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Abstract

Value locality, a recently discovered program attrib ute

that describesthe lik elihood of the recurrenceof previ-

ously-seerprogram values,hasbeenstudied enthusias-
tically in the recentpublished literatur e. Much of the

enemgy hasfocusedon refining the initial efforts at pre-

dicting load instruction outcomes,with the balance of

the effort examining the value locality of either all reg-
ister-writing instructions, or a focusedsubsetof them.

Surprisingly, there has beenvery little published char-

acterization of or effort to exploit the value locality of

data words stored to memory by computer programs.

This paper presentssuch a characterization, proposes
both memory-centric (basedon messagepassing)and

producer-centric (basedon program structur e) predic-

tion mechanismsfor stored data values,intr oducesthe

conceptof silent storesand new definitions of multipr o-

cessorfalse sharing based on these obsewations, and

suggestsnew techniquesfor aligning cache coherence
protocols and microarchitectural store handling tech-

niguesto exploit the valuelocality of stores.Wefind that

realisticimplementationsof thesetechniquescan signif-

icantly reducemultipr ocessordata bus traffic and are

more effective at reducing addressbus traffic than the

addition of Exclusive stateto a MSI coherenceprotocol.

We alsoshaow that squashingof silent storescan provide

uniprocessor speedupsgreater than the addition of

store-to-load rwarding.

1.0 Intr oduction

A flurry of recent publications have examinedthe program
attributeof valuelocality. Valuelocality describeshelikelihood
of recurrencef previously-seeprogramvalueswithin computer
storagelocations.Most of this work hasfocusedon exploiting
this propertyto accelerateéhe processingf instructionswithin a
superscalaprocessorwith the goal of exposinggreaterinstruc-
tion-level parallelismand improving instruction throughput.In
fact, valuelocality makesit possibleto exceedhe classicaldata-
flow limit, whichis definedasthe programperformancebtained
whenmachineinstructionsexecuteassoonastheir operandsare
available.Indeed,value locality allows instructionsto execute
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beforetheir operandsareavailableby enablingthe predictionof

the operandvaluesbeforethey are computed.Value prediction
has beenproposedand examinedfor the purposeof reducing
averagememorylatencyby predictingload instructionoutcomes
[10], improving throughputof all register-writinginstructionsby

predictingthe outcomesof all suchinstructions[11], aswell as

focusingpredictionon only thosecomputationghathelpresolve
mispredictedbrancheq7] or occur on someother critical path

[2]. All of theseproposedisesof valuepredictionsharethecom-

mon goal of acceleratinghe processingf instructionswithin a

superscalar processor.

While importantandinterestingin its own right, this approacto

exploitingvaluelocality is in somewaysmisguidedasit focuses
on procesgatherthanoutcome In otherwords,it placesempha-
sis on efficient andrapid processingf instructions,which is of

coursethemeansf moderncomputing ratherthanontimely and
correctgeneratiorof theresultof thecomputationwhichis after
all the real end or goal of computing.To betterunderstandhe

distinction, we revisit the useful abstractionof the finite state
machine(FSM) modelof instructionsetprocessingl17], asillus-

trated in Figurel].

Whenreducedto its mostbasicform, a modernmicroprocessor
canbe viewedas nothingmorethana simple Moore finite state
machine The microprocessohassomeinitial stateS, consumes
asequencef inputsX by sequencinghroughasetof finite states
determinedby the next statefunction g(S,X), and generatesa
sequencef outputsY definedby the outputfunction f(S). The
inputs X are embodiedas bit patternsretrievedby instruction
fetchesandloadsfrom memoryand/orl/O devices,andthe out-
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Benchmark Description Silent Stores PSSVL _(Last\all MPSVL _(Last\lil/
(PPC/SS) Stride) Stride)
go SPEC95 gme 38%/27% 30%/32% 36%/39%
m88ksim SPEC95 simulator 68%/62% 56%/60% 65%/70%
gcc SPEC95 compiler 53%/46% 37%/39% 49%/52%
compress SPEC95 compression 42%/39% 35%/65% 16%/47%
li SPECO95 lisp interpreter 34%/20% 32%/39% 34%/43%
ijpeg SPEC95 image compression 43%/33% 52%/61% 46%/50%
perl SPECO95 language interpreter 49%/36% 39%/41% 42%/44%
vortex SPEC95 object database 64%/55% 71%/72% 57%/58%
oltp 4proc in-memory TPC-B w/RDBMS 56% 52%/56% 45%/51%
barnes 4proc SPLASH-2 N-body simulation 40% 27%/27% 38%/43%
ocean 4proc SPLASH-2 Ocean simulation 41% 41%/43% 36%/39%

TABLE 1. Store Value Locality Measurements br Various Benchmarks.

putsY areembodiedasfetchandload addresseaswell asstore
addressandvaluetuplespresentedo memoryand/orl/O devices.
In its simplestform, thearchitectedegisterstateof aninstruction
setprocessocorrespond$o the FSM stateS, the nextstatefunc-
tion N=g(S,X) correspondgo the nextinstructionaddressom-
putation as well as any register-to-registerALU semantics
specifiedby the currentinstruction,andthe outputfunction f(S)
relays fetch, load, and store addressesnd store valuesto the
memory interface.

Within the FSM model,the endor goal of processomicroarchi-
tecturecanbe describedastransformingan input sequenceX as
quickly and efficiently as possibleinto its correspondingutput
sequencé’, particularlyinto thefinal statedeterminedy aggre-
gate effect of that output sequenceWith this goal in mind, it
becomeglearthatrecentlyproposecardwareoptimizationshat
exploit valuelocality arefocusedexclusivelyon acceleratinghe
next statefunction N=g(S,X), i.e. acceleratinghe processingf
instructionswhichis merelythemeansandnottheend of apro-
cessor'smicroarchitecture We contend that focus should be
placedon the entire path from input sequenceX to output,
especiallyon the neglectedoutput function Y=f(S), ratherthan
exclusivelyon the N=g(S,X) next statefunction. The statedpur-
poseof ourwork, then,is to examineopportunitiesfor exploiting
valuelocality to acceleratehe outputfunction Y=f(S). Specifi-
cally, we introducethe notion of silent storesand examinethe
value locality of storesfrom both memory-centrigqdata-address
based)and producer-centri¢storeinstruction-basedyiewpoints
(Section2); examinethe implicationsof storevalue locality on
microarchitecturaltechniquesfor handling store instructions
(Section3); introduceandquantify two new definitionsof multi-
processotrue sharing[4] basedon storevaluelocality (Section
4); andexplorethe potentialfor reducingmultiprocessodataand
addresdraffic (Section5). Our initial resultsin all of theseareas
are promising,and shouldencourageand motivatefurther study
of this neglected area of computer architecture.

2.0 The Value Locality of Stores

In orderto betterunderstandhe valuelocality of storedataval-
ues,we measuredhe storevaluelocality programpropertyfrom
two differentperspectivesvhich we call programstructurestore
valuelocality (PSSVL)andmessage-passirgjorevaluelocality
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(MPSVL). Programstructurestore value locality measureghe
locality of valueswritten by a particularstaticstore,andis analo-
gousto the value locality reportedfor loadsand otherregister-
writing instructionsin prior work (e.g.[10]). In contrast,mes-
sage-passingtorevaluelocality measureshe locality of values
written to a particular addressin data memory (i.e. messages
passedhroughmemory).Most of the prior work on valuelocal-
ity has focusedon program structure-basedrediction, since
thereis very little to be gainedby predictingload valuesonce
their addresseareknown (it is usuallyjust asfastandnonspecu-
lative to accessachememorydirectly, with theexceptiorof data
items that missin the cache).Two counterexamplethat study
message-passingalue locality are Gabbay’swork [12], which
studieshevaluelocality of instructionshasedn destinatiorreg-
ister identifier, and Calder'swork [3], which studiesload value
predictability based on memory address.

We examinedthe eight uniprocessorand three multiprocessor
benchmarksdescribedin Tablel. The uniprocessomprograms
wererun undertwo instructionsets(PowerPCand Simplescalar)
usingassociatecompilers,run-time environmentsand simula-

tors. The multiprocessobenchmarksvere run only underPow-

erPC,on a 4-processoshared-memorynultiprocessosimulated
underthe SImOS-PPQull systemsimulator[9]. The SPLASH-2

benchmark$l] arewidely usedandunderstoodandareincluded

for continuity with previouswork. The oltp benchmarlemploys
twelve concurrentstreamsof TPC-B transactiong§16] operating
onanin-memorydatabasstoredin acommerciakelationaldata-
base management system (RDBMS).

Tablel reports the program structure store value locality

(PSSVL)andmessage-passirgiorevaluelocality (MPSVL) for

eachbenchmark.as well as the fraction of storesexecutedby

eachprogramthat are effectively silent. A silentstoreis defined
asonethatdoesnot changethe systemstate.In otherwords,the

valuebeingwritten by the storematcheshe exactvalue already
storedat that memorylocation. This programcharacteristiccan
be viewed as the upper limit for message-passingtore value
locality thatrelieson ataggedastvaluepredictor.More complex
predictors suchasthe stridepredictorwe use,areableto exceed
this limit. The PSSVLandMPSVL resultsshownin Tablel are
derived with a large stride predictor table with 64K direct-
mappedentries;resultsfor smallerpredictortablesare shownin

Figure2and Figures.
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FIGURE 2. Program Structure Store Value Locality.
Dynamic store breakdevn is shovn for 1K, 2K, 4K, 8K,
16K, 32K, and 64K entry predictor tables.
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FIGURE 3. Message-passing Store Value Locality.
Dynamic store breakdavn is shown for 1K, 2K, 4K, 8K,
16K, 32K, and 64K entry predictor tables.

Figure2 showsPSSVLfor variouspredictortablesizes.Foreach
benchmarkfrom left to right, the stackedbarsaccountfor store
valuelocality for predictortablesof size 1K, 2K, 4K, 8K, 16K,
32K, and 64K entries. The prediction tables are indexed and
taggedwith the storeprogramcountervalue,andare capableof
capturinglast valuelocality aswell asunit stride sequencef8].
Eachdynamicstoreinstanceis countedin oneof five categories,
which correspondo thefive elementof the stackedbar: Misses,
in which casethe store doesnot find a matchingentry in the
table; DiffAddr/WrongVal, in which casethe store is to an
addresghat differs from the addressf the previousinstanceof
that static storeandthe value written doesnot matchthe table’s
prediction; SameAddr/WrongValin which casethe storeis to
the sameaddressasthe previousinstancebut writes a valuethat
does not match the prediction; SameAddr/RightValjn which
casethe storeis to the sameaddressand writes the predicted
value;andDiffAddr/RightVal, in which casethe storeis to a dif-
ferentaddressut writes the predictedvalue. The aggregatere-
dictability of storevaluesrangedrom alow of 27%for barnesto
a high of 72% for vortex Sincethereis a significantpopulation
of storesin eachcategory,no clear correlationexists between
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FIGURE 4. Silent Storesvs. Time. Cumulative fraction of
silent storesthroughoutprogramexecution.Note thatthe x-
axis is on a log scale.

addressvariability and store value variability. The larger table
sizesareimportantonly for oltp, which is knownto havealarge
instruction working set [11].

Figure3 showsthe message-passirgjorevalue locality for the
samepredictortablesizes(1K, 2K, 4K, 8K, 16K, 32K, and64K
entries)In this casethetablesareindexedwith the physicaldata
addressbeing written by the store, and each dynamic store
instancds countedn oneof five categoriesMiss, asabove;Dif-
fPC/WrongVal,in which casea staticstorethatis notthelastone
to write to this addresga differentstaticstore)writesa valuethat
doesnot matchthe prediction;SamePC/WrongValn whichcase
the samestatic storewrites a value that doesnot matchthe pre-
diction; SamePC/RightValin which casethe samestatic store
writesthe predictedvalue;andDiffPC/RightVal, in which casea
different static storewrites the predictedvalue.Here, the aggre-
gatepredictabilityrangesfrom a low of 39% for go to a high of
70%for m88ksimAgain, thereis no obviouscorrelationbetween
theidentity of the writer (staticstore)andstorevaluevariability,
since significant populationsof storesexist in each category.
Here,thetablesizeis moreimportantfor mostof thebenchmarks
asit mustcapturethe dataworking set--whichis largerthanthe
instructionworking setfor mostof theseprograms--irorderto be
effective.

From the data presentedso far, thereis no clear answeras to
whetherprogram-structurer message-passirgjorevaluelocal-
ity is the betterchoice;thereare situationsin which either will
outperformthe other.We revisitthis questionin Section5, where
we explorethe effectsof storevalue locality on multiprocessor
bus traffic.

In orderto examinevariationdueto programphaseye alsomea-
suredthetime domainfrequencyof occurrencef silentstoresfor
the PowerPCarchitectureThis datais plottedin Figure4. With
the exceptionof oltp, which is a snapshobf steady-statexecu-
tion, all thebenchmark$iavenearlyidenticalstorevaluelocality
in thefirst severalhundredthousandstores.We attributethis to
the programloader (this datawas collectedwith a full-system
simulatorthatincludesall portionsof programexecutionjnclud-
ing programload time). Beyond the initial loader phase,the
benchmarkgdemonstratenoticeablevariation in their behavior.
The near-monotonidecreasén li indicatesthatthe actualwork
li is doingbeyondtheloadtime hasmuchlessstorevaluelocality
(asmeasuredy silentstores)thanthe programloaderdoes.We
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attributethe differencesn storevaluelocality betweernThe Pow-
erPC and Simplescalarinstruction sets (shownin Tablel), to

variationsin programmodel,runtime environmentandcompila-
tion technology.For example,efficient registerallocation can
causea large differencein the frequencyand characterof store
instructions For lack of analternative we usedthe gcc compiler
for SimplescalarThe PowerPCbhenchmarksverecompiledwith

theIBM AIX optimizing C compiler.An additionalexplanation
for the variationsobservedis that the PowerPCstatisticswere
collectedfrom a trace, and henceinclude only retired instruc-
tions, while the Simplescalar statistics include speculative
instructions on wrong branch paths.

3.0 Improving Store Handling
Micr oarchitecture

Havingintroducedhe concep®f silentstorescanwe find away
to exploitthematthemicroarchitecturalevel?In this sectionwe
outline someobvious microarchitecturaktructuresthat may be
enhanced@ndexploreinitial experimentatesults.Fortheentirety
of the microarchitectureliscussionthe term “silent store” refers
only to update-silenstores--thosavhich seemintuitively easiest
to exploit with little microarchitecturalcomplication. We will
explorepossiblebenefitsof stochasticallysilentstoresin Section
5. For the microarchitecturaldiscussion,we consideronly a
weakly consistentmemory model, and assumea uniprocessor
system, to allow aggressive removal of silent stores.

3.1 Load/Store Queue

In many modern microprocessorsmemory hierarchy perfor-
manceis a bottleneck, even with the latency tolerancethat
extremely out-of-order processorsprovide. Hence, improving
performanceof the memoryaccessathis the subjectof much
research Enhancementso this path within the processorcore
itself, including storeto load forwarding, hoisting of loadspast
previousstoresnon-blockingcachesanddeepload/storebuffers
have beenusedto improve systemperformance14, 8]. How-
ever, these performanceenhancementgan lead to increased
cycle time dueto the size and versatility of contentaddressable
memorysystemrequiredto maintainprogramcorrectnessiueto
addresrderingrequirementsn the architectureWe asserthat
silentstoresquashingnay allow a designeto obtaingreatemper-
formancefrom existingstructurespr a reductionin sizeor com-
plexity of this system(which we hereinreferto asthe load/store
queue, or LSQ) because of the relative benefit of squashing.

Squashingshould provide performancebenefit in this system
becausesquashedilent storescan be physically removedearly
from the LSQ), effectively makingthe LSQ larger.Early removal
of entriesfrom theLSQ (andpossiblytheinstructioncontrolunit)

can also decreasgressureon the commit logic. It alsohasthe
obvious effect of easing store unit pressure.

However,squashingnay negativelyimpactthe LSQ, dueto the
necessityf verifying eachstorebeforewe cansquastit (thesim-
ple mechanisnmwe employin our preliminaryexperimentss cov-
ered in Sectio’.4).

3.2 Memory Hierar chy

Silent storesquashingnay benefita uniprocessosystemmem-
ory hierarchyby reducingthe numberof dirty cachelines and
hencethe numberof writebacks.The removalof writebackscan
increasesystemperformanceand lower pressureon writeback
buffers.
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Squashingmay also allow a designerto have fewer store ports
into thememorysystem(in our currentimplementationyve trade
storeportsfor load ports,but otherimplementationsnay be pos-
sible) for a desiredamountof store bandwidth. This has the
potentialto decreaseircuit complexity,asin generaljJoad band-
width is easierto obtainthanstorebandwidthby resourcedupli-
cation or other methods [8].

3.3 Machine model

To determinethe performanceeffect,if any, of aninitial imple-

mentationof squashingwe usedanexecutiondrivensimulatorof

the Simplescalamrchitecture.n orderto model the increasing
demand®n a memorysubsystemywe useda very aggressiveut
of order design.The configurationof the executionengineis 8

issue;64 entry RUU; GSharebranchpredictorwith 64K entries,
16 bit global history; 6 integerALUs; 2 integermultipliers. The
cacheconfigurationsare 64KB split I/D L1 and1MB unified L2

with pipelinedaccessandlatenciesof 2, 8, and50 clocksfor the
L1, L2, and main memory,respectively.The I-cacheis 2 way

associativewith a line sizeof 64 bytes;The D-cachesare4 way

associativevith line sizesof 32 and64 bytes,respectivelyWhen
storeto loadforwardingis enabledt hasa latencyof 2 clocksto

match the L1 cache latency.

The memoryaccesgonfigurationis a four-load-wideversionof
thetwo-wide DEC Alpha 21164[5]. We allow up to 4 loadsor 1
storeto issueper cycle (loadsandstoresare mutually exclusive,
with no addressestrictionson parallelloads).All storeswait for
their associatedstore verify (describedin Section 3.4) before
committing into the memory subsystensubjectto latencycon-
straints(i.e the level in the memory hierarchywherethe store
hits). Waiting for store verifies allows maximal reduction of
writebacks but also can hurt instructionthroughputbecausehe
storeis notallowedto leavetheinstructionwindow until thestore
verify completegasopposedo letting the storecompleteimme-
diatelyandjustbufferingthewrite appropriately.)t is possibleto
do this squashingit someotherlevelin the memoryhierarchy(or
havespeciahardwareoutsideof theinstructionwindowto dothe
verifies) but this was not implementedn our simulator. There-
fore, the IPC resultswhen verifying cachemissing storesare
slightly pessimisticand do not reflect the bestpossibleperfor-
mance.

It is alsoimportantto notethatour simulatordoesnot modelcon-
tention for writeback buffers (or rather, it supportsunlimited
writebackbuffers),hencewe do notgainany|PC from removing
the writebacks.However,in real systemsthe numberof write-
backbuffersis finite sothereis somelPC benefitwhich is not
reflected in our results.

3.4 Silent Store Remwal Mechanisms

We implementtwo store squashingmechanismgo evaluatea
realistic implementationand also a theoretical limit for our
machine. We refer to these raslistic andperfect

Realistic Method: Eachstoreis convertedinto a store verify,
which is effectively threeoperations--doad, a comparisonand
the subsequergtore(if the storeis non-silent). Thestoreverify is
initiated afterthe effectiveaddresfiasbeencomputedn the exe-
cutionengineandall previousstoreaddresseareknown, sothat
possiblestore addressunknowndependencieseednot be con-
sidered14]. Whenthe datareturnsfrom the memorysubsystem,
it is comparedo the new valueto be written. If the datavalues
are equal,the storeis update-silenand it is removedfrom the
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Benchmark Number of writebacks (% reduction relagito baseline case)

Baseline Realistic/L1 Realistic/L1+L2 Realistic/L1+L2+M Perfect
go 34175 33656 (1.5%) 30611 (10.4%) 29308 (14.2%) 29354 (14.1%)
m88ksim 23877 23863 (0.0%) 23768 (0.4%) 10134 (57.6%) 10133 (57.6%)
gcc 68833 61240 (11.0%) 56934 (17.3%) 53693 (21.6%) 53628 (22.1%)
compress 370569 353172 (4.7%) 152953 (58.7%) | 147557 (60.2%) 147582 (60.2%)
li 1896 1953 (-3.0%) 1913 (-0.9%) 1830 (3.5%) 1852 (2.3%)
ijpeg 51853 51848 (0.0%) 49702 (4.1%) 44548 (14.1%) 44337 (14.5%)
perl 8723 8517 (2.4%) 8374 (4.0%) 7990 (8.4%) 7949 (8.9%)
vortex 377852 375470 (0.6%) 312052 (17.4%) | 71742 (81.0%) 71712 (81.0%)

TABLE 2. UFS Store SquashingEffect on L1 Writebacks. The “realistic” columnsshav resultsof squashingstorehits to different
levels of memory (“L1” indicates weevify only L1 store hits, “L1+L2" indicates weevify L1 and L2 store hits, etc.)

LSQ andthe storeentry in the RUU is flaggedto indicatethe
storeis silent. Whenthe storereachesommit, if it is notflagged
as silent, the store port is obtainedand the write occursto the
memory systemasit would normally. If the storeis silent, the
storeretireswith no memoryaccessand no side effects,except
that it consumes a commit slot.

Perfect Method: Storesquashingdccursin the samemanneras
above,exceptit is known by somemechanisnthat the storeis
silentandhencethe verificationis performedonly for the known
silent stores.Non-silentstoresexecuteas normal with no store
verify. This method is meant to illustrate the performance
obtainedwith a perfectpredictionmechanisnfor update-silent
stores.The storeverify is still carriedout for the predictedsilent
storesbecausen reality, no confidencemechanisncaneverbe
perfect--hence validation of the prediction must still be done.

3.5 Results
3.5.1 Writebadk Reduction

In Table2, we showthewritebackreductionobtainedby squash-
ing andallowing storeverifies to completeto differentlevelsof
memory hierarchy for both realistic and perfect squashing.

We seefrom Table2 thatsquashinganyield a significantreduc-
tion in writebacksdependingon the benchmarlkandthe memory
hierarchylevel to which we allow verifies. We seea rangein
reductionfrom 81%(in vortex to 0% (or smallnegativevaluesin
li which we attributeto second-ordet.RU policy effects).The
average for all benchmarks is a 33% reduction.

We alsoseethatsquashingn L1 cacheonly doesn’tsignificantly
reducethe numberof writebacksthe maximumreductionis 11%
in gcg all othersarelessthan5%). This indicatesthatlinesin the
L1 cacheare sufficiently active suchthat they are storedto at
least once non-silently, necessitating a writeback anyway.

However, thereis a substantialreductionin writebackswhen
squashindo otherlevelsin the memoryhierarchy--allreductions
are greaterthan 14% when verifying into memory (with the
exceptionof li andperl which havevery few writebacksto start
with.) This canbe partially explainedby the observatiorthatthe
probability of a storemisscreatinga dirty line in the L1 cacheif
we don’t verify it is 100%,butif we verify themiss,the probabil-
ity is less than 100%.

Finally, it is worthwhileto notethatthe realisticresultswith L1,
L2, andmemorysquashin@reessentiallithe sameasthe perfect
results,with the minor differencesattributableto secondorder
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LRU policy effects,agreeingwith the intuition that performing
thestoreverify for non-silentstoregwhichis donein therealistic
case)shouldnot affect the numberof writebacks.Somesimilar
results for writeback reduction were presentedin a study by
Molina [13].

3.5.2 Instruction Thoughput

We now turn our attentionto the effect of squashingn instruc-
tion throughputand compareit to storeto load forwardingasa
performanceenhancingmechanismNote that theseresultsonly
performstoreverifieson L1 cachehits sothatthe LSQ andRUU
do not get backedup waiting for storeverifies. As mentionedn
Section3.4,ideally amachinewould squashmissesat someother
layer of the memory hierarchy (to obtain both the writeback
reductionandinstructionthroughputshown),yielding a potential
reductionin processingorecomplexity (to handlefewer stores)
and also the writeback reduction.However, it should be noted
thattheresultsin Table2 andFigure5 canbeconsideredrthog-
onal in this respectsince squashingat someother level in the
memoryhierarchywould not affectthe processingore substan-
tially.

In Figure5, the threeleft-handbarsin eachgrouprepresenper-

formancewith no storeforwarding(SF)andtheright-handgroup
represenperformancawith storeforwarding.Within eachgroup,

the barsrepresentfrom left to right) baselingperformancereal-

istic squashingerformanceandperfectsquashingerformance.
The subdivisionswithin barsindicate different LSQ sizes.We

can seein Figure5 that in no casedoesrealistic silent store
squashingdecreasegperformancein our processomodel, even
with the addedstoreverify operationsMore interestingly,with-

out SFin m88ksimwe seean|IPC of 3.32with anLSQ sizeof 16

and squashingvs. an IPC of 3.12 with LSQ size 32 and no

squashing--bettgrerformancdor half the LSQ size.(This canbe

attributedto the high percentageof silent storesin this bench-
mark: 62%.) In the otherbenchmarksthe effect of squashings

lessdramatic,but realistic squashinggenerallyperformsbetter
thanSFfor equivalentLSQ sizes(exceptfor go, wherethelPCis

fairly constantandnot memorylimited, compresavhich obtains
8% speedugrom SFalonewith anLSQ sizeof 16, andli/perl for

LSQ size of 32). Perfect squashingalways outperforms SF

(exceptin compressandgo for thereasonsbove)becausef the

removal of unnecessary store verify operations.

Over the rangeof benchmarkswe see speedupf 6.3% and
6.9%for realisticandperfectsquashingvith SFoverthebaseline
with SF (5.1% and 6.9% respectivelyfor eachwithout SF over
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FIGURE 5. SPECINT Performancewith Store Squashing

For each benchmarkthe left three bars shov performance
without store forwarding, while the right three bars shav

performancewith store forwarding. The three barsin each
group shav baselinelPC, IPC with realistic storesquashing,
and IPC with perfect store squashing.

thebaselinewithout SF.)In the benchmarksvith the highestper-
centageof silentstores(vortexandm88ksin we seespeedupsf
15% and 8.9%, respectively--definitely non-trivial.

Of course,as evidencedin Figure5, SF always providessome
additionalbenefitalongwith squashindecausaotall storesare
silent.

If we compareperfect squashingwith realistic squashingthe
largestdifferenceappearsn compressvith an improvementof
3.3%.In generalthedifferenceis small(1.8%overall thebench-
marks)implying thatthis machinemodelwould not benefitmuch
from a good silence prediction mechanism.

As a separatassue,it is alsointerestingto note how little effect

SF hasin our processomodel. Over the rangeof benchmarks,
the speedupgainedusing SF is only 3.8% (contrastedwith the

5.1%and6.9%of realisticandperfectsquashingvith SF,respec-
tively, shownearlier).This resultsupportour assertiorthatstore

squashingsuppliesmore performancehanstoreforwarding,and

is notunexpectedn light of the resultsof Moshovog[14], which

explorethetemporalocality of memoryoperationsn the context
of storeto loadforwarding.In light of theseresults,on load-store
RISC architectureswith sufficient generalregisters(32 in our

machine) givenequalhardwarecosts silentstoresquashingro-

vides greater benefit than store forwarding.

4 .0 New Definitions of False Sharing

We shift our focusto multiprocessorpplicationsof storevalue
locality by introducing new definitions of false sharing.Prior
work in defining false sharingfocuseson the addressof poten-
tially shareddata.All of the previousdefinitionsrely on tracking
invalidatesto specific addresse®r words in the sameblock.
However,no attemptis madeto determinewhentheinvalidation
of ablockis unnecessargecaus¢hevaluestoredin theline does
not change.The fact that many storesare silent, and evenmore
arestochasticallysilentrequiresnew definitionsof true andfalse
sharing.

4.1 Address-based Definitions of Sharing

In orderto describehow our definitionsdiffer from the previous,
areview of the prior work is necessaryThroughoutthe discus-
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sion, we imaginesharingas definedin a multiprocessosystem
with an update basedprotocol, and for easeof discussion,a
sequentially consistentmachine with infinite sized cachesis
implied (sothatcapacityandconflict missescanbeignored.)All
of thedefinitionsaresimilarin their recognitionof “cold” misses
(CM), true sharing misses(TSM), and false sharing misses
(FSM). We focusour discussioron the definition of Dubois[7]
asit providesthe mostaccuratedefinition of address-baseshar-
ing. For areview of otherdefinitionsdevelopedorior to Dubois,
refer to [15] and [6].

Dubois’ Definition:
Cold Miss: The first miss to a given block by a processor.

EssentialMiss: A cold missis anessentiamiss.Also, if during
the lifetime of a block, the processorlccesseg¢load or store)a
valuedefinedby anothemprocessosincethelastessentiamissto
that block, it is an essential miss.

Pure True Sharing miss (PTS): An essentialmissthat is not
cold.

Pure False Sharing miss (PFS)A non-essential miss.

Essentialmissesconstituteall misseswhich bring in a truly
sharedvord eitherdirectly, or asasideeffect(for examplewhen
a truly sharedvalueis broughtin asthe non-criticalword in a
cacherefill). Note thatthe useof the word “value” in the above
definition meansvaluein theinvalidationsenseonly, i.e, a store
instructionhasoccurredto that addresslt is not implying any-
thing about the data value at that address.

In general,Dubois contributedthe insight that merely tracking
the addresghatinvalidatesa cacheblock or only comparingthe
addresghatcauses missto theimmediatelypreviousinvalidat-
ing addressesf thatblock is not sufficient. To be more precise,
we must examineall previousinvalidationsof a block and the
side-effectof loadinga cacheline to be surethat PTSandPFS
misses are not incorrectly counted.

4.2 Update-based Rlse Sharing (UFS)

In our definition of update-basedalse sharing(UFS), we will
keepthe samedefinitionsasDuboiswith extensiongoveringthe
value locality of stores.Intuitively, we extendthe definition of
EssentiaMiss to excludethosestoreswhich aresilent, i.e, those
thatdo not changethe machinestatebecauséhey areattempting
to storethe valuethatwaspreviouslyavailableat thatlocationin
the systemmemory hierarchy.Rigorously,we proposethe fol-
lowing, modified, definition of anessentiamiss(our changesre
in italics):

EssentialMiss: A cold missis anessentiamiss.Also, if during
the lifetime of a block, the processoaccessefload or store)an
addresswhich hashad a differentdata value definedby another
processosincethelastessentiamissto thatblock, it is anessen-
tial miss.

While thewording of this definitionis almostthe sameastheone
proposedy Dubois,we havemadea slight changeo makeclear
thatwe areinterestedn thedatavalueata memorylocation.The
other definitions remain accurate with no modification.

4.3 Stochastic Rlse Sharing (SFS)

In light of the work of Lipasti[10,11] and others,we haveseen
that many datavaluesare trivially predictable.We would also
like to extendour definition of falsesharingto coverdatavalues
that are trivially predictablewith any well known method. It
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seemdntuitive thatif we candefinefalsesharingto compensate
for the effect of silent storesthat we could also defineit in the
presenceof stochasticallysilent stores(valuesthat are trivially
predictablevia somemechanismthe detailsof which arebeyond
the scopeof this work). Of coursewith valuepredictionwe need
a mechanisnfor verifying the prediction.Efficient mechanisms
of communicating/verifyinghe predictionwith the actualowner
of the updatedvalue are necessaryThis will be the subjectof
future work and will not be covered here.

In valueprediction,adistinctionmustalsobe madein howwe're
predictinga memoryvalue.We canpredictthe datavaluebased
on effective addresof the operation(asin the MPSVL casein
Section?2) or on the PC of memoryoperation(asin the PSSVL
casein Section2) which canpotentiallyhavea differenteffective
addressTo completelyenumeratéheseconditions we definethe
following types of SFS:

Message-passingStochastic False Sharing: (MSFS) is SFS
basedon the predicteddatavaluelocatedat the effectiveaddress
generatedby any instruction (multiple PCs could generatethis

EA). This terminologyis usedbecausalataat the sameEA can

generallybethoughtof asbeingusedfor inter-processommuni-
cation.

Program structure Stochastic False Sharing: (PSFS)is SFS

basedon the predicteddatavalue of an instructionlocatedat a

specificPC (multiple dataaddressesould be targetsof this pre-

diction). This terminologyis usedbecausehe value generated/
consumedta specificprogramlocationcangenerallybethought

of as being a characteristic of the program structure.

Note that the definitions of MSFS and PSFSare not mutually
exclusive Formally,we extendthe definition of anessentiamiss
againto createthe basic definition of stochasticfalse sharing
(SFS)with the distinction pointedout abovebeingimplicit. We
must also modify the definition of cold missesin the Dubois
approachdue to the possibility of statically predictinga value
with no history (this modification is unnecessaryor Update-
based False Sharing).

EssentialMiss: A stochasticold missis anessentiamiss.Also,
if during the lifetime of a block, the processolaccessegload or
store)an addresswhich hashad a newdata valuewhichis not
trivially predictabledefinedby anotherprocessossincethe last
essential miss to that block, it is an essential miss.

StochasticCold Miss: (SCM) A cold missonastorewhichhasa
data value which is not trivially predictable.

In orderto illustrate our new definitions,an exampleis givenin
Table2. Eight word cacheblocks are assumedThe numbersin
parenthesisrethe datavalues.The notation(x)+1 meansa trivi-
ally predictablestridepatternin thedata.We alsoassumefor the
sakeof stochastiaold missesthatthe static predictionof a pre-
viously unaccessedataword is zero.This examples very simi-
lar to thoseusedby Duboisandis fairly straightforward Areasof
particular interest include:
* TO: We have no cold missbecausef thedefinitionof aSCM
(we would have predicted this store to be 0).
* T3: This miss is updatexfse because the storealue didnt
change, hence thevialidate and subsequent miss were
unnecessary

* T6: The store instruction in Proc. 2 at PC 200 is program sto-

chastically silent (because the last time a store at PCx200 e
cuted it stored thealue 10) and requires novalidate under
PSFS--hence this load is PSFS.
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Time | PC | Proc. 1 Proc. 2 Dubois | Ours
TO 0 ST 0(0) INV PCM

T1 100 LD 1(10) | PCM | CM
T2 200 | INV ST 1(10)

T3 300 | LD 1(10) PTS UFS
T4 400 | LD 8(2) PCM CM
T5 200 | INV ST8(10) | PCM | CM
T6 500 | LD 8 (10) TSM PSFS
T7 600 | ST16(4)+1 | INV PCM | CM
T8 700 LD 16(5) | CTS MSFS
T9 800 | ST 24(4) PCM SCM

TABLE 3. Data Sharing Classification Example.

T8: The load to address 16 is assumed to bialtsi predict-

able and hence the load is MSFS (assume the processor had
somehistoryto predictthis messagealue,eventhoughthere

is no history in thisxample to detect the stride).

T9: The store here is a Dubois CM and is storing a non-zero

(not statically predicted)alue, hence it is SCM.

4.4 UFS and SFS Results

In orderto characteriz¢he degreeo which thesenewdefinitions
of false sharingaffect true and false sharingin multiprocessor
systemswe implementthe measuremeralgorithmof Dubois[7]
andexercisat with our multiprocessobenchmarksindersix dif-
ferent scenarios:

Thebaselinescenariacorrespondso the Duboisdefinitionof
falsesharingandtreatsstoregustasDubois’ mechanisnj7],
measuring the relatt number of cold missesl$e sharing
missesandtruesharingmissesduringeachbenchmarls exe-
cution.

The second scenario corresponds to our definition of update-
based dlse sharing (UFS). It implemergtre squashing
which efectively corverts silent stores into loads. A realistic
implementation of store squashing is described in greater
detailin Section3; sufficeit to saythatfrom amultiprocessor
cache perspeett, a squashed silent store requires neither
exclusive avnership of the cache line (as in andlidation-
based cache protocol) nor remote pratam of the updated
store \alue (as in an update-based coherence protocol), since
the \alue being stored has not et changed. This scenario
is consistent with the results in Section 3 in that only stores
that hit in the data cache are squashed.

The third scenario (UFS-P) measures the potential of UFS
with perfect knavledge of store silence by squashing all
storeghataresilent,whetheror notthey hit in thedatacache.
This allows us to woid sending a read (for the storerify)
followed by an upgrade (S->M) for non-silent stores, and
sending instead a read-with-intent-to-modify

Thefourth scenariaccorrespondso our definitionof message-
passing stochastialse sharing (MSFS), in which stores that
write valuesthatarecorrectlypredictecby anMPSVL-based
predictor are eliminated from the cache hierprdtie use a

4K entry stride predictor identical to that modeled for
Figure3.

The fifth scenario corresponds to our definition of program
structurestochastidalsesharing(PSFS),jn which storesthat
write values that are correctly predicted by a PSSVL-based
predictor are eliminated from the cache hierpr@le. they

are obsered as neither store nor load references). Here we
also use a 4K entry stride predictor
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FIGURE 6. Multipr ocessor sharing. Left to right, the
stacled bars shov cold, true sharing, and false sharing
missesof the baseline,UFS, UFS-P MSFS, PSFS, and
MSFS+PSFS scenarios.

* The final scenario (M/PSFS) is an optimistic combination of
MSFS and PSFS, in which stores that wrakies that are
correctly predicted by either the MPSVL predictor of sce-
nariothree,or thePSSVLpredictorof scenaridour, areelim-
inated from the cache hieragchWe assume an ideal
mechanism for selecting the correct predictor in the case
where only one produces the right prediction.

Thefinal threescenariogorrespondo our earlierdefinitions of
stochasticfalse sharing, and are included to demonstratethe
potentialof storevaluelocality for reducingmultiprocessobus
traffic, aswell asto providesomeguidancefor futureresearchn
this area.We do not describean exacthardwaremechanisnfor
exploiting this type of locality in a multiprocessoisystem.The
exactdesignof sucha mechanisnis beyondthe scopeof this ini-
tial paper, and is left instead to future work.

We measurdrue andfalsesharingfor eachof thesesix scenarios
for variousline sizes;our resultsfor line sizesof 16B, 32B, 64B,
128B,and512Bareplottedin Figure6. Foroltp we observenea-
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surablereductionsin true andfalse sharingfor UFS. For UFS-P
andthe stochasticsharingcasesthe reductions(including some
reductionin cold misses)are more dramatic. For barnesand
ocean thetrendsarethe same althoughmore pronouncedsince
even simple UFS provides considerablereductionsin overall
miss rate due to a combinationof reducedfalse sharingand
reducedtrue sharing.For oltp, squashingsilent storesthat miss
the cache(UFS-P)is very importantfor reducingthe missrate.
This indicatesthat mostof the shareddatais written beforeit is
read. This is less true for barnes and ocean indicating that
update-silenshareddata (or at leastspatially local datain the
sameline) arereadby a processobeforetheyarewritten, result-
ing in a silent store hit that canbe squashed.

5.0 Reducing Multipr ocessor Data and
Address Taffic

In order to evaluatepotential reductionin multiprocessodata
and addresstraffic achievablethrough exploiting store value
locality, we model a multiprocessorcachethat implementsthe
standardMESI (Modified, Exclusive,Shared]nvalid) coherence
protocol [14]. Briefly, this protocol requires a processorto
acquireexclusiveownership(M or E state)of a cachdine before
writing to it. Exclusiveownershipis acquiredthroughan invali-
datemechanisnthat removesthe line from other cachesn the
system.This protocolis widely usedin modernshared-memory
multiprocessors.

We exerciseour cachemodelwith the six scenarioglescribedn
Section4: baseline UFS storesquashingUFS-P,MSFS, PSFS,
and M/PSFS.We presentdatafor a 1MB 4-way setassociative
datacachewith 16B, 32B, 64B, 128B, and512B lines. We also
collecteddatafor smallerandlargercachesput restrictour pre-
sentatiorto the IMB case which reflectsthe generakrendsseen
for other sizesas well. Figure7 plots the miss ratesfor these
cache configurationsfor eachof our benchmarksMisses are
classifiedas cold, true sharing,false sharing,and capacity/con-
flict according to the method described in Section 4 [7].

Once again,we find measurableeductionsin miss rateseven
with the simple UFS scenario, particularly for smaller lines.
However, aninterestingphenomenoiccursfor oltp: asthe shar-
ing missesdecreaselueto UFS storesquashinggonflict misses
increaseholding the overall missrate nearly steady This is due
to theincreasedvorking setbroughtaboutby fewer invalidates.
Without the available invalidatedlines to fill, the LRU replace-
mentpolicy makeslessthanoptimalreplacementiecisionsThis
suggests needfor abetterreplacemenpolicy or perhapgreater
associatiity, or simply a larger cache Dramaticmissratereduc-
tionsdo notoccuruntil programstructure-basestoreelimination
is applied.PSFShasa clear missrate reductionadvantageover
MPFS, eventhoughthe two have comparablepredictionaccu-
racy (seeSection2). Intuitively, this agreeswith the resultspre-
sentedby Kaxiras[15], which arguefor programstructurebased
predictors for identifying multiprocessor data sharing patterns.

Thetotal databustraffic is reducedoy morethanthe ratiosindi-
catedby the missratesplottedin Figure7, sincethe frequencyof
writebacks of dirty lines is also reduced.With UFS-P store
squashingwe observeds%-82%reductions(dependingon line
size) in the writeback ratesfor oltp, 16%-17%  reductionsfor
ocean and5%-16%for barnes Forthemostaggressivé&SFScase
(scenaridb), we observednritebackrate reductionsof 8%-85%,
25%-26%,and 16%-29%for oltp, ocean,and barnes respec-
tively.
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For UFS-P store squashinghe total databus traffic reductions
observedwere (dependingon line size) 3%-23%for oltp, 10%-
11% for ocean and 13%-19%for barnes For the mostaggres-
sive SFScase(scenario5), we observeddatabustraffic reduc-
tions of 15%-48%for oltp, 24%-55%for ocean and 45%-63%
for barnes A detailed analysisof the variationsin writeback
reduction and data bus traffic is left to future work.

We alsocollecteddataon the addresdransactionmeededo sup-
port coherencdn the MESI protocol. Figure8 showsboth the
outgoing(sent)invalidaterateandtheincoming(received)nval-
idate rates(both hit and miss)for the six sharingscenariosand
five line sizes.The stackedbar chartsshow the rate at which
invalidates(including invalidatestriggeredby both store clean
hits and store misses)hit in a remotecache,missin a remote

cacheandmissin aremotecacheif E stateis notimplemented.

Thetwo plotteddatapointsindicatethe rateat which invalidates
aresentoutbothwith andwithout E state(recallthatE stateiden-

S.
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tifies a line asbeingexclusivein the local cache,hencea store
cleanhit only requiresa silentE->M upgradeandnot a broadcast
invalidate, resulting in fewer total invalidates).For all three
benchmarksve recordmeasurableeductionsin addressraffic,
even with just the simple UFS store squashing.Furthermore,
thereis a markeddecreasén incominginvalidatesthat missthe
local cachejndicatingthatthe UFSandSFSapproachearemost
effective at eliminating uselessnvalidates(i.e. invalidatesthat
consumeaddressbus bandwidthbut do not communicateany
usefulinformation). Since addressbus bandwidthis a precious
commodityin large-scalesnoop-basedhared-memorynultipro-
cessors, this is a very useful and desirable property.

We alsoobservethatthe for this benchmarkset,the addresus
traffic reduction obtained by simple UFS store squashingis
higher than the reductionobtainedwith the addition of E state,
which is an optimizationthatis commonlyimplementedn real
systems.In fact, we observethat UFS combinedwith a MSI

coherencerotocolthatomits the extracomplexityof the E state
alwaysgeneratedessaddresshus traffic thana MESI protocol
without UFS storesquashingOf course combiningboth E state
and UFS storesquashingrovidesthe lowestaddressustraffic

of all.

In summary our dataclearly showthat measurablegvensignifi-
cant,reductionsn addressainddatabustraffic in shared-memory
multiprocessorganbe achievedwith simple UFS storesquash-
ing, and dramaticreductionscan be achievedwith the program
structure-basedpproactto stochastidalsesharingreduction.Of
course someof thesegainswill becounteredy thetraffic gener-
atedby the hypotheticalmechanisnusedto enableSFS.As pre-
viously mentioned,the details of that designare left to future
work.

6 .0 Conclusion

In this work, we explorevariousaspectof the valuelocality of

storeinstructions.In doing so, we makefive main contributions.
The first of theseis an overall characterizatiorof store value
locality from memory-centric(message-passingind producer-
centric (programstructure)points of view; we find, not surpris-
ingly, that significant value locality existsin both dimensions.
Secondwe introducethe notionof silentstoresandquantifytheir

frequencyfor manyreal programsSilentstoresarestoreshatdo

notaffectthe stateof themachinetheyareexecutedn. Third, we

describehow to enhancethe performanceof uniprocessompro-

gramsby squashingsilent stores.Fourth,we defineandquantify

the conceptf update-basethlse sharing(UFS) and stochastic
false sharing(SFS)in multiprocessosystemsFinally, we show
how to exploit UFS to reduceaddressand data bus traffic on

sharednemorymultiprocessorsandalsoexaminethe significant
potentialof hypotheticalSFS-basechechanism$or reducingbus
traffic. Ourinitial resultsin all of theseareasarequite promising,
and serve to motivate future work.
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