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Abstract

The growth of the Internet as a vehicle for secure
communication and electronic commerce has brought
cryptographic processing performance to the forefront of
high throughput system design. This trend will be further
underscored with the widespread adoption of secure
protocols such as secure IP (IPSEC) and virtual private
networks (VPNs).

In this paper, we introduce the CryptoManiac processor,
a fast and flexible co-processor for cryptographic
workloads. Our design is extremely efficient; we present
analysis of a 0.25um physical design that runs the standard
Rijndael cipher algorithm 2.25 times faster than a 600MHz
Alpha 21264 processor. Moreover, our implementation
requires 1/100th the area and power in the same technology.
We demonstrate that the performance of our design rivals a
state-of-the-art dedicated hardware implementation of the
3DES (triple DES) algorithm, while retaining the flexibility
to simultaneously support multiple cipher algorithms.
Finally, we define a scalable system architecture that
combines CryptoManiac processing elements to exploit
inter-session and inter-packet parallelism available in many
communication protocols. Using I/O traces and detailed
timing simulation, we show that chip multiprocessor
configurations can effectively service high throughput
applications including secure web and disk I/O processing.

1 Introduction

The widespread adoption of the Internet as a trusted
medium for communication and commerce has made
cryptography an essential component of modern information
systems. The trend towards virtual private networks (VPNs)
[15] and secure IP (IPSEC) [3] will further emphasize the
significance of cryptographic processing among all types of
communication. Security-related processing can consume as
much as 95 percent of a server’s processing capacity [25].
As demands for secure communication bandwidth grow,
efficient cryptographic processing will become increasingly
critical to good system performance.

Cryptography is a Greek word that literally means the art
of writing secrets [21]. In practice, cryptography is the task
of transforming information into a form that is
incomprehensible, but at the same time allows the intended
recipient to retrieve the original information using a secret
key. Cryptographic algorithms (or ciphers, as they are often
called) are special programs designed to protect sensitive
information on public communication networks. During

encryption, ciphers transform the original plaintext message
into unintelligible ciphertext. Decryption is the process of
retrieving plaintext from ciphertext. Two forms of
cryptography are commonly used in information systems
today: secret-key ciphers and public-key ciphers. Secret-key
ciphers (sometimes referred to as symmetric-key ciphers)
use a single private key to encrypt and decrypt as illustrated
in Figure 1. Public-key ciphers (or asymmetric-key ciphers)
use a well-known public key to encrypt and require a
different private key to decrypt.

Public-key ciphers have the advantage of being able to
establish a secure communication channel without an unsafe
exchange of keys. Private-key ciphers, on the other hand,
require a shared private key before secure communication
can commence. The distribution of the shared private key is
the primary obstacle in making symmetric-key ciphers
secure. Secret-key ciphers have the advantage of running as
much as 1000 times faster than comparable public-key
ciphers [30]. To maximize security and performance, most
secure protocols use both forms of cryptography. Public key
encryption is used at the start of a session to authenticate
communicating parties and to securely distribute a shared
secret key. The remainder of the session employs efficient
secret key algorithms using the private key exchanged
during authentication. We refer this type of key management
as public-secret key cryptography. An example of a system
that uses this particular session management strategy is the
Secure Sockets Layer (SSL) protocol [38]. SSL is a standard
secure protocol that provides secure communication between
web servers and web clients. It is supported by most popular
web browsers [25].

For very short sessions, fast public-key cipher processing
is critical for high transaction throughput. For longer
sessions, private-key cipher performance becomes more
important. Figure 2 illustrates the SSL run-time breakdown
by server processing type. Data shown is collected from a
heavily loaded web server running on an iA32 platform [29].
A recent study [2] found that the average size of a web
object was 21k bytes. Given that a single session will be
composed of many web objects, cryptographic processing
will be quickly dominated by private-key cipher execution.
As such, the focus of our design effort is on improving
private-key cipher performance.

Cryptography can be implemented with software routines,
directly in hardware, or a combination of both. A software
only approach is the lowest-cost solution but with
accordingly lower performance. An example of the
hardware-only approach is the IDEA engine [23]. It is
targeted specifically at the efficient execution of the IDEA
cipher and renders excellent performance. However, its
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performance is at the expense of flexibility as the hardware
cannot be used for other cryptographic processing tasks.

A hardware/software mixed approach was proposed in
our previous study [5] and was shown to achieve an overall
performance improvement of 59% over software-only
approaches. The technique improved performance of
private-key ciphers through instruction set support for fast
substitutions, permutations, rotates, and modular arithmetic.
In this paper, we further extended this approach through the
design of a fast and flexible cryptographic co-processor. Our
design, called the CryptoManiac, addresses the primary
bottleneck in private-key ciphers, namely efficiency, through
the application of an efficient VLIW architecture with a
well-matched instruction set and functional unit resources.
The programmable feature supports many private-key
ciphers, in contrast to the IDEA engine. By combining
CryptoManiac processors into parallel configurations, we are
able to scale cryptographic performance for applications
with inter-session and inter-packet parallelism.

We detail the design and implementation of the
CryptoManiac processor and analyze its performance using
architectural and physical design models. In Section 2, we
characterize cipher kernel operations and their various
latencies and bottlenecks to gain insight as to how to build
an efficient design. In Section 3, we present the
CryptoManiac design, detailing the processor architecture,
the system architecture, and the instruction set. We then
present our experimental framework and methodology, and
examine performance results in Section 4. In the final
sections, we discuss related work, summarize our findings,
and make suggestions for future work.

2 The Nature of Cryptography

Successful cryptographic co-processor design requires a
thorough understanding of the nature of private key
cryptography, its essential operations, and its inherent
bottlenecks. We selected eight cipher kernels for
cryptanalysis. They are 3DES [13], Blowfish [11], IDEA
[23], Mars [7], RC4 [33], RC6 [32], Rijndael [12], and
Twofish [34]. These eight ciphers are selected because each
is generally considered a strong cipher as they have
undergone aggressive review and cryptanalysis. A strong
cipher has high resilience to the efforts of an unrelated party
attempting to determine the original content of an encrypted
message. The two most notable ciphers are 3DES and
Rijndael. 3DES runs the US DES [13] standard encryption
algorithm. We run the algorithms as specified by the SSL
protocol [38]. Rijndael was recently selected as the new US
Advanced Encryption Standard (AES) [1]. The rest of the

ciphers are either AES second-round candidates or
algorithms used in popular software packages.

Cipher algorithms typically have three operational
parameters: key size, block size, and number of rounds. The
key size is the length of the key used to encrypt or decrypt
data. The block size is the amount of data processed each
time the cipher kernel is invoked. The number of rounds
specifies the total number of iterations executed by the
cipher kernel loop. 3DES has a key size of 112 bits, block
size of 64 bits, and 48 rounds. Rijndael has key size of 128
bits, block size of 128 bits, and 10 rounds. The remaining
kernels use at least 128 bits of key data. The baseline cipher
implementations are well tuned for general-purpose
machines. Further details on the baseline cipher algorithms
can be found in [5].

Figure 3 shows the performance of the cipher kernels
executing on a 600MHz Alpha 21264 workstation and an
Alpha dataflow (DF) machine implemented using the
SimpleScalar simulators [5]. Encryption performance is
shown in bytes per 1000 clock cycles executed. This is a
convenient metric because it represents the encryption
performance in MB/s on a 1GHz machine. The dataflow
machine is a dynamically scheduled microarchitecture with
infinite fetch, decode, execute, and retirement bandwidth.
The dataflow machine’s performance is never impacted by
branch mispredictions, cache misses, or ambiguous store
address dependencies. The DF configuration gives the
absolute top performance that the original code can achieve.

Many of the ciphers have little parallelism and few
bottlenecks. Blowfish, 3DES, IDEA, and RC6 are running
within 20% of dataflow machine performance. There is
slightly more headroom for Mars and Twofish, with
potential speedups of 29% and 76% respectively. RC4 and
Rijndael are the outliers, these codes have ample parallelism
and could be sped up with more capable hardware.

Figure 4 illustrates the factors that slow down the cipher
kernels with performance headroom. The graph shows the
performance impact of inserting a single bottleneck into the
dataflow machine execution. The resulting performance
impact indicates the extent to which the bottleneck is fully
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Figure 1. Public-Key and Secret-Key Ciphers.
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exposed during execution, independent of all other
bottlenecks. Clearly, branch mispredictions and cache
misses are not impediments to good cipher performance.
Memory aliases do not cause any slow downs except for
RC4, which stores computed values into its substitution
tables. The most prevalent factors leading to poor
performance are insufficient issue bandwidth and lack of
function unit resources. Consequently, ciphers with
performance headroom will benefit most from additional
resources and issue bandwidth. For the benchmarks running
at near dataflow speeds, we will have to rely on latency
reduction of individual operations to improve their
performance.

To gain a deeper understanding of the cipher kernel
operations executed, we profiled each kernel and classified
individual operations into nine categories. Their operations
are classified into general arithmetic, logical, multiplication,
rotate, memory operations, substitutions, permutations,
moves, and branches. Figure 5 shows the breakdown by
category of all dynamic operations executed. All cipher
kernels studied exhibit varied but similar characteristics.
Substitution operations implement a key-based
transformation function using a byte-indexed array called an
“SBOX”. Permutation operations rearrange the bit values
using a key-parameterized network called an “XBOX”.
Arithmetic operations are primarily additions and address
computations. Multiplication operations include regular
multiplication and modular multiplication operations.
Logical operations primarily consist of AND and XOR
operations. It is interesting to note that very few fundamental
operations are used to implement these ciphers. In addition,
many of these fundamental operations, e.g. XORs, make
inefficient use of the processor clock cycle, creating
opportunities for more efficient designs.

To summarize the characterization of these ciphers, they
employ few fundamental operations with varied latency.
Many of the algorithms have little or no parallelism. The
algorithms that do have performance headroom would
require more issue bandwidth and function unit resources to
execute faster. None of the programs have branch or
memory bottlenecks, and most are not slowed down by
memory aliases. Given these characteristics, it seems the
ideal architecture for fast cryptographic processing is a

scalable design that efficiently executes the fundamental
operations of cryptography.

3 CryptoManiac Architecture

In order to reach better cipher performance, efficiency
becomes the goal of our design. In pursuing our goal, the
design will focus on a simple microarchitecture, an efficient
implementation of operations, and more efficient use of the
clock cycle. CryptoManiac is a 4-wide 32-bit VLIW
machine with no cache and a simple branch predictor. Since
kernel dependencies through registers and memory are well
described, a static VLIW scheduler suffices. The lack of
branch bottlenecks eliminates the need for a complex branch
predictor. A simple BTB can correctly predict nearly all
branches. We chose not to include a cache structure because
code and data sets fit comfortably in a small static RAM. We
employ a triadic (three input operands) ISA that permits
combining of most cryptographic operation pairs for better
clock cycle utilization. Finally, the CryptoManiac processing
elements can be combined into chip multiprocessor
configurations for improved performance on workloads with
inter-session and inter-packet parallelism.

3.1 System Architecture

Figure 6 details the high level architecture of the
CryptoManiac (CM) processor. The host processor
interfaces to the CM through the input (InQ) and output
(OutQ) request queues. Cryptographic processing requests
are inserted into the InQ by a host processor over a
connecting bus. The request scheduler distributes host
processor requests, in the order received, to CM processing
elements. The CM processing elements service requests
from the InQ, placing any results produced in the OutQ for
the host processor. We envision that the input and output
queues would be accessible by the host processor via a
standard bus interface, such as a PCI bus. It is sufficient to
have one input queue for many CM processing elements, as
the computationally intensive nature of cryptographic
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processing limits the bandwidth requirements on this
interface.

The CM processing elements block waiting on a request
from the host processor. When a request is dispatched to the
CM processor, it uses to the request code to initiate the
correct handler function. When CM processing is complete,
the tagged result of the computation is pushed into the OutQ
for reception by the host processor. The host processor
requests are tagged with a unique ID that can be used to
identify requests as they complete and exit the OutQ. The
unique ID permits requests to complete out of order as may
be the case with varied processing demands on CM
processors. Also contained in the CM request is a session
identifier that names a unique communication channel being
processed in the CM.

The CM requests specify an operation for the CM to
perform on the incoming data. Operations include:
• Create a private key session. This request specifies the

cryptographic algorithm, operating mode (e.g.,
electronic codebook vs. chaining mode), and the private
key of the session. Algorithm setup is performed during
this request, creating key-specific substitution tables.

• Delete a private key session. This request releases all
storage associated with a session.

• Encrypt/Decrypt data. The requested data is processed
and the resulting ciphertext or plaintext is returned in
the result packet.

Additional administrative requests are supported that allow
the host processor to initialize CM processor memory and
redirect execution of individual CM processors.

Requests arriving for CM processing are dispatched from
the InQ to CM processing elements by the request scheduler.
Requests are distributed first to a free CM processor. If
multiple CM processors are free, the request is dispatched to
the CM processing element that most recently processed a
request in the same session. If there are no free CM
processors in the same session, the request is assigned to the
least recently used CM processor. Directing requests to CM
processors in the same session reduces the setup time to
service the request, and when multiple CM processors are

free but not in the same session, the least recently used CM
processor is likely to contain an unneeded session context.

The keystore is a high-density storage element that
contains key-specific storage such as key data and
substitution tables. The keystore permits the CryptoManiac
to process simultaneous sessions on the same CM processor
by storing key-specific data in the shared keystore. When a
new context is loaded into a CM processor, key specific data
is transferred over a high performance interface to internal
CM storage. This data includes substitution data,
permutation counters, and other internal algorithm state, at
most 5k bytes for any of the algorithms implemented. Key
setup is quite expensive for many algorithms, thus
performance is greatly improved by having a convenient
place to store key-specific data. The keystore is an optional
component to the CryptoManiac design, it is only required
when multiple sessions must be serviced simultaneously. In
single session applications, such as virtual private networks
and secure disk processing, the keystore is not required.

3.2 Processing Element Architecture
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 Figure 7. High-level Schematic of CryptoManiac
Processing Architecture.

The CM processing element is a simple 4-wide 4-stage
VLIW processor as shown in Figure 7. Each cycle the
pipeline fetches a single statically scheduled VLIW
instruction word that contains four independent instructions
(or NOPs if independent instructions are not available).

Figure 5. Breakdown of Cipher Operations.
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These four instructions access the register file in parallel
while decoding. In the execute stage, instructions perform up
to four parallel functional unit operations. In the writeback
stage of the pipeline (WB), the results of the CM instruction
are written back to the register file.

The front end of the CM pipeline contains a simple
branch target buffer (BTB) used to predict branch targets.
The BTB contains the target address of a branch, any
instruction that hits in the BTB is considered a taken branch.
When a VLIW word contains multiple branches, the BTB
always makes a prediction based on the last taken branch.
Most branches in cipher codes are trivial to predict as nearly
all branches are taken branches at the end of cipher kernel
loops. Instruction memory is accessed in parallel with the
BTB, returning a VLIW instruction word at the end of the
processor cycle. Due to the small working set size of cipher
algorithms, a very small BTB with 16 entries suffices.
Moreover, the instruction memory need not be large. 1K
bytes is sufficient to hold any of the cipher algorithms. If
key setup codes are kept off-chip, for example, by running
setup codes on the host processor, many cipher kernels could
be stored in a single 1K instruction memory.

During instruction decode, instructions access the register
file. To support instruction combining, the register file
supports three operand reads and one write per cycle per
instruction. In the EX/MEM stage, instruction operations are
executed, including loads and stores. Data memory need not
be large, since key tables are stored in SBOX caches within
the functional units (detailed in Section 4.1); a 4K-byte data
SRAM suffices for all the algorithms we implemented.

The execute stage includes four 1K-byte static RAM
SBOX caches, used to speed up substitution operations.
Each SBOX cache contains a 1K byte page-aligned
substitution table. The alignment restriction reduces address
generation to a single bit-wise concatenation of the table
address and the table index. The details of this design are
described in [5].

3.3 Instruction Set Architecture

Figure 8 gives a brief overview of the CryptoManiac
instruction set architecture. Instructions are 32 bits in length.
Each instruction contains three input registers and one
output register. Three input operands are required to take
advantage of the instruction-combining feature. The basic
operations implemented by the combining instruction set are
identical to those proposed in [5].

In a conventional microarchitecture, regardless of the
latencies of instructions, each instruction takes one or more
clock cycles to complete. This is the case for even very low
latency instructions such as XORs and ANDs. Earlier
analyses revealed a high frequency of these low latency
instructions, resulting in inefficient use of the processor
clock cycle. Further analyses of the cipher kernels reveal
that arithmetic operations are often followed by logical
operations. This property is endemic to cipher algorithms
because the mixing of linear and non-linear operations
prevents attacks using simple linear analysis. We can
leverage this property to better utilize the processor clock
cycle by combining arithmetic and logical operations within
a single cycle.

Our instruction-combining architecture divides operations
into three classes: tiny, short, and long. Tiny operations
include all logical operations and sign extension; short
operations include arithmetic operations, rotates, and
substitutions; multiplies are classified as long operations.
Function units contain datapath networks that allow any
pairs of tiny operations or short/tiny operations to execute
together in a single cycle. Therefore, we combine general
arithmetic instructions with logical instructions, substitutions
with logical instructions, and finally rotate operations with
logical instructions. Timing analyses indicate a
multiplication operation can complete in under three cycles.
Modular multiplication operations are implemented using
one regular 16-bit multiplication followed by two 16-bit
parallel additions and two levels of MUX’ing. This
algorithm is derived from the Chinese remainder theorem
detailed in [28]. Modular multiplication can be completed in
just under three cycles.

4 Design Analysis

4.1 Methodology

The main loops of the cipher kernels are hand-optimized
for the CryptoManiac instruction set. Hand-optimization of
the kernels includes selection of instruction combinations
and placement of instructions within VLIW instruction
words. Instruction combining was performed by analyzing
the known data dependencies of each kernel loop and pairing
3-input short-tiny, tiny-short, or tiny-tiny instruction
combinations for minimal cycle counts. Instruction
schedules are generated by analyzing kernel dependence
graphs such that instructions on the critical path are executed
as early as possible. We generated kernel schedules for a
variety of processor widths and with/without instruction
combining. We used the 4-wide instruction-combining
model as our baseline model. Three more designs were
evaluated in detail, including a 3-wide VLIW with
combining (3WC), a 2-wide VLIW with combining (2WC),
and a 4-wide VLIW without combining (4WNC). We
validated our hand schedules with a super-optimizer that
given a kernel dependence graph as an input can generate all
possible schedules for a given architecture, keeping only

Figure 8. CryptoManiac ISA in CNF form.

bundle := <inst><inst><inst><inst>
inst := <op pair><dest><operand1><operand2><operand3>
operation pair :=
    <short><tiny>|<tiny><short>|<tiny><tiny>|<long><nop>
tiny := <xor>|<and>|<inc>|<signext>|<nop>
short := <add>|<sub>|<rot>|<sbox>|<nop>
long := <mul>|<mulmod>

Examples:
Instruction        Expression    
Add-Xor R4, R1, R2, R3 R4 <- (R1+R2)⊗R3
And-Rot R4, R1, R2, R3 R4 <- (R1&R2)<<<R3
And-Xor R4, R1, R2, R3 R4 <- (R1&R2)⊗R3



those with the best performance and lowest resource
requirements. In a few cases, we were able to improve upon
the earlier hand schedules.

Table 1. Optimization of Kernel Loop Cycle Counts.

Encryption Kernel Cycle Counts (per round)
Alpha 4WC 3WC 2WC 4WNC

Blowfish 9.58 4 4 6 5
3DES 23.56 7 8 9 12
IDEA 91.95 14 14 17 15
Mars 28.86 9 9 9 10
RC4 11.49 8 8 8 9
RC6 23.24 7 7 7 9
Rijndael 33.84 9 11 17 10
Twofish 37.36 7 8 11 8

Table 1 lists kernel cycles per round for each original
(Alpha only) and optimized cipher. The kernel cycles per
round for the Alpha experiments are fractional because the
code is dynamically scheduled, therefore instructions from
different rounds can overlap in the same cycle. The number
of cycles per round is equal to the total number of cycles to
encrypt a block divided by the number of rounds. An
example schedule of the Blowfish kernel for a 4-wide
combining architecture is illustrated in Figure 9.

As shown in Table 1, all optimized kernels take fewer
cycles than the original Alpha to execute. This result does
not necessarily mean better performance because we have
not yet considered the frequency at which the CryptoManiac
can operate. A performance metric that combines both clock
cycle time and kernel cycle counts is discussed in Section
4.3.

To gauge the cycle time of the design, a Verilog hardware
model was built. The execution stage of the VLIW machine,
along with full-crossbar bypass logic, and input/output
queues was written in Verilog HDL. We used Synopsys
logic synthesis tools [37] to evaluate design timing, area, and
power. The synthesis tool accepts Verilog HDL blocks and
synthesizes them according to timing constraints given. The
design component library uses a 0.25um standard cell library
to predict the final timing and area. To assure optimal clock
speed, timing constraints were tightened in 0.25ns intervals

until the synthesis failed. A 3% clock skew and interconnect
wire delays were modeled as well.

Our baseline model requires four functional units to
support 4-wide issue with instruction combining. As shown
in Figure 10, each functional unit consists of two logical
units, one adder, one 1k-byte SBOX cache, and one rotator.
Only two of the four functional units contain a multiplier
since none of the kernels require more than two multiplies
per cycle. The logical unit can perform a XOR or AND
operation as specified by the opcode of the combined
instruction. Two logical units are available to provide the
flexibility of logical operations at either the beginning or the
end of the processor clock cycle. The rotator is implemented
using a barrel shifter.

SBOX cache timing and area analysis was performed with
Cacti 2 [9], a tool for estimating memory components. A 1k
byte cache is roughly 0.3mm X 0.3mm, which is 0.09 mm2

in 0.25um technology. Timing analyses indicated that the
SBOX cache latency was not on the critical path of the
function unit.

We explored both full and half crossbar configurations for
data bypass in the execute stage. We quickly discovered that
the performance impact of using a half crossbar was too
great (up to 40% slower) due to many additional move
instructions needed to transfer values between unconnected
function units. This is not surprising given the nature of
cryptographic kernels, where bit-diffusion operations require
communication between all functional units.

4.2 Physical Design Characteristics

Table 2 shows the timing, area, and power consumption
results for various configurations. A 4-wide CryptoManiac
with instruction combining has an estimated clock cycle of
2.78ns, yielding a CryptoManiac processor that runs at
360MHz! The same configuration has an area of 1.39mm X
1.39mm (1.93mm2), which is roughly 1/100th the size of a
600MHz Alpha 21264 processor (200mm2) in the same
technology. The average estimated power consumption of
the 4-wide combining model running at 360MHz with a Vdd

Figure 10. High-level Schematic of a Single
Functional Unit.
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Timing and Area Estimates for Various CryptoManiac Design Configurations
4W Combining 3W Combining 2W Combining 4W Non-Comb

Timing Result 2.78 ns 2.66 ns 2.54 ns 2.76 ns
Area Result 1.39mm X 1.39mm 1.33mm X 1.33mm 1.26mm X 1.26mm 1.3mm X 1.3mm
Power Result 606.37 mW 593.51 mW 568.50 mW 586.86 mW
Synthesis Constraint 3 ns 3 ns 3 ns 3 ns
Critical Path(s) bypass-logic-add-logic bypass-logic-add-logic bypass-logic-add-logic adder

Table 2. Timing and Area Results for CryptoManiac.

of 2.1V is 606mW. The Alpha processor running at 600MHz
dissipates 75W. The power consumption results, although an
estimate, seem reasonable because the relative power with
CryptoManiac running at 600MHz is 1.01W (1/75th of the
Alpha 21264), which is proportional to the area differences.

The chip area of the CryptoManiac co-processor is likely
over-estimated. Synthesized designs tend to be larger than
their hand-optimized counter parts, and the Cacti 2 area
estimates are known to be larger than physical designs we
have constructed in the past. An experienced design team
could likely produce a smaller and faster design.

 4.3 Performance Analysis

In Figure 11, we show the performance of the four models
studied, plus the original Alpha, and two versions of the ISA
extensions studied previously [5]. A performance metric of
megabytes encrypted per second is used to show the
encryption performance of each algorithm. The ISA+ model
is a 600MHz Alpha 21264-like processor with cryptographic
instruction set enhancements. The model is implemented
using the SimpleScalar tool set, details can be found in [5].
The ISA++ model has the same micro-architecture as the
ISA+ model plus four 1k-byte SBOX caches to optimize
substitution performance. In the 4-wide combining (4WC)
model, there are four functional units, two multipliers, and
support for instruction combining. All other configurations
are derived from this model. The 3WC and 2WC models
reduce the number of functional units to three and two,
respectively. These configurations also have two multipliers
each. The 4WNC model has four functional units and two
multipliers, and it does not support instruction combining. In
this design, an XOR instruction would take one cycle to
execute, as would an Add instruction. This design benefits
from a more efficient register file, since each instruction has
only two input operands.

The encryption rates for the four models we designed are
measured using 4K byte sessions with 128 byte blocks.
Encryption rates are calculated in MB/s by dividing
cycles/byte into the clock period of the hardware model. As
shown in Figure 11, we were able to achieve an encryption
rate as high as 64 MB/s for Rijndael (the new AES standard)
which is 2.25 times faster than the 600MHz Alpha 21264
workstation. All kernels except RC4 gained in performance,
ranging from 32% to 290% better than the 600MHz Alpha.
RC4 is the only kernel that performs worse than the baseline
Alpha processor due to ample aliasing effects described in
Section 2. RC4 writes into its key table, creating many
ambiguous memory dependencies that lead to poor
schedules on the VLIW architecture. Processors that are

dynamically scheduled can run RC4 much faster.
Nevertheless, the 4-wide combining CryptoManiac
configuration ran, on average, 1.2 times faster than the
Alpha processor. The Alpha processor with ISA extensions
faired much better, out-performing the 4WC CryptoManiac
in a few experiments. Keep in mind that the CryptoManiac
design is much more cost-effective than a conventional out-
of-order processor.

The dashed lines in Figure 11 represents various real
world performance targets. A T-3 line can be saturated at a
speed of 5.375 MB/s. An MPEG-4 HDTV transmits at
8MB/s. An OC-3 line has the bandwidth of 19.375 MB/s and
an OC-12 line has the bandwidth of 77.5 MB/s. All of the
kernels running on a CryptoManiac can saturate a T-3 line or
an MPEG-4 HDTV line. All but two kernels met the
bandwidth requirement for an OC-3 line.

Figure 12 illustrates the tradeoff between performance
and area for variety of physical designs. We examined
designs from two to eight instructions wide, with and
without instruction combining, for the Rijndael and 3DES
ciphers. Parallelism exhibited by each algorithm has a direct
effect on the encryption rate. MARS, RC4, and RC6
benefited little from additional issue bandwidth. These
kernels do, however, run faster with instruction combining.
Their performance decreased significantly on the 4-wide
non-combining configuration. Rijndael benefits from
additional issue bandwidth; an 8-wide configuration is
nearly 30% faster than the 4-wide design. Instruction
combining appears to be a beneficial feature, configurations
with this capability are more than 10% faster with even
smaller increases in area.

4.4 System analysis

There are many potential applications of the
CryptoManiac processor. In this section, we examine the
performance of the CryptoManiac processor for two
applications: secure web server and disk controller. We
analyze the performance of general purpose and
cryptographic processors using I/O trace-based simulation,
measuring the response time for each processor
configuration to service requests.

The secure web server experiments were driven by a
network traffic trace of the WorldCup 98 official web server
(www.worldcup.com), captured during a one-hour period of
extremely high traffic [19]. During this one hour period,
there was an average of 1971 requests per second with a
total transfer rate of 8.75 MB/sec. Thirty web servers were
used to service this traffic, we have assembled all the
requests into a single trace for this experiment. In addition,



this traffic was not secure, so we've transformed it into
secure requests by bracketing sessions with an SSL public
key authentication [38].

In the network traffic experiments, packets are encrypted
and decrypted using Chaining Block Cipher (CBC) mode, as
specified by the IPSEC protocol standard [3]. In this mode
of operation, the cipher text of the previous encrypted block
(128 bits for Rijndael, 64 bits for 3DES) is XOR'ed with the
plaintext of the next block before it is encrypted. Chaining
blocks increases the strength of cipher algorithms by
reducing correlation between the plaintext and ciphertext, at
the expense of parallelism. Packet sizes are limited to 1500
bytes, as specified by the IPSEC protocol standard.

The secure disk experiments are driven with a trace of
accesses to a 9-disk array of 9.1 GB Quantum Atlas 10K
disks [31]. The trace was taken from the DiskSIM disk
simulator trace library [14]. During the trace, the disk is
heavily loaded, with an average transfer rate of 16.7 MB/sec.
The accesses to all the disks are combined into a single trace
for the purpose of our analyses. Disk blocks are encrypted
using CBC mode encryption in 512 byte encryption units
(the minimum disk transfer size).

We examine the performance for single and multiple
processor configurations. With multiple processors, network
packets can be processed in parallel if they are from
different sessions (i.e., different connections from different
IP addresses). Within a session, cipher block chaining
requires that stream packets be processed serially. For the
disk experiments, sector data is processed in chaining block
mode, but different disk sector accesses (a sector is 512
bytes) may be processed in parallel with multiple
CryptoManiac processors.

For all experiments, we only consider the performance of
cryptographic processing, all other processing tasks such as
OS, web server, and database operations are assumed to be
offloaded to other processor components. We assume that
public key authentication (used once at the beginning of
each session from a unique IP address) is implemented with
two dedicated public key processors. Each public key
authentication takes 3.2msec, this timing is based on the
performance of the HiFn 6500 public key processor [17].

Once authentication completes, the private keys and key
tables are stored in the keystore for the entire length of the
user session. When a session context is loaded into a
processor, for example to process the first packet or to
change the session context of a CryptoManiac processor, we

assume that the loading of context data takes 720ns. This
timing is based on a keystore constructed from a 400 MHz
RDRAM [27], which can access key table data in two 40ns
accesses (across the rows of 32 banks), plus a 1k byte bus
transfer at 16-bits per 10ns plus bus overheads.

Figure 13 graphs the response time of the Rijndael (right)
and 3DES (left) ciphers for the secure web server (top) and
disk controller (bottom) application. For the 3DES
experiments we also show the simulator performance of the
HiFn 7751 encryption processor [17]. The 7751 is a high-
end encryption processor used in VPN routers and other high
bandwidth secure communication applications. The 7751
includes a hardware implementation of the 3DES algorithm
capable of encrypting data at 10.375 MB/sec (in IPSEC-
compatible CBC mode).

As shown in Figure 13, network traffic processing
requires more resources than disk I/O processing. This is due
to the fact that network I/O processing a) has less
parallelism due to the chaining of packets within
connections, and b) switches contexts often necessitating the
extra delay of loading key-specific data from the keystore.
The disk I/O workload, even though at higher sustained
bandwidth, operates within a single context (and thus does
not access the keystore). The disk workload also has ample
parallelism, since different disk blocks (512 bytes in size)
can be processed in parallel on different CM processors.

To keep cryptographic processing overheads for network
traffic low, say below 5% for a short 40msec transfer delay,
additional transmission delays due to cryptographic
processing must be no more than 2msec total, or no more
than 1msec (1000usec) on each end of a network transfer.
For the 3DES network I/O experiments, an acceptable level
of overhead requires at least three CM processor or three
7751 processors. For the Alpha processor experiments,
acceptable network delays (with 3DES) require six Alpha
21264 processors or four Alpha 21264 processors with
cryptographic ISA extensions (labeled Alpha+). With
Rijndael, performance is much better; two processors suffice
for all the experiments.

Disk transfers for the Atlas 10K drive average 16msec in
length, as a result, overheads can be limited to 5% if the
increase in sector transfer latency is no more than 800ns.
The disk I/O experiments cannot meet this goal for any
3DES configuration examined due to disk block processing

Figure 11. CryptoManiac Encryption Performance.
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delays. Minimum processing latency was always greater
than 800ns. For Rijndael, performance is again much better
with all configurations able to service disk I/O with
acceptable delay using only a single processor.

5 Related Work

Many algorithm-specific hardware implementations have
been described in the literature. IBM’s original DES
proposal described a hardware implementation [13]. Shiva
[36], IBM [20], Chrysalis-ITS [8], and Hi/FN [17] all offer
high speed hardware implementations of the DES and 3DES
algorithms. Hardware implementations have also been
described for IDEA [23], Twofish [23], and Blowfish [23].
The FPGA research community has also shown that public
key cipher algorithm performance can be improved using
FPGA-based implementations [26].

We are aware of only two previous proposals to add
instruction set support for private key symmetric
cryptography. Our previous proposal [5] examined
extensions to the Alpha instruction set to improve private
key processing performance. Shi and Lee proposed adding
an instruction (GRP) that supports efficient software
implementations of general bit permutations [35].

6 Conclusions and Future Work

The growth of the Internet as the primary vehicle for
secure communication and electronic commerce has made
efficient cryptographic processing a key factor of good
system performance. In this paper, we demonstrated that a
hardware-software co-design provides excellent
performance while maintaining the flexibility to support new
algorithms in the field. To motivate our design, we analyzed
the characteristics of eight symmetric-key cipher kernels.
We showed that they lack branch or memory bottlenecks,
have few unknown dependencies, and offer little headroom
for performance improvement on traditional architectures.

We presented the CryptoManiac co-processor, a 4-wide
VLIW processor with no cache and a simple branch
predictor, built around a clock cycle that combines
arithmetic and logical operations. The execution stage of the
processor contains four functional units each equipped with
an adder, a 1k-byte SBOX cache for efficient substitutions,
two logical units to support instruction combining, and a
rotator. There are also two multipliers per processing
element, extended for excellent performance when executing
modular multiplies. The instruction combining feature not
only made executing instructions with varied latencies
efficient, but also demonstrated how our design catered to
cryptographic processing.
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We evaluated different design configurations by building
detailed hardware models of varied widths and capabilities.
We then calculate encryption rate by synthesizing the
models to obtain timing estimates. Our systematic approach
allowed us to study the tradeoffs between chip area and
performance. We showed that the highest-performing and
most cost-efficient design is the 4-wide combining
configuration. Rijndael, the new AES standard, runs 2.25
times faster on a 360MHz CryptoManiac. Our analysis of
the original and optimized algorithms suggests that there is
more opportunity to speed up cryptographic processing. We
are considering improved functional unit designs as well as
more aggressive circuit implementations.

Our results make a very strong case for the deployment of
cryptographic co-processors, however, we believe the results
in this paper have stronger implications for the computer
architecture community as a whole. With an additional 1%
area (for an Alpha 21264 design), we were able to affect a
20% performance improvement over a broad class of cipher
algorithms, with individual algorithms benefiting as much as
190%. This is a striking result considering that many
commercial design teams use a rule of thumb that any
optimization that returns 1% performance improvement for
1% area is a good one. This result is further underscored by
the fact that our design is completely synthesized, if the
talents of an experienced design team were marshaled to this
task, the resulting design would be smaller, faster and
cooler.

The reason for these striking results is simple - an
application specific processor design can achieve a level of
efficiency that is impossible for general purpose designs to
attain. Our application specific design contains none of the
baggage necessary to execute non-cryptographic workloads,
making the resulting design smaller and cooler. In addition,
our limited application domain creates opportunities to
optimize the implementation, yielding superior performance
results. Going forward, we are working to assess the cost of
programmability in the CryptoManiac. A dedicated Rijndael
implementation is under development that will be compared
to the design presented in this paper. In addition, we are
developing application specific processors for other
application domains. Through this work we hope to
demonstrate that application specific optimization can be a
powerful tool for improving system performance and cost.
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