey are computed.Value prediction
has beenproposedand examinedfor the purposeof reducing
averagememorylatencyby predictingloadinstructionoutcomes
[10], improvingthroughputof all register-writinginstructionsby
predictingthe outcomesof all suchinstructions[11], aswell as
focusingpredictionon only thosecomputationsthathelpresolve
mispredictedbranches[7] or occur on someother critical path
[2]. All of theseproposedusesof valuepredictionsharethecom-
mon goal of acceleratingthe processingof instructionswithin a
superscalar processor.

While importantandinterestingin its own right, this approachto
exploitingvaluelocality is in somewaysmisguided,asit focuses
on processratherthanoutcome. In otherwords,it placesempha-
sis on efficient andrapid processingof instructions,which is of
coursethemeansof moderncomputing,ratherthanontimely and
correctgenerationof theresultof thecomputation,which is after
all the real end or goal of computing.To betterunderstandthe
distinction, we revisit the useful abstractionof the finite state
machine(FSM) modelof instructionsetprocessing[17], asillus-
trated in Figure1].

Whenreducedto its mostbasicform, a modernmicroprocessor
canbe viewedasnothingmorethana simpleMoore finite state
machine.Themicroprocessorhassomeinitial stateS, consumes
asequenceof inputsX by sequencingthroughasetof finite states
determinedby the next statefunction g(S,X), and generatesa
sequenceof outputsY definedby the output function f(S). The
inputs X are embodiedas bit patternsretrievedby instruction
fetchesandloadsfrom memoryand/orI/O devices,andtheout-

FIGURE 1. Finite State Machine Model of a Processor.
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putsY areembodiedasfetchandloadaddressesaswell asstore
addressandvaluetuplespresentedto memoryand/orI/O devices.
In its simplestform, thearchitectedregisterstateof aninstruction
setprocessorcorrespondsto theFSM stateS, thenextstatefunc-
tion N=g(S,X) correspondsto the next instructionaddresscom-
putation as well as any register-to-registerALU semantics
specifiedby the currentinstruction,andthe outputfunction f(S)
relays fetch, load, and store addressesand store valuesto the
memory interface.

Within theFSM model,theendor goalof processormicroarchi-
tecturecanbedescribedastransformingan input sequenceX as
quickly andefficiently aspossibleinto its correspondingoutput
sequenceY, particularlyinto thefinal statedeterminedby aggre-
gateeffect of that output sequence.With this goal in mind, it
becomesclearthatrecentlyproposedhardwareoptimizationsthat
exploit valuelocality arefocusedexclusivelyon acceleratingthe
next statefunction N=g(S,X), i.e. acceleratingthe processingof
instructions,which is merelythemeans, andnot theend, of apro-
cessor’smicroarchitecture.We contend that focus should be
placedon the entire path from input sequenceX to output Y,
especiallyon the neglectedoutput function Y=f(S), ratherthan
exclusivelyon theN=g(S,X)nextstatefunction.Thestatedpur-
poseof our work, then,is to examineopportunitiesfor exploiting
value locality to acceleratethe output function Y=f(S). Specifi-
cally, we introducethe notion of silent storesand examinethe
value locality of storesfrom both memory-centric(data-address
based)andproducer-centric(storeinstruction-based)viewpoints
(Section2); examinethe implicationsof storevalue locality on
microarchitecturaltechniquesfor handling store instructions
(Section3); introduceandquantifytwo newdefinitionsof multi-
processortrue sharing[4] basedon storevaluelocality (Section
4); andexplorethepotentialfor reducingmultiprocessordataand
addresstraffic (Section5). Our initial resultsin all of theseareas
arepromising,andshouldencourageandmotivatefurther study
of this neglected area of computer architecture.

2 .0 The Value Locality of Stores

In orderto betterunderstandthevaluelocality of storedataval-
ues,we measuredthestorevaluelocality programpropertyfrom
two differentperspectiveswhich we call programstructurestore
valuelocality (PSSVL)andmessage-passingstorevaluelocality

(MPSVL). Programstructurestorevalue locality measuresthe
locality of valueswrittenby aparticularstaticstore,andis analo-
gousto the value locality reportedfor loadsand other register-
writing instructionsin prior work (e.g. [10]). In contrast,mes-
sage-passingstorevaluelocality measuresthe locality of values
written to a particular addressin data memory (i.e. messages
passedthroughmemory).Most of theprior work on valuelocal-
ity has focused on program structure-basedprediction, since
thereis very little to be gainedby predictingload valuesonce
their addressesareknown(it is usuallyjust asfastandnonspecu-
lative to accesscachememorydirectly,with theexceptionof data
items that miss in the cache).Two counterexamplesthat study
message-passingvalue locality are Gabbay’swork [12], which
studiesthevaluelocality of instructionsbasedondestinationreg-
ister identifier, andCalder’swork [3], which studiesload value
predictability based on memory address.

We examinedthe eight uniprocessorand three multiprocessor
benchmarksdescribedin Table1. The uniprocessorprograms
wererun undertwo instructionsets(PowerPCandSimplescalar)
usingassociatedcompilers,run-timeenvironments,andsimula-
tors.The multiprocessorbenchmarkswererun only underPow-
erPC,on a 4-processorshared-memorymultiprocessorsimulated
undertheSimOS-PPCfull systemsimulator[9]. TheSPLASH-2
benchmarks[1] arewidely usedandunderstood,andareincluded
for continuitywith previouswork. Theoltp benchmarkemploys
twelve concurrentstreamsof TPC-B transactions[16] operating
onanin-memorydatabasestoredin acommercialrelationaldata-
base management system (RDBMS).

Table1 reports the program structure store value locality
(PSSVL)andmessage-passingstorevaluelocality (MPSVL) for
eachbenchmark,as well as the fraction of storesexecutedby
eachprogramthatareeffectivelysilent.A silentstore is defined
asonethatdoesnot changethesystemstate.In otherwords,the
valuebeingwritten by thestorematchestheexactvaluealready
storedat that memorylocation.This programcharacteristiccan
be viewed as the upper limit for message-passingstore value
locality thatreliesonataggedlastvaluepredictor.Morecomplex
predictors,suchasthestridepredictorwe use,areableto exceed
this limit. ThePSSVLandMPSVL resultsshownin Table1 are
derived with a large stride predictor table with 64K direct-
mappedentries;resultsfor smallerpredictortablesareshownin
Figure2and Figure3.

Benchmark Description
Silent Stores

(PPC/SS)
PSSVL (LastVal/

Stride)
MPSVL (LastVal/

Stride)

go SPEC95 game 38%/27% 30%/32% 36%/39%

m88ksim SPEC95 simulator 68%/62% 56%/60% 65%/70%

gcc SPEC95 compiler 53%/46% 37%/39% 49%/52%

compress SPEC95 compression 42%/39% 35%/65% 16%/47%

li SPEC95 lisp interpreter 34%/20% 32%/39% 34%/43%

ijpeg SPEC95 image compression 43%/33% 52%/61% 46%/50%

perl SPEC95 language interpreter 49%/36% 39%/41% 42%/44%

vortex SPEC95 object database 64%/55% 71%/72% 57%/58%

oltp 4proc in-memory TPC-B w/RDBMS 56% 52%/56% 45%/51%

barnes 4proc SPLASH-2 N-body simulation 40% 27%/27% 38%/43%

ocean 4proc SPLASH-2 Ocean simulation 41% 41%/43% 36%/39%

TABLE 1. Store Value Locality Measurements for Various Benchmarks.
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Figure2 showsPSSVLfor variouspredictortablesizes.Foreach
benchmark,from left to right, the stackedbarsaccountfor store
valuelocality for predictortablesof size1K, 2K, 4K, 8K, 16K,
32K, and 64K entries.The prediction tables are indexed and
taggedwith the storeprogramcountervalue,andarecapableof
capturinglast valuelocality aswell asunit stridesequences[8].
Eachdynamicstoreinstanceis countedin oneof five categories,
whichcorrespondto thefive elementsof thestackedbar:Misses,
in which casethe store doesnot find a matchingentry in the
table; DiffAddr/WrongVal, in which case the store is to an
addressthat differs from the addressof the previousinstanceof
that staticstoreandthe valuewritten doesnot matchthe table’s
prediction;SameAddr/WrongVal,in which casethe store is to
thesameaddressasthepreviousinstancebut writesa valuethat
does not match the prediction; SameAddr/RightVal,in which
casethe store is to the sameaddressand writes the predicted
value;andDiffAddr/RightVal, in which casethestoreis to a dif-
ferentaddressbut writes thepredictedvalue.Theaggregatepre-
dictability of storevaluesrangesfrom a low of 27%for barnesto
a high of 72% for vortex. Sincethereis a significantpopulation
of storesin eachcategory,no clear correlationexists between

addressvariability and storevalue variability. The larger table
sizesareimportantonly for oltp, which is knownto havea large
instruction working set [11].

Figure3 showsthe message-passingstorevalue locality for the
samepredictortablesizes(1K, 2K, 4K, 8K, 16K, 32K, and64K
entries).In thiscase,thetablesareindexedwith thephysicaldata
addressbeing written by the store, and each dynamic store
instanceis countedin oneof five categories:Miss,asabove;Dif-
fPC/WrongVal,in whichcaseastaticstorethatis not thelastone
to write to thisaddress(adifferentstaticstore)writesavaluethat
doesnotmatchtheprediction;SamePC/WrongVal,in whichcase
the samestaticstorewrites a valuethat doesnot matchthe pre-
diction; SamePC/RightVal,in which casethe samestatic store
writesthepredictedvalue;andDiffPC/RightVal, in which casea
different staticstorewrites the predictedvalue.Here,the aggre-
gatepredictabilityrangesfrom a low of 39%for go to a high of
70%for m88ksim. Again,thereis noobviouscorrelationbetween
theidentity of thewriter (staticstore)andstorevaluevariability,
since significant populationsof storesexist in each category.
Here,thetablesizeis moreimportantfor mostof thebenchmarks
asit mustcapturethe dataworking set--whichis largerthanthe
instructionworkingsetfor mostof theseprograms--inorderto be
effective.

From the datapresentedso far, there is no clear answeras to
whetherprogram-structureor message-passingstorevaluelocal-
ity is the betterchoice;therearesituationsin which eitherwill
outperformtheother.Werevisit thisquestionin Section5, where
we explorethe effectsof storevalue locality on multiprocessor
bus traffic.

In orderto examinevariationdueto programphase,wealsomea-
suredthetimedomainfrequencyof occurrenceof silentstoresfor
the PowerPCarchitecture.This datais plottedin Figure4. With
the exceptionof oltp, which is a snapshotof steady-stateexecu-
tion, all thebenchmarkshavenearlyidenticalstorevaluelocality
in the first severalhundredthousandstores.We attributethis to
the programloader (this datawas collectedwith a full-system
simulatorthatincludesall portionsof programexecution,includ-
ing program load time). Beyond the initial loader phase,the
benchmarksdemonstratenoticeablevariation in their behavior.
Thenear-monotonicdecreasein li indicatesthat theactualwork
li is doingbeyondtheloadtimehasmuchlessstorevaluelocality
(asmeasuredby silent stores)thantheprogramloaderdoes.We

FIGURE 2. Program Structur e Store Value Locality.
Dynamic store breakdown is shown for 1K, 2K, 4K, 8K,
16K, 32K, and 64K entry predictor tables.

FIGURE 3. Message-passing Store Value Locality.
Dynamic store breakdown is shown for 1K, 2K, 4K, 8K,
16K, 32K, and 64K entry predictor tables.
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attributethedifferencesin storevaluelocality betweenThePow-
erPC and Simplescalarinstruction sets (shown in Table1), to
variationsin programmodel,runtimeenvironment,andcompila-
tion technology.For example,efficient registerallocation can
causea largedifferencein the frequencyandcharacterof store
instructions.For lack of analternative,we usedthegcccompiler
for Simplescalar;ThePowerPCbenchmarkswerecompiledwith
the IBM AIX optimizing C compiler.An additionalexplanation
for the variationsobservedis that the PowerPCstatisticswere
collectedfrom a trace,and henceinclude only retired instruc-
tions, while the Simplescalar statistics include speculative
instructions on wrong branch paths.

3 .0 Impr oving Store Handling
Micr oarchitecture

Havingintroducedtheconceptof silentstores,canwe find away
to exploit themat themicroarchitecturallevel?In thissection,we
outline someobviousmicroarchitecturalstructuresthat may be
enhancedandexploreinitial experimentalresults.For theentirety
of themicroarchitecturediscussion,the term“silent store” refers
only to update-silentstores--thosewhich seemintuitively easiest
to exploit with little microarchitecturalcomplication.We will
explorepossiblebenefitsof stochasticallysilentstoresin Section
5. For the microarchitecturaldiscussion,we consider only a
weakly consistentmemory model, and assumea uniprocessor
system, to allow aggressive removal of silent stores.

3.1 Load/Store Queue

In many modern microprocessors,memory hierarchy perfor-
mance is a bottleneck, even with the latency tolerancethat
extremely out-of-order processorsprovide. Hence, improving
performanceof the memoryaccesspath is the subjectof much
research.Enhancementsto this path within the processorcore
itself, including storeto load forwarding,hoistingof loadspast
previousstores,non-blockingcaches,anddeepload/storebuffers
havebeenusedto improve systemperformance[14, 8]. How-
ever, these performanceenhancementscan lead to increased
cycle time dueto the sizeandversatility of contentaddressable
memorysystemrequiredto maintainprogramcorrectnessdueto
addressorderingrequirementsin thearchitecture.We assertthat
silentstoresquashingmayallow a designerto obtaingreaterper-
formancefrom existingstructures,or a reductionin sizeor com-
plexity of this system(which we hereinrefer to asthe load/store
queue, or LSQ) because of the relative benefit of squashing.

Squashingshould provide performancebenefit in this system
becausesquashedsilent storescanbe physically removedearly
from theLSQ,effectivelymakingtheLSQ larger.Early removal
of entriesfrom theLSQ(andpossiblytheinstructioncontrolunit)
can also decreasepressureon the commit logic. It also hasthe
obvious effect of easing store unit pressure.

However,squashingmay negativelyimpactthe LSQ, dueto the
necessityof verifying eachstorebeforewecansquashit (thesim-
plemechanismweemployin ourpreliminaryexperimentsis cov-
ered in Section3.4).

3.2 Memory Hierar chy

Silent storesquashingmay benefita uniprocessorsystemmem-
ory hierarchyby reducingthe numberof dirty cachelines and
hencethenumberof writebacks.The removalof writebackscan
increasesystemperformanceand lower pressureon writeback
buffers.

Squashingmay also allow a designerto havefewer storeports
into thememorysystem(in our currentimplementation,we trade
storeportsfor loadports,but otherimplementationsmaybepos-
sible) for a desiredamount of store bandwidth.This has the
potentialto decreasecircuit complexity,asin general,loadband-
width is easierto obtainthanstorebandwidthby resourcedupli-
cation or other methods [8].

3.3 Machine model

To determinethe performanceeffect, if any,of an initial imple-
mentationof squashing,weusedanexecutiondrivensimulatorof
the Simplescalararchitecture.In order to model the increasing
demandson a memorysubsystem,we useda very aggressiveout
of orderdesign.The configurationof the executionengineis 8
issue;64 entryRUU; GSharebranchpredictorwith 64K entries,
16 bit global history; 6 integerALUs; 2 integermultipliers.The
cacheconfigurationsare64KB split I/D L1 and1MB unified L2
with pipelinedaccessandlatenciesof 2, 8, and50 clocksfor the
L1, L2, and main memory,respectively.The I-cacheis 2 way
associativewith a line sizeof 64 bytes;TheD-cachesare4 way
associativewith line sizesof 32and64bytes,respectively.When
storeto loadforwardingis enabledit hasa latencyof 2 clocksto
match the L1 cache latency.

Thememoryaccessconfigurationis a four-load-wideversionof
thetwo-wideDEC Alpha 21164[5]. We allow up to 4 loadsor 1
storeto issuepercycle (loadsandstoresaremutuallyexclusive,
with no addressrestrictionson parallelloads).All storeswait for
their associatedstore verify (describedin Section3.4) before
committing into the memorysubsystemsubjectto latencycon-
straints(i.e the level in the memoryhierarchywhere the store
hits). Waiting for store verifies allows maximal reduction of
writebacks,but alsocanhurt instructionthroughputbecausethe
storeis notallowedto leavetheinstructionwindowuntil thestore
verify completes(asopposedto letting thestorecompleteimme-
diatelyandjustbufferingthewrite appropriately.)It is possibleto
do thissquashingatsomeotherlevel in thememoryhierarchy(or
havespecialhardwareoutsideof theinstructionwindowto dothe
verifies) but this wasnot implementedin our simulator.There-
fore, the IPC resultswhen verifying cachemissing storesare
slightly pessimisticand do not reflect the bestpossibleperfor-
mance.

It is alsoimportantto notethatoursimulatordoesnotmodelcon-
tention for writeback buffers (or rather, it supportsunlimited
writebackbuffers),hencewedonotgainanyIPC from removing
the writebacks.However,in real systemsthe numberof write-
backbuffers is finite so thereis someIPC benefitwhich is not
reflected in our results.

3.4 Silent Store Removal Mechanisms

We implement two store squashingmechanismsto evaluatea
realistic implementationand also a theoretical limit for our
machine. We refer to these asrealistic andperfect.

Realistic Method: Eachstore is convertedinto a storeverify,
which is effectively threeoperations--aload, a comparison,and
thesubsequentstore(if thestoreis non-silent).Thestoreverify is
initiatedaftertheeffectiveaddresshasbeencomputedin theexe-
cutionengineandall previousstoreaddressesareknown,sothat
possiblestoreaddressunknowndependenciesneednot be con-
sidered[14]. Whenthedatareturnsfrom thememorysubsystem,
it is comparedto the new valueto be written. If the datavalues
are equal,the storeis update-silentand it is removedfrom the
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LSQ and the storeentry in the RUU is flaggedto indicatethe
storeis silent.Whenthestorereachescommit,if it is not flagged
as silent, the storeport is obtainedand the write occursto the
memorysystemas it would normally. If the storeis silent, the
storeretireswith no memoryaccessandno sideeffects,except
that it consumes a commit slot.

Perfect Method: Storesquashingoccursin the samemanneras
above,exceptit is known by somemechanismthat the storeis
silentandhencetheverificationis performedonly for theknown
silent stores.Non-silentstoresexecuteas normal with no store
verify. This method is meant to illustrate the performance
obtainedwith a perfectpredictionmechanismfor update-silent
stores.Thestoreverify is still carriedout for thepredictedsilent
storesbecausein reality, no confidencemechanismcaneverbe
perfect--hence validation of the prediction must still be done.

3.5 Results

3.5.1 Writeback Reduction

In Table2, we showthewritebackreductionobtainedby squash-
ing andallowing storeverifies to completeto different levelsof
memory hierarchy for both realistic and perfect squashing.

Weseefrom Table2 thatsquashingcanyield asignificantreduc-
tion in writebacksdependingon thebenchmarkandthememory
hierarchylevel to which we allow verifies. We seea rangein
reductionfrom 81%(in vortex) to 0%(or smallnegativevaluesin
li which we attributeto second-orderLRU policy effects).The
average for all benchmarks is a 33% reduction.

Wealsoseethatsquashingin L1 cacheonly doesn’tsignificantly
reducethenumberof writebacks(themaximumreductionis 11%
in gcc, all othersarelessthan5%).This indicatesthatlinesin the
L1 cacheare sufficiently active suchthat they are storedto at
least once non-silently, necessitating a writeback anyway.

However, there is a substantialreduction in writebackswhen
squashingto otherlevelsin thememoryhierarchy--allreductions
are greater than 14% when verifying into memory (with the
exceptionof li andperl which havevery few writebacksto start
with.) This canbepartially explainedby theobservationthat the
probabilityof a storemisscreatinga dirty line in theL1 cacheif
wedon’t verify it is 100%,but if weverify themiss,theprobabil-
ity is less than 100%.

Finally, it is worthwhile to notethat therealisticresultswith L1,
L2, andmemorysquashingareessentiallythesameastheperfect
results,with the minor differencesattributableto secondorder

LRU policy effects,agreeingwith the intuition that performing
thestoreverify for non-silentstores(which is donein therealistic
case)shouldnot affect the numberof writebacks.Somesimilar
results for writeback reduction were presentedin a study by
Molina [13].

3.5.2 Instruction Throughput

We now turn our attentionto the effect of squashingon instruc-
tion throughputandcompareit to storeto load forwardingasa
performanceenhancingmechanism.Note that theseresultsonly
performstoreverifieson L1 cachehits sothattheLSQ andRUU
do not getbackedup waiting for storeverifies.As mentionedin
Section3.4,ideallyamachinewouldsquashmissesatsomeother
layer of the memory hierarchy (to obtain both the writeback
reductionandinstructionthroughputshown),yielding a potential
reductionin processingcorecomplexity(to handlefewerstores)
and also the writebackreduction.However, it shouldbe noted
thattheresultsin Table2 andFigure5 canbeconsideredorthog-
onal in this respectsincesquashingat someother level in the
memoryhierarchywould not affect theprocessingcoresubstan-
tially.

In Figure5, the threeleft-handbarsin eachgrouprepresentper-
formancewith nostoreforwarding(SF)andtheright-handgroup
representperformancewith storeforwarding.Within eachgroup,
thebarsrepresent(from left to right) baselineperformance,real-
istic squashingperformance,andperfectsquashingperformance.
The subdivisionswithin bars indicatedifferent LSQ sizes.We
can see in Figure5 that in no casedoes realistic silent store
squashingdecreaseperformancein our processormodel, even
with the addedstoreverify operations.More interestingly,with-
out SFin m88ksimwe seeanIPC of 3.32with anLSQ sizeof 16
and squashingvs. an IPC of 3.12 with LSQ size 32 and no
squashing--betterperformancefor half theLSQsize.(Thiscanbe
attributedto the high percentageof silent storesin this bench-
mark: 62%.) In the otherbenchmarks,the effect of squashingis
lessdramatic,but realistic squashinggenerallyperformsbetter
thanSFfor equivalentLSQsizes(exceptfor go, wheretheIPC is
fairly constantandnot memorylimited, compresswhich obtains
8%speedupfrom SFalonewith anLSQsizeof 16,andli /perl for
LSQ size of 32). Perfect squashingalways outperformsSF
(exceptin compressandgo for thereasonsabove)becauseof the
removal of unnecessary store verify operations.

Over the rangeof benchmarks,we seespeedupsof 6.3% and
6.9%for realisticandperfectsquashingwith SFoverthebaseline
with SF (5.1% and6.9% respectivelyfor eachwithout SF over

Benchmark Number of writebacks (% reduction relative to baseline case)

Baseline Realistic/L1 Realistic/L1+L2 Realistic/L1+L2+M Perfect

go 34175 33656 (1.5%) 30611 (10.4%) 29308 (14.2%) 29354 (14.1%)

m88ksim 23877 23863 (0.0%) 23768 (0.4%) 10134 (57.6%) 10133 (57.6%)

gcc 68833 61240 (11.0%) 56934 (17.3%) 53693 (21.6%) 53628 (22.1%)

compress 370569 353172 (4.7%) 152953 (58.7%) 147557 (60.2%) 147582 (60.2%)

li 1896 1953 (-3.0%) 1913 (-0.9%) 1830 (3.5%) 1852 (2.3%)

ijpeg 51853 51848 (0.0%) 49702 (4.1%) 44548 (14.1%) 44337 (14.5%)

perl 8723 8517 (2.4%) 8374 (4.0%) 7990 (8.4%) 7949 (8.9%)

vortex 377852 375470 (0.6%) 312052 (17.4%) 71742 (81.0%) 71712 (81.0%)

TABLE 2. UFS Store SquashingEffect on L1 Writebacks. The “realistic” columnsshow resultsof squashingstorehits to different
levels of memory (“L1” indicates we verify only L1 store hits, “L1+L2” indicates we verify L1 and L2 store hits, etc.).
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thebaselinewithoutSF.)In thebenchmarkswith thehighestper-
centageof silentstores(vortexandm88ksim) we seespeedupsof
15% and 8.9%, respectively--definitely non-trivial.

Of course,as evidencedin Figure5, SF alwaysprovidessome
additionalbenefitalongwith squashingbecausenot all storesare
silent.

If we compareperfect squashingwith realistic squashing,the
largestdifferenceappearsin compresswith an improvementof
3.3%.In general,thedifferenceis small(1.8%overall thebench-
marks)implying thatthismachinemodelwouldnotbenefitmuch
from a good silence prediction mechanism.

As a separateissue,it is alsointerestingto notehow little effect
SF hasin our processormodel.Over the rangeof benchmarks,
the speedupgainedusing SF is only 3.8% (contrastedwith the
5.1%and6.9%of realisticandperfectsquashingwith SF,respec-
tively, shownearlier).This resultsupportsourassertionthatstore
squashingsuppliesmoreperformancethanstoreforwarding,and
is not unexpectedin light of theresultsof Moshovos[14], which
explorethetemporallocality of memoryoperationsin thecontext
of storeto loadforwarding.In light of theseresults,on load-store
RISC architectureswith sufficient generalregisters(32 in our
machine),givenequalhardwarecosts,silentstoresquashingpro-
vides greater benefit than store forwarding.

4 .0 New Definitions of False Sharing

We shift our focusto multiprocessorapplicationsof storevalue
locality by introducing new definitions of false sharing.Prior
work in defining falsesharingfocuseson the addressof poten-
tially shareddata.All of thepreviousdefinitionsrely on tracking
invalidatesto specific addressesor words in the sameblock.
However,no attemptis madeto determinewhentheinvalidation
of ablock is unnecessarybecausethevaluestoredin theline does
not change.The fact that manystoresaresilent, andevenmore
arestochasticallysilentrequiresnewdefinitionsof trueandfalse
sharing.

4.1 Addr ess-based Definitions of Sharing

In orderto describehow our definitionsdiffer from theprevious,
a review of the prior work is necessary.Throughoutthe discus-

sion, we imaginesharingasdefinedin a multiprocessorsystem
with an updatebasedprotocol, and for easeof discussion,a
sequentiallyconsistentmachine with infinite sized cachesis
implied (sothatcapacityandconflict missescanbeignored.)All
of thedefinitionsaresimilar in their recognitionof “cold” misses
(CM), true sharing misses (TSM), and false sharing misses
(FSM). We focusour discussionon the definition of Dubois[7]
asit providesthemostaccuratedefinition of address-basedshar-
ing. For a reviewof otherdefinitionsdevelopedprior to Dubois,
refer to [15] and [6].

Dubois’ Definition:

Cold Miss: The first miss to a given block by a processor.

EssentialMiss: A cold missis anessentialmiss.Also, if during
the lifetime of a block, the processoraccesses(load or store)a
valuedefinedby anotherprocessorsincethelastessentialmissto
that block, it is an essential miss.

Pure True Sharing miss (PTS): An essentialmiss that is not
cold.

Pure False Sharing miss (PFS): A non-essential miss.

Essentialmissesconstituteall misseswhich bring in a truly
sharedwordeitherdirectly,or asasideeffect(for example,when
a truly sharedvalue is brought in as the non-critical word in a
cacherefill). Note that the useof the word “value” in the above
definition meansvaluein the invalidationsenseonly, i.e, a store
instructionhasoccurredto that address.It is not implying any-
thing about the data value at that address.

In general,Dubois contributedthe insight that merely tracking
theaddressthat invalidatesa cacheblock or only comparingthe
addressthatcausesa missto theimmediatelypreviousinvalidat-
ing addressesof thatblock is not sufficient.To bemoreprecise,
we must examineall previousinvalidationsof a block and the
side-effectsof loadinga cacheline to be surethat PTSandPFS
misses are not incorrectly counted.

4.2 Update-based False Sharing (UFS)

In our definition of update-basedfalse sharing(UFS), we will
keepthesamedefinitionsasDuboiswith extensionscoveringthe
value locality of stores.Intuitively, we extendthe definition of
EssentialMiss to excludethosestoreswhich aresilent, i.e, those
thatdo not changethemachinestatebecausetheyareattempting
to storethevaluethatwaspreviouslyavailableat that locationin
the systemmemoryhierarchy.Rigorously,we proposethe fol-
lowing, modified,definitionof anessentialmiss(ourchangesare
in italics):

EssentialMiss: A cold missis anessentialmiss.Also, if during
the lifetime of a block, the processoraccesses(load or store)an
addresswhichhashada differentdatavaluedefinedby another
processorsincethelastessentialmissto thatblock, it is anessen-
tial miss.

While thewordingof thisdefinition is almostthesameastheone
proposedby Dubois,wehavemadeaslight changeto makeclear
thatweareinterestedin thedatavalueat amemorylocation.The
other definitions remain accurate with no modification.

4.3 Stochastic False Sharing (SFS)

In light of the work of Lipasti [10,11] andothers,we haveseen
that many datavaluesare trivially predictable.We would also
like to extendour definition of falsesharingto coverdatavalues
that are trivially predictablewith any well known method. It

FIGURE 5. SPECINT Performancewith StoreSquashing.
For each benchmark,the left three bars show performance
without store forwarding, while the right three bars show
performancewith store forwarding. The three bars in each
groupshow baselineIPC, IPC with realistic storesquashing,
and IPC with perfect store squashing.
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seemsintuitive that if we candefinefalsesharingto compensate
for the effect of silent storesthat we could alsodefine it in the
presenceof stochasticallysilent stores(valuesthat are trivially
predictablevia somemechanism,thedetailsof which arebeyond
thescopeof this work). Of course,with valuepredictionweneed
a mechanismfor verifying the prediction.Efficient mechanisms
of communicating/verifyingthepredictionwith theactualowner
of the updatedvalue are necessary.This will be the subjectof
future work and will not be covered here.

In valueprediction,adistinctionmustalsobemadein howwe’re
predictinga memoryvalue.We canpredictthedatavaluebased
on effectiveaddressof the operation(as in the MPSVL casein
Section2) or on the PC of memoryoperation(asin the PSSVL
casein Section2) whichcanpotentiallyhaveadifferenteffective
address.To completelyenumeratetheseconditions,wedefinethe
following types of SFS:

Message-passingStochastic False Sharing: (MSFS) is SFS
basedon thepredicteddatavaluelocatedat theeffectiveaddress
generatedby any instruction(multiple PCscould generatethis
EA). This terminologyis usedbecausedataat the sameEA can
generallybethoughtof asbeingusedfor inter-processcommuni-
cation.

Program structure StochasticFalse Sharing: (PSFS)is SFS
basedon the predicteddatavalueof an instructionlocatedat a
specificPC(multiple dataaddressescouldbe targetsof this pre-
diction). This terminologyis usedbecausethe valuegenerated/
consumedataspecificprogramlocationcangenerallybethought
of as being a characteristic of the program structure.

Note that the definitions of MSFS and PSFSare not mutually
exclusive.Formally,weextendthedefinitionof anessentialmiss
again to createthe basic definition of stochasticfalse sharing
(SFS)with the distinctionpointedout abovebeingimplicit. We
must also modify the definition of cold missesin the Dubois
approachdue to the possibility of statically predictinga value
with no history (this modification is unnecessaryfor Update-
based False Sharing).

EssentialMiss: A stochasticcoldmissis anessentialmiss.Also,
if during the lifetime of a block, the processoraccesses(load or
store)an addresswhich hashad a newdata valuewhich is not
trivially predictabledefinedby anotherprocessorsincethe last
essential miss to that block, it is an essential miss.

StochasticCold Miss: (SCM)A coldmissonastorewhichhasa
data value which is not trivially predictable.

In orderto illustrateour new definitions,an exampleis given in
Table2. Eight word cacheblocksareassumed.The numbersin
parenthesisarethedatavalues.Thenotation(x)+1 meansa trivi-
ally predictablestridepatternin thedata.Wealsoassume,for the
sakeof stochasticcold misses,that thestaticpredictionof a pre-
viously unaccesseddataword is zero.This exampleis very simi-
lar to thoseusedby Duboisandis fairly straightforward.Areasof
particular interest include:
• T0: Wehavenocoldmissbecauseof thedefinitionof aSCM

(we would have predicted this store to be 0).
• T3: This miss is update-false because the stored value didn’t

change, hence the invalidate and subsequent miss were
unnecessary.

• T6: The store instruction in Proc. 2 at PC 200 is program sto-
chastically silent (because the last time a store at PC 200 exe-
cuted it stored the value 10) and requires no invalidate under
PSFS--hence this load is PSFS.

• T8: The load to address 16 is assumed to be trivially predict-
able and hence the load is MSFS (assume the processor had
somehistoryto predictthismessagevalue,eventhoughthere
is no history in this example to detect the stride).

• T9: The store here is a Dubois CM and is storing a non-zero
(not statically predicted) value, hence it is SCM.

4.4 UFS and SFS Results

In orderto characterizethedegreeto which thesenewdefinitions
of false sharingaffect true and false sharingin multiprocessor
systems,we implementthemeasurementalgorithmof Dubois[7]
andexerciseit with ourmultiprocessorbenchmarksundersix dif-
ferent scenarios:
• Thebaselinescenariocorrespondsto theDuboisdefinitionof

falsesharingandtreatsstoresjustasDubois’mechanism[7],
measuring the relative number of cold misses, false sharing
misses,andtruesharingmissesduringeachbenchmark’sexe-
cution.

• The second scenario corresponds to our definition of update-
based false sharing (UFS). It implementsstore squashing,
which effectively converts silent stores into loads. A realistic
implementation of store squashing is described in greater
detailin Section3; suffice it to saythatfrom amultiprocessor
cache perspective, a squashed silent store requires neither
exclusive ownership of the cache line (as in an invalidation-
based cache protocol) nor remote propagation of the updated
store value (as in an update-based coherence protocol), since
the value being stored has not in fact changed. This scenario
is consistent with the results in Section 3 in that only stores
that hit in the data cache are squashed.

• The third scenario (UFS-P) measures the potential of UFS
with perfect knowledge of store silence by squashing all
storesthataresilent,whetheror not they hit in thedatacache.
This allows us to avoid sending a read (for the store verify)
followed by an upgrade (S->M) for non-silent stores, and
sending instead a read-with-intent-to-modify.

• Thefourthscenariocorrespondsto ourdefinitionof message-
passing stochastic false sharing (MSFS), in which stores that
write valuesthatarecorrectlypredictedby anMPSVL-based
predictor are eliminated from the cache hierarchy. We use a
4K entry stride predictor identical to that modeled for
Figure3.

• The fifth scenario corresponds to our definition of program
structurestochasticfalsesharing(PSFS),in whichstoresthat
write values that are correctly predicted by a PSSVL-based
predictor are eliminated from the cache hierarchy (i.e. they
are observed as neither store nor load references). Here we
also use a 4K entry stride predictor.

Time PC Proc. 1 Proc. 2 Dubois Ours

T0 0 ST 0(0) INV PCM

T1 100 LD 1(10) PCM CM

T2 200 INV ST 1(10)

T3 300 LD 1(10) PTS UFS

T4 400 LD 8(2) PCM CM

T5 200 INV ST 8(10) PCM CM

T6 500 LD 8 (10) TSM PSFS

T7 600 ST16(4)+1 INV PCM CM

T8 700 LD 16(5) CTS MSFS

T9 800 ST 24(4) PCM SCM

TABLE 3. Data Sharing Classification Example.
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• The final scenario (M/PSFS) is an optimistic combination of
MSFS and PSFS, in which stores that write values that are
correctly predicted by either the MPSVL predictor of sce-
nariothree,or thePSSVLpredictorof scenariofour, areelim-
inated from the cache hierarchy. We assume an ideal
mechanism for selecting the correct predictor in the case
where only one produces the right prediction.

The final threescenarioscorrespondto our earlierdefinitionsof
stochasticfalse sharing, and are included to demonstratethe
potentialof storevalue locality for reducingmultiprocessorbus
traffic, aswell asto providesomeguidancefor futureresearchin
this area.We do not describean exacthardwaremechanismfor
exploiting this type of locality in a multiprocessorsystem.The
exactdesignof suchamechanismis beyondthescopeof this ini-
tial paper, and is left instead to future work.

We measuretrueandfalsesharingfor eachof thesesix scenarios
for variousline sizes;our resultsfor line sizesof 16B,32B,64B,
128B,and512Bareplottedin Figure6. Foroltp weobservemea-

surablereductionsin true andfalsesharingfor UFS.For UFS-P
andthe stochasticsharingcases,the reductions(including some
reduction in cold misses)are more dramatic.For barnes and
ocean, thetrendsarethesame,althoughmorepronounced,since
even simple UFS provides considerablereductionsin overall
miss rate due to a combinationof reducedfalse sharing and
reducedtrue sharing.For oltp, squashingsilent storesthat miss
the cache(UFS-P)is very importantfor reducingthe miss rate.
This indicatesthat mostof the shareddatais written beforeit is
read. This is less true for barnes and ocean, indicating that
update-silentshareddata(or at leastspatially local data in the
sameline) arereadby a processorbeforetheyarewritten, result-
ing in a silent store hit that canbe squashed.

5 .0 Reducing Multipr ocessor Data and
Addr ess Traffic

In order to evaluatepotential reductionin multiprocessordata
and addresstraffic achievablethrough exploiting store value
locality, we model a multiprocessorcachethat implementsthe
standardMESI (Modified, Exclusive,Shared,Invalid) coherence
protocol [14]. Briefly, this protocol requires a processorto
acquireexclusiveownership(M or E state)of a cacheline before
writing to it. Exclusiveownershipis acquiredthroughan invali-
datemechanismthat removesthe line from other cachesin the
system.This protocol is widely usedin modernshared-memory
multiprocessors.

We exerciseour cachemodelwith thesix scenariosdescribedin
Section4: baseline,UFS storesquashing,UFS-P,MSFS,PSFS,
andM/PSFS.We presentdatafor a 1MB 4-way setassociative
datacachewith 16B, 32B, 64B, 128B,and512B lines.We also
collecteddatafor smallerandlargercaches,but restrictour pre-
sentationto the1MB case,which reflectsthegeneraltrendsseen
for other sizesas well. Figure7 plots the miss ratesfor these
cacheconfigurationsfor each of our benchmarks.Misses are
classifiedas cold, true sharing,falsesharing,andcapacity/con-
flict according to the method described in Section 4 [7].

Onceagain,we find measurablereductionsin miss rateseven
with the simple UFS scenario,particularly for smaller lines.
However, aninterestingphenomenonoccursfor oltp: astheshar-
ing missesdecreasedueto UFS storesquashing,conflict misses
increase,holding the overall missratenearlysteady. This is due
to the increasedworking setbroughtaboutby fewer invalidates.
Without the available invalidatedlines to fill, the LRU replace-
mentpolicy makeslessthanoptimalreplacementdecisions.This
suggestsaneedfor abetterreplacementpolicy or perhapsgreater
associativity, or simply a largercache.Dramaticmissratereduc-
tionsdonotoccuruntil programstructure-basedstoreelimination
is applied.PSFShasa clearmissratereductionadvantageover
MPFS, eventhoughthe two havecomparablepredictionaccu-
racy (seeSection2). Intuitively, this agreeswith the resultspre-
sentedby Kaxiras[15], which arguefor programstructurebased
predictors for identifying multiprocessor data sharing patterns.

Thetotal databustraffic is reducedby morethantheratiosindi-
catedby themissratesplottedin Figure7, sincethefrequencyof
writebacks of dirty lines is also reduced.With UFS-P store
squashing,we observed5%-82%reductions(dependingon line
size) in the writeback rates for oltp, 16%-17%reductionsfor
ocean, and5%-16%for barnes. For themostaggressiveSFScase
(scenario5), we observedwritebackratereductionsof 8%-85%,
25%-26%,and 16%-29%for oltp, ocean,and barnes, respec-
tively.

FIGURE 6. Multipr ocessor sharing. Left to right, the
stacked bars show cold, true sharing, and false sharing
missesof the baseline,UFS, UFS-P, MSFS, PSFS,and
MSFS+PSFS scenarios.

OLTP

16B 32B 64B 128B 512B
0.0

0.2

0.4

0.6

0.8

1.0

Mis
ses

 (%
/re

f)

Cold Misses
True Sharing
False Sharing

BARNES

16B 32B 64B 128B 512B
0.0

0.1

0.2

0.3

Mis
ses

 (%
/re

f)

OCEAN

16B 32B 64B 128B 512B
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Mis
ses

 (%
/re

f)

Alan Berenbaum
189



For UFS-Pstoresquashingthe total databus traffic reductions
observedwere(dependingon line size)3%-23%for oltp, 10%-
11% for ocean, and13%-19%for barnes. For the mostaggres-
sive SFScase(scenario5), we observeddatabus traffic reduc-
tions of 15%-48%for oltp, 24%-55%for ocean, and45%-63%
for barnes. A detailedanalysisof the variations in writeback
reduction and data bus traffic is left to future work.

We alsocollecteddataon theaddresstransactionsneededto sup-
port coherencein the MESI protocol. Figure8 showsboth the
outgoing(sent)invalidaterateandtheincoming(received)inval-
idate rates(both hit andmiss) for the six sharingscenariosand
five line sizes.The stackedbar chartsshow the rate at which
invalidates(including invalidatestriggeredby both storeclean
hits and storemisses)hit in a remotecache,miss in a remote
cache,andmissin a remotecacheif E stateis not implemented.
Thetwo plotteddatapointsindicatetherateat which invalidates
aresentoutbothwith andwithoutE state(recallthatE stateiden-

tifies a line asbeingexclusivein the local cache,hencea store
cleanhit only requiresasilentE->M upgradeandnotabroadcast
invalidate, resulting in fewer total invalidates).For all three
benchmarkswe recordmeasurablereductionsin addresstraffic,
even with just the simple UFS store squashing.Furthermore,
thereis a markeddecreasein incominginvalidatesthat missthe
localcache,indicatingthattheUFSandSFSapproachesaremost
effective at eliminating uselessinvalidates(i.e. invalidatesthat
consumeaddressbus bandwidthbut do not communicateany
useful information).Sinceaddressbus bandwidthis a precious
commodityin large-scalesnoop-basedshared-memorymultipro-
cessors, this is a very useful and desirable property.

We alsoobservethat the for this benchmarkset,theaddressbus
traffic reduction obtained by simple UFS store squashingis
higher than the reductionobtainedwith the additionof E state,
which is an optimizationthat is commonlyimplementedin real
systems.In fact, we observethat UFS combinedwith a MSI
coherenceprotocolthatomits theextracomplexityof theE state
alwaysgenerateslessaddressbus traffic than a MESI protocol
without UFSstoresquashing.Of course,combiningbothE state
andUFS storesquashingprovidesthe lowestaddressbustraffic
of all.

In summary,our dataclearlyshowthatmeasurable,evensignifi-
cant,reductionsin addressanddatabustraffic in shared-memory
multiprocessorscanbe achievedwith simpleUFS storesquash-
ing, anddramaticreductionscanbe achievedwith the program
structure-basedapproachto stochasticfalsesharingreduction.Of
course,someof thesegainswill becounteredby thetraffic gener-
atedby thehypotheticalmechanismusedto enableSFS.As pre-
viously mentioned,the details of that designare left to future
work.

6 .0 Conclusion

In this work, we explorevariousaspectsof the valuelocality of
storeinstructions.In doingso,we makefive maincontributions.
The first of theseis an overall characterizationof store value
locality from memory-centric(message-passing)and producer-
centric(programstructure)pointsof view; we find, not surpris-
ingly, that significant value locality exists in both dimensions.
Second,weintroducethenotionof silentstoresandquantifytheir
frequencyfor manyrealprograms.Silentstoresarestoresthatdo
notaffectthestateof themachinetheyareexecutedon.Third, we
describehow to enhancethe performanceof uniprocessorpro-
gramsby squashingsilentstores.Fourth,we defineandquantify
the conceptsof update-basedfalsesharing(UFS) andstochastic
falsesharing(SFS)in multiprocessorsystems.Finally, we show
how to exploit UFS to reduceaddressand data bus traffic on
sharedmemorymultiprocessors,andalsoexaminethesignificant
potentialof hypotheticalSFS-basedmechanismsfor reducingbus
traffic. Our initial resultsin all of theseareasarequitepromising,
and serve to motivate future work.
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