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Abstract

We investigate instruction distribution mettods for quad-
cluste, dynamicaly-schedded superscala processas. We
study a variety of methaswith differert cost, performance and
complexity characteristics.\We investicate bath non-adaptive
and adaptive meahods ard their sasitivity bah tointer-cluser
communication latercies and pipeline deph. Furthermae, we
develop a setof mocklsthat allow usto identify how wel each
mettod  attacks  issue-badwidh and inter-cluser
communication restrictions. We find that a relatively simple
metlod that changes clusters every other three instructions
offers only a 17% performance slowdonvn compaedto a non-
clustaed configuration operating at the same frequency
Moreover, we shav that by utilizing adaptive mettods it is
possible to further reduce this gap down to about 14%.
Furthermore, perfamance appeas to be mae sansitive to
inter-cluster conmurication latercies rather than to pipeline
depth The bestperforming methal offersa slowdwn of about
24% wheninter-cluster commurication latercy is two cycle
This gap is only 20% when two additional steges are
introduced n the font-endpipeline.

1 Introduction

Exploiting instruction-level parallelism va out-of-order exe-
cution facilitated rapid performanceimprovements during the
pas decade.An evolutionary path to cortinuing this perfor-
mancegrowth calls for larger and wider instruction windows.
The hope is that such instructian windows will expose more
pardlelism leadng to higher corcurreng/ and hence higher
performanceUnfortunately, it is now widely believedthat sim-
ply scding the «isting certralizedwindow designs may not be
possilde without adversely affecting clock cycle and conse-
quertly performanceThereareseverd reasos why including
fundamental scaling limitations of centralized asigns [12] ard
changing semicomluctor techrology trade-offs, e.g, [2,10]
(e.g, it may nat be possibk to route resuts within a single
cyclein awide syperscéar processa).

Accordngly, clusteling has beenproposedas an alterrative
to wide and dee orgarizations. In clustering, a collection of
smaller windows with assaiated functional units is usedto
approximatea much wider ard deeper window. Compared to a
centalizedorgarization, clustereddesiqistrade-df scheduding
flexibility for higher clack rates. Coseqently, to achiere high
performance weed to distribute irstructions amory the dus-
terssothat clusteing-induced stallsareminimized. Suchstalls
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are primary the result of restrictedintra-clwster isste band
width andof increase inter-cluster commuitation latercy.

Previous work investigated various instruction distribution
(or, cluster assignment) mettods for dual-cluster desigs
[4,6,12 (se= Sectim 6 for additional information). Moreover,
the ALPHA 21264 processorlrealy usesa dual-clustercore
[9]. Building even wider ard deeper windows may recuire
addtional clusters.However, whetter suchdesigrs are appro-
priate requires closeinvestigation of the underlying trade-offs.
Accordngly, in this work we investigate instruction distribu-
tion methods for a quad-clwster, dynamically-schedued super-
scdar orgarization. We investicate a variety of methals with
various cost, complexity and performance characteristics
including adaptive and non-adaptive methods. Non-adapive
methals usefixed pdicies that do nat change during run-time,
while adaptive methods may charge their dedsions base on
past betavior. We stud/ methods that utilize various types of
information, including dependerces, dataflav graph depth
instruction typesand past betavior. To gain additional insight
we alsovary intra-dusterissueand inter-cluster communica-
tion redrictions. Finally, we investigate the sensitvity of these
methalsto relevant architectural paraneters,i.e., intercluster
commurcation latency ard pipeline dept.

Same(i.e, thenon-adapive), but nat all of the methalshave
beenproposedand evaluatedbeforein the cortext of dual-clus-
ter processas. To the bestof our knowledge, no other study of
instruction distribution heuristics for quad-clustered, dynami-
cally-schedded superscéar processas hasbeen published Of
couse,thereis a multitude of architectual parametes thatare
relevantfor clusteral designs ard for the mettods we studied
Moreover, clusteraware compler schedding techniques war-
rantfurther dtention. However, suchanexensve irvestigation
is not possible giventhe limited spaceavailable. Nevertheless,
we study a variety of representadie corfigurations varying a
set d key archiectural parameters

The reg of this paperis organized asfollows. In Sectim 2,
we brfly discuss anumber of trae-offs relevant b the desig
of instriction distribution methods. Here, we also discussour
methaldogy. In Sectim 3 we preseat a numberof non-adap-
tive heuristcs andevaluatetheir performance. In Sectin4, we
discuss anumberof adapive heuristics.In Section 5, we inves-
tigate the sensitivity of the better performing heuristcs to
increasedinter-cluster communicatian latency and front-end
pipelinestages In Sedion 6 we review relatedwork. Finally, in
Section 7 we summarize our findings and offer corcluding
remaks. For clarity we use the term distribution mettod in



place of instruction distribution method. We alsouse commurir
cation insteadof inter-cluster commuication. Finally, we use
the terms centrlized and non-clusteed architecture inter-
changeaby.

2 Distribution Trade-offs and M ethodology

In this Section, we discussthe trade-dfs involved in devel-
oping instruction distribution methals. Throughout this study
we assume uniform, quad-clisterorganization (thedetails are
given laterin this Section). The front-enddelivers instructions
which are thendistributed to tke four clustersvia a distribution
medhanism.Our focus is on this distribution medanism.As
we later shaw, this assignmert process cadramaticallyimpact
performance We assumethat each cluser cortains each own
schedller andse of functional-wnits. Furthermore we assune
that once aninstruction is assignedto a clusterthe decisia is
final. An alternatve would beto decoyle executbn resouices
ard schedlers, however, sucha stuly is beyond the scope of
this paper. Each cluster has its own se& of functional units
including data cache ports. Dependert instructons can issue
badk-to-backprovided thatthey bothresdein the same clister
However, propagating resuts across clusters requires add-
tional cycles.

Throughout this study, our goal is to maximize perfamarce
through appopriate distribution methods. To achieve maximal
performancean ideal schedule is needed. However, this is a
hard problem evenfor a certralizedarctitecture. Accordngly,
it is corvenient to appoachdistribution asa problem of mini-
mizing clusterirg-induced stalls comparedto an equivalent
(i.e., same overall instruction window ard resouices) central-
ized architecture.Clustering-induced stallsareeither the resut
of limited per clwster issue éandwidth (andin gereral, resource
distribution including functional units) or of inter-cluster com-
munication latencies

In contrag to a certralizedcorfiguration ead clusteris lim-
ited to only a fraction of the total isswe slots per cycle (for
example, each of the four clusterscanissie only 2 instructions
of the total of 8 percycle). Accordngly, it is pasdble for an
otherwisereadyto-issueinstructbnto getstalledin one cluster
while freeissue slotsexistin other clustersMoreover, sincewe
assumethat it takes additional cycles to propagate reaults
acrossclusters,it is possille for an instruction to get stdled
waiting for datathat is currenty available at andher cluster
However, it is not strictly true thatour mechanism shauld mini-
mizesuchstalls. To bepredse, it is only thosestallsthatimpact
the critical paththrough the compuation that arereally impor-
tart. It may be possile to toleratesame stalls.Accordingly, we
can catgorize stdls into benign (those that do not affect per-
formance comparedo a centraked organizatia) andharmfu.
An example illustrating same of the trade-offs is given in Fig-
ure 1.

While maximum performances desiralde, the potential per-
formance benefits of a distribution method shaild be weighted
agpinstits cost and complexity. Of particular corcern is the
sizeof ary auxili ary structuresused. For example,in Sectian 4,
we will study a number of methods that significantly improve
performancewhile utilizing sizeable cache-lile structures.

clust. 0 clust. 1 clust. 0 clust. 1
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Figure 1: Example illustrating someof the performarce trade-
offs in instruction distribution. We assume a dua-cluster
corfiguraton and unit latercies for all operations.
Furthermore, we assume single-isste clustes. (a) Code
fragment with arrows represeiting data dependences and
boxesinstructions. (b) A cluster assi;ggmentthat maximizes
performarce Notce that while it takes an addtional cyde to
propagate C's resut, this does nat negatively impact
performarce (c) A non-optimal clusterassigymen. Execution
is delayed while A's resut is propagated betwea the two
clusters.

Depemling on the real-estateavailable on-chip, this space may
be better sed fo other purposes(e.g, branchpredction).

Moreover, cae must be taken to consider not only IPC
improvemerts but also the potential impact on clock cycle and
pipeline depth Beddesthe numkber of stepsrequred by the
methal, particdar attertion shauld alsobe given to the type of
information used.It is desirableto use information that is
readily available at the decoe stage or earlierand preferaby
early in the clock cycle. For exampk, in Section 3, we will
examine mettods that utilize depemlenceinformation While
swch informationcan beeasily determired (e.g, viatheregster
renamirg medanism), we ray na have enough time to tili ze
it during the deco@ phasewithout introducing an additional
stageor prolonging the clock cycle.

Before we start to describe anavaluatevarious mettods we
first discussour mettodology. We have usedthe SFECint’95
programs which we compied for the MIPS-4like architecture
used by the Simgescalar simulation toolset [3]. We used
GNU's gcc campiler (flags: -O2 -furroll-loops -finline-func-
tions). To attainreasoable simulation times we modfied the
standrd train or test inputs. Table 1 reports the dynamic
instruction court. In the interestof spacewe use the ablrevia-
tions shavn under the “Ab.” column.

We have madified Simpdescalars out-of-order simulata to
mockel a variety of clusterig corfiguratiors and instriction
distribution methods. The base corfiguration is detailed in
Tade 2. Our baseprocessr is capable of exeauting up to 8
instructions per gcle andis equppedwith a 2%-entry instruc-
tion windowv. Moreover, an 128-eriry load/stae schediler
(load/stoe queue)cagpable of schreduling up to four loadsand
staesper cycle is usedto schedule load/stare exeadtion. This
schedler implements ided memory depermencespeculation
[11]. Previous work hasshown that memory depemencespec-
ulation is particularly important for clustaed architectures.
Moreover, it has been shown that it is possibk to approach
ided memory deperence seculation via prediction [5,11].




Program Ab. IC Program Ab. IC
126.gcc gce 1,317M|130li li 207 M
129.compess com 154 M | 124 m8&sim m88 1% M
099.g0 go 134 M | 134 perl per 177 M
132ijpey ijp 130 M | 147 vortex vor 377 M

Table 1. Bendimark Exeattion Characteristics. Istruction counts (“IC” columns)are in millions.

Default Non-Clustered Configuration

of functional units

queues per duster

Branch Predictor 64K GShaet+64K bimodd w/ 64K seledor | Fetch Unit Up to 16 inst. pe cyde.
Instruction Window Size | 256entries L oad/Store Queue 128entries, 4 loads or stoes pe cycle
| ssue/Decode/Commit 8 instuctions/ cycle Functional Unit sanmeas MIPS R1@00
Bandwidth Latencies
L1 - Instruction cache 64K, 2-way SA, 32-by blocks, 2 cydes L1 - Data cache 64K, 4-way SA, 32-byte blocks, 2 cycles
Unified L2 256K, 4-way SA, 64-byte blocks, 12 ¢ycles | Main Memory Infinite, 100cydes
Default Clustered Configuration
Clusters 4, each 2-wayissue w/ uniform distribution | Inter-cluster delay 1 ¢ycle bah for registers ard stoe-load

64-entry windows and32-entry load'store

forwarding

Table 2: Baseconfiguration details. We moctl an 8-way aggresive dyramicaly schedued superscablr processotaving a 256-
ertry schedder and an 128-entry lcad/stare queue. Also stownis the cefadt quad-cluster cofiguration.

3 Non-Adaptive Methods

We have investigatedboth adaptive and non-adaptive meth-
ods. Non-adapive mettods use fixed policies that do not
change dwing run-time. For example, always seleding the
cluster with fewest instructions. Adapive methods, on the
other hand basetheirdedsions on dynamicdly collectedinfor-
matian. For exampke, whetter the clusterassignmert for a par-
ticular instructon resuled in a stall last time it was executd.
In this Section we are corcerned with nonradapive methods.
Further information on adafive methodsis gven in Sectio 4.

We have investicated a variety of non-adapive heuristcs
with varying compkxty andperfomarce charactastics. Hee
we restrictour attenton to the following represertative subset:
First-Fit (FF), Modulo (MOD; andMOD,), Depencence-based
(DEP), Slice (SLC), Branch-Cu (BC), Load-Cut (LC) ard
Depernlerce-Deph-based(DDB). The first two metfodsdonat
utilize program-relatedinformation, while the rest . We hare
consicered depeerces,instructon types ard dataflav deph
as alterative saurces ofprogram-relatednformation.

First-Fit (FF): In this metha we assig instructions to the
samecluste until it fills up compktely. Then we move to the
next cluster and do the same.The primary advantge of this
methal is its simgicity. A posgble implementation comprses
aperclusterglobal-AND of the occupied flags of the clusters
resenation statons (assuming an RUU-like implemertation
[15]) ard aglobal curent-clwsterpainter. An incoming instruc-
tion is assigmed to the current cluster so long thereis space
available (the cluster’'s global-AND signal is 0, i.e., thereis at
least ore free slot available). Otherwise,the curren-cluster

pointer adwancesto the next in order clustett. The impad of
this method on decoa/dismtchlateng should be minimal as
the information recuired is indepemnlert of the instructions
themsehes and can be madeavailable early in the pipeline.
While simple, this method makesno explicit attempt to mini-

mize neither communication- nor issue-imuced stalls. Never-
theles, depemlent instructions tend to be close in the
instruction stream This often helps cortrol communcation
induced stalls.

Modulo Methods (MoD,,): As we will seein Sedion 3.1, the
first-fit metlod fails to use issue-bamwidth efficiently. To
improve issue-landwidth utilization while keeping comgexity
at a minimum, we have investigated a variety of modulo n
(MoDy,) methods. Inthese rathods, irstructions ae assiged b
clusters in amodulo n fashia where n is a small integer. For
example, in themoduo 3 (MoD3) methodthefirst threeinstruc-
tions areassigned to cluster Q the rext three to cluster lard so
on. Comparedo FF, thesemettods distribute instructionsmore
fairly among clustersresuling in a better utili zation of issue-
bandwidth. We have experimerted with a variety of valuesfor
n and found that the optimal value differs per program. Here,
we restrict our attentdbn to MoD; and MOD3. As with first-fit,
the information required by moduo methods can be made
availableealy in the pipeline. While fairly simple, mob3 per-
formssurgisingly well.

Dependence-based (DEP): Neither of the methods descrited
sofar leverages program-relatednformation. The deperlerce-
basedmettod usesdata-depnderce informatian in an attenpt
to reduwce commurication-inducedstalls.In this method we aim
to assigndepencent instrictions to the same cluster. This is
donre asfollows: Whendecodng aninstruction, we attenpt to

1. Using a global “is there a free slot available?” signd per cluster
makes distribution a sefial process we have to wait until the first
instruction is asggned before probing for slot avail ablity for the
seond instuction. To do in-parallel cluster assgnment of multiple
instructions wemay wse apopulation court circuit percluster. This
does not hawe to be complete popuation court circuit as the num-
ber of instructions that can be assgned per cycle is limited (i.e.,
decode width). Accordingly, we only carewhether up to that num-
ber of slas areavailable pe cluste.



assignit to the sameclusterasits parerts. If an instruction has
muitiple parerts that areassigred to differert clusterswe pick
the clusterholding the youngest in program order parent(i.e.,
closest to this instruction). (We have experimented with other
alterratives ard found no sigrificant performancevariations.)
If the parens have long committed,we just pick the cluster
with the fewed instructions. The data-@pencdence informatian
required by this method can be madeavailale via the register
reraming mechanism. Dependng on the particular implemen-
tation, deferrirg clusterassgnmert till after registerrenamimy
may negatively impactthe clock cycle or force usto introduce
additional pipeline stages.

Slice (sLc): Using the DEP mettod, we often find that the par-
erts of aninstructian areassigned to differentclusters. This is
the resut of the limited, forward-cepemlence-basedcope of
the berp method. To further redice communication-induced
stallsit would be better to as$gn all parentsand their corsum-
ing child to the same cluster. This is the goal of the slice
methal. To do so, we emplgy the method proposedby Canal,
Parcerisa and Gorzdez [4]. An auxliary, PC-indexed table
(the slice table) is usedto re-corstrict the data-flav graph on
the fly. Evertually, a conmon tag s assigned to all instructions
belorging to the sameslice This tag is usedto assig all
depen@ntinstructions to the sameclusterthe next time they
areencountered. If no space is available in that cluser we pick
the clusterwith the fewestinstrictions. This method redices
communication stalls since instructions within a slice will
resice mostly in the same cluster Moreover, our resuts show
that issue bandvidth is used efficiently. However, these
improvements come at the experseof an auxiliary tade. Com-
pared to DEP, the slice-table-provided tag can be madeavail-
abde much earlier than the registerdependence informatian
(sincethe slice Bble is PC-indexed). We classifythis technique
as nm-adhptive as it does rot uili ze explicit information about
the succes of past clusterassigimentdecisiors. We assune
infinite slice tables inour experiments.

Branch- and Load-Cut (BC and LC): While DEP and sLC
offer superia performancehey may be too comgex or costly
to implemert dependhg onimplemertation spedfics. Accod-
ingly, we investigated methods that leverageother program-
relatedinformation that canbe easilyextractedat run-time. In
particular we irvesticgated methds that utlize instriction-type
information. In the branch-cutmethod we assigh consecttive
instructions to the sameclustertill we reach a brarch instruc-
tion. The intuition behind this heurisic is that instructions
within a basic-bbck are mostly dependent. We also investi-
gatedvariatiors of the branch-cu method wherewe changed
clusteas only on badkward brarches. In doing so, we were
mativatedby work in threadlevel speculation where loop itera-
tions may be assignedto se@rateclusers for parallelexecution
(seeSectia 6). However, we didn't obsene significart perfor-
manceimprovemerts. Accordingly, we restrictour attertion to
the generd, all branchcut method.

We also experimentedvith aload-cu method whereinstruc-
tions are assiged to the sameclusteruntil a load is encoun-
tered The load and the instructians that follow (till the next
load) arethenassignedto the next availade cluster The intu-
ition behird this methad is that loads often lead a chain of

depencentinstructions. Accardingly, the hopeis thatchangng
clusters upon ercountering a load should force mostly depen-
dent instructions to the same cluster while distributing inde-
pendent instrictions acrossclusters Whenever a sequerce of
adjcentloads is emounteredwe do na change clusters.
Dependence-Depth-based (DDB): Finally, in this method we
catgarize instructionsbasedon its position (deph) in the DFG
(Data Flow Graph). Only instrictions currently active in the
instructionwindow arecorsideredin this processIf aninstruc-
tionhasno parentsalive in the window, it belongsto depth 0. If
it hasonly its direct parentsalive it belorgsto depth 1, and so
on. We assigh an instruction to the cluster having the least
numker of instructions of the samelevel while taking depen-
dence information alsointo account (when a choice exists, we
will assignto the san® clusteras its closestparent). The intu-
ition behind this method is that in a centralizedcorfiguration,
instrictions at the samelevel would probably issuearaund the
sarre time (ignoring cadhe missesand other multi-cycle opera-
tions). Therefore by distributing them amony clusters wecould
use the availableissuebardwidth more efficiently. While this
metha may befairly compkxto implement weinclude it asit
appoximates a resaue-based schedling algorithm.

3.1 Non-Adaptive Method Performance

In this Sectim, we presentour analysis of the non-adapive
methals. We approach each metha from two differert per-
spectives. First we appoacheachmethal asan improvemaent
over the most simge non-adaptive method (FF). Ultimately
however, clusterirg is viable only if it resuts in a sufficiently
higher operating frequercy comparedto anon-clustered imple-
mentatia. For this reasan, we alsocompareesachmethod with
a ronclusteredarchitecture with the sameverall resowces

While perfamance is our ultimate metric, it is desirabe to
get additional insight on how each method attacks issue-band
width restrictions and inter-cluster conmunication delays. To
do so,we useatwo tieredappoach. Firstwe repat thefraction
of instructions hat are dlayed as a resutif canmunication or
of issue bandvidth limitations. However, the two perfomarce
degrading fadorsinteractwith eac other making it difficult to
isdate their impact. Accordngly, we also stuly ead perfor-
mance dgradirg factor independently (more an this later m).

Figure 2(a) reports relative perfamarce for DEP, BC, LC,
MOD,, SLC, DDB and MOD3 from [eft to right. The base cofigu-
ration is a clusteral archiecture utilizing the FF metlhod. We
canseethat on the average DEP perfams the worst among all
heuristics (excluding FF of cousé). With this method instruc-
tions find thattheir two parens are assigedto differentclus-
ters. Also, this method tends to assign too mary dependent
instructions to the samre cluster The first pperomena resuts
in inter-cluster commurication induceddelays,while the sec-
ond pheromena resultsin under-utilized issuebardwidth. As
expected,(with the exception of go) the sLc method improves
performanceover DEP by placingall depermentinstuctionsin
the same dusterwhile distributing urrelated slicesacrass dus-
ters. The instriction-type-tesed heuristcs Lc and BC offer
comypetitive and sometimes better perfamarce even though
they do not require an auwliary table. The bbB mettod also
performs similarly for most berchmarks. Further improve-
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Figure 2: (a) Performarce of nonradaptive heuistics over a base corfiguration utilizing the first-it (FF) mehod. Here we
approach each method as an improvementover the simgest metlod we studied Higher is better (b) Fractions of commited
instructions that are stdled as the result d inter-cluster @mmurication (lower pat) or issue-badwicth restrictiors (ugper part).

The following mettods are reported FF, DEPR, BC, LC, MOD,, SLC, DDB and MOD5 from left to right per bendimark (same

order asin part (a) with the adtition o FF).

mentsmay be possille by utilizing better instruction latercy
estimategcurrently bDB assumes unit latenciedfor all instruc-
tions). Finally, mob3 performs the best. It offers a 45.6%
improvement over Fr. Apparenly, this methal strikes a good
balance in assigning same deperent and someindepencent
instructions to the samecluster Go seensto benetft less from
the variousmethods comparedo the other benchmarks Thisis
mostly due to therelatively low branchpredction acarragy for
this berchmark which reallts to relative smdl number of
simutaneowsly adive instructions. Conseqenty there isn't
much parallelismand little room for improving perfamarce
over thesimple FF method. Brarch prediction accuracyis also
mostly respmsible for the higher performance berefits
obsened for vortex ard to a lesse extend for m8&sim. In
these programs, the vast mgority of resenation stations are
occupied. Moreover, these programs exhibit relatively high
pardlelism. Conseqgently, thereis much to be gained by care-
fully distributing instructions acrass clusters.Moreover, these
programs tendto be more tolerantto inter-clustercommunica-
tion overhead (parallelism helpsto tolerate ttesedelays).
Figure 2(b) reports the fraction of committedinstructions
that are delayed waiting for a resut from a different cluster
(lower bar) o because issueahdvidth was wavailable (upgper
bar). Wherever aninstructon is delayed both due tointerclus-
ter commurication andissue-badwidth limitations we assig
it to the inter-cluster commurication delayed catggory. In gen-
eral, perfamarce and the fraction of instructions that are
delayed arenat correlated However, in mostcasesthe best a
methal is, the higher the fraction of instructions that are
delayed. This is the reault of higherconcurrency. (When distri-
bution is nat good, very few instructions are executng at ary
given point, resultng in very few instructions that areready or

thatwoud be ready if they hadimmedate acces to the resuts
in other clusters.)An obsevation can alsobe madeabaut the
relative fractiosof instructionsdelayed dueto commurication
or issued-tandvidth andperfamarnce. For the worse perform-
ing methads (FF and DEP), most instructions are delayeddue
to insufficient isste-bandvidth (upper bar). As we distribute
instruwctions to better utilize issue-bamwidth, commurication
delays start® becomemore common(lower bar).

In a realistc clustera corfiguration, issue-landvidth
restrictions andcommunication delays interect making it diffi-
cult to draw corclusions. Accordngly, we introduce four
madine models:NI-NC, I-NC, NI-C ard I-C. In this notation, |
indicatesthat the model includes per cluste issuebandwvidth
restrictins, while ¢ indicates that communication delaysare
incurred The inversenotation, NI and NC, indicatesthat the
mockel does ot include per cluster ssue-bamwidth restrictions
or inter-clustercommurication delays respectrely. The NI-NC
mockl correspmds to a non-clusteredarchiecture while thei-c
mockl corregponds to a realistic, clustered archtecture. The
two other models do not correspand to realistic architectures.
However, they provide additional insight on the effectiveress
of eachmehod. The NI-c mocel shows how well we could
have done if no isste-bandvidth restrictions were apgicable
(total issue bandwidth is still limited to 8 instructionspercycle,
however, these instructions cancome from any cluser, possi-
bly all from the sameone). Similarly, the I-NC mockel shows
how well the heuristic performs in attacking issuebandwvidth
restrictims (no commuricationstallspassble).

Figure 3 repats performarce improvementsover the base
clustered configuration that usesthe FF method. Dueto space
limitations we redrict our attertion to FF, MODj, the instruc-

tiontype-based BC ard the depemlence-bsed SLC. As
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is better

60%

50%

40%
30%

20%
10%
0%

gcc

B

com go ijp

[Joer  []Bc [P LC

] MoDq

li m88

B sLc

per vor AVG

oo [ ] moD;

Figure 4: Rdative perfamance of non-adaptive metha over a non-clustered organization asauming the same clod rate.
Reprtedare slavdowrs (loweris better). Theseslowdowns canserveas bounds on how much fastera clusteredimplementation’s

clock rate has tobeover an non-clusteredimpementation.

expectedthe FF method (part(a)) doesnot performwell com-
pared to the ron-clusteredarchitecture (NI-NC) (thereareno I-

C bars here since I-C witRFis the lase cas). In the best cas
of go, the differerce is about 45%, while, it grows aslarge as
approximately 110% for m8ksim The two models NI-C ard |-

NC reveal that much of this perfamance lossis the resut of
isste-bandwvidth distribution. When issue bandwidth is nat
restricted(NI-C), performarte is very closeto thatof the non-
clusteed architectue (NI-NC). However, when issue is
restrictedand evenwithout ary communication delays(I-NC),

performancedrops rapdly and is very close to the realistic
clustered ardhitecture(l-C). While, the FF method is somevhat
sensitve to commurication delays, it is primarily crippled by
inefficient useof isste-bandvidth. Issue-bandwvidth restrictions
seemto be more impartantthancommunication delaysfor BC
also (part (b)). With the exception of m8ksim BC perfoms
betterunder NI-C than under I-NC. This trend is reversedfor

mostbencmarks for bath SLC and MODg (parts(c) and(d)).
As we lave seenin Figure 2, these methdsperfam much bet-
ter than either FF or BC. This resut suggests that once we
begin usingisste bandvidth more effectively, thenintercluster
commurication latenciesbecomemore important. Interest-
ingly, the differencesbetwee I-NC and NC-I are smdler for
MOD; for most benchmarks. This resut supports our previous
obsenation that MOD3 strikes a better balance in attacking
isste-bandvidth and communication restrictions. Notaby, 1-C
andNI-C perform almostidentical in go, sugyestirg thatin this
benchmarkit is communication that is mostimportant. This
canbe explained by therelatively low branchprediction aca-
ragy and theresuting low instriction level parallelism.
Ultimately, a clusteredarchitecture may be viable only if it
offers better performancecomparedto a centralzed ore. For
the methals we studied this canonly be the resut of higher
operatirg frequeng. It is desirableto knov how much faster



the clock rate of the clusteredarchitecturehasto be (vs. the
centalized architectures clock rate)to resut in higher perfor-
mance.Accordingly, we report perfamarce slovdowvns com-
pared to a non-clusterel arclitecture assumig the same clock
frequeng. Theseslovdowns canseave asboundson how much
fasterthe clock cycle of the clusterel implementation mustbe.
The resuts areshavn in Figure 4. MOD3, the bestnon-acdap-

tive methal, is 17% slower thanthe centalized corfiguration.
Notice that same minor differencesin the trends exhibited
compared to Figure 2, arethe resut of using a differentbase
configuration (in Figure2, we usedthe FF-basel clusteredcon-
figuration as aur base).

In this Sectia, we have discussedand evaluatedthe perfor-
manceof various non-adapive heuristics.We have found thatit
is passible to significanty improve performanceover the sim-
plistic first-fit method. However, we have alsofound that there
is still a sizedle gapin performance(17% on the averag for
the bestperfaming method) comparedo a certralized archi-
tectue operatirg atthe sanefrequengy. In the next section we
propose methds thet aim at redicing this performance gp.

4 Adaptive Methods

In this sectio, we presert and evaluatea numker of adapive
methals. The intuition betind thesemethods is that programs
terd to exhibit non-rardom behavior. Accordngly, it may be
possible to learnandavoid inefficient cluster assigments. We
have investigatedtwo classesof adaptive techniques.The first
classis basedon voting, while the semnd attempts to improve
over thefixed moduo techniques we descaibedin the previous
section
Voting-based Methods (CNT-X): The idea behind these
methals is to identify problematicinstruction assignmerts ard
try to avoid them the next time the sameinstructions are
ercountered.For example,these methods canimprove instruc-
tion distribution wheneser a program follows the samepath
repeatedy. In these methods we startwith anunderlying non-
adaptive techique. Upon executng an instruction we recad
information abaut the successor failure of the current cluster
assigment in a Cluster Prediction Table (CPT). We experi-
mentedwith PC-indexed CPTsso that they canindexed ealy
the pipeline. A CPT entry contairs four 2-bit up/down saurat-
ing counters one per cluster The cowuntersindicate how appro-
priate a cluste might be for the matching instruction, with 11
beingthe bestand 00 the leag. Initially, all countersaresetto
01, indicating that all clustersare equally appropriate. As soon
an instruction becomesready we update the correspamding
counterin theCPT If theinstriction canissue immediatelywe

incremert the cownter, otherwise we deaementit?. The next
time the same instruction is encountered,the CPT is acessed
in parallel with the non-adiptive method. The instruction is
then assigned to the cluster with the highest counter value
(most appropriate basedon past experience)lf therearemore
than one qualifying clusters,we use either the non-adapive

2. Actudly, updatesare dore at commit time. To doso, abitiskeptin
theresevation station. This bit is se when theresevation station’s
readysignal is se, but the ready-sdect logic does notall ow the
instruction to exeaute. Upon commit, the correspanding CPTertry
is updated acordingly.

methal’'srecommenétion (solongasit is onethe clustaswith
the highest counter values) or chaose the cluster with less
instructions.

As described, the vating-basedmethod reactsonly to issue-
bandwidth-induced stalls.We usedthesestallsasthey caneas-
ily idenffied locdly at each resevation staton (readysignal
vs. allowed to isstg). In owr simulation ervironmentit is
straightforward to also detect scenaris where intercluster
commurication is at fault. However, the specifics of a realistic
implemertation are beyond the scope of this paper Accord
ingly, we restrictour attenton to usirg only issue-landvidth
relatedstalls for our adaptive mehods.

Adaptive-Modulo (MOD,): As we have see in Sedion 3,
MOD3 perfamed best among the non-adapive tedhniques. We

have alsonated that the bestmoduo value varied per berch-
mark, with 3 being a good enough comprise acrossall berch-
markswe studied. Motivated by theseobsenations we have
developed the adapive-maluo mettod. In this method, we
startwith aninitial modulo value of 3. However, asexecution
progres®es we keep statisticson how often instrictions are
stalledas the resultof insufiicientissue-bamwidth. After apre-
specified number of instructions have exeauted (1 million in
our experimentsyvetry adifferent moculo value (e.g, increae
to 4). If the new modulo value resuts in fewer instructions
being stalled, we cortinue changng the modulo value (e.g,
move to 5). Otherwise,we alter our direction of change (e.g,
decremant as opposed to increment). Using this policy, the
modulo value is dynamically adjustedto one that offers better
performance As described, this policy canget stuck to alocal
maximun sinceit relieson comparisas betweenadacert val-
ues. Accardingly, we have alsotried a differert pdicy where
we sweepover a pre-specifd range of modulo values (i.e., 1
to 16) before decidng on the bestone (this scanis repeatedat
regularintenals, i.e., 100M instructions). However, we did not
find significantperfamanceimprovements.

The primary advartageof this method is that it offers sane
adapability without requring many addtional resouces. A
similar mettod was proposedfor selectiig an appopriate his-
tory-deph for branchpredection [§].

4.1 Adaptive Method Performance

We repat resuls assumig infinite cluste prediction tables.
We have also experimentedwith finite prediction structures
andfound that 16K -ertry non-tagged,counter-basel predction
tadesperformvery closeandsometimes betterthantheinfinite
tade (better acgracy is possibe via constrictive interference).
As with the non-adapive techniques, we first comparetheir
performanceusing the most simge method (FF) as our base.
Moreover, we report a breskdown of stalledinstructions and
useour four models(presentedin Sectim 3.1) to isolateissue-
bandwidth and communicatian relatedstalls. Finally, we com-
pared with a non-clusteral architecture assiming the sarre
clock rate.

We have experimenéd with various voting-based methods.
Here we redrict our attertion to voting-basel extensiams to

MOD13, Brarch-Cut (BC) and Slice (sLc). We also study the

adapive-modulo technique. Figure 5(a) shows relative perfor-
manceimprovemerts over the FRbasedclusteredarchtedure.
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For easeof comparison, the relevantnon-adaptive methals are
alsoincluded (repeatedrom Figure 2). As expected for most
casa the adaptive-techniques improve performanceover the
underlying non-adaptive method. On the average,the perfor-
manceimprovementsover FF are apgoximately 50%, 49%,
39% and 50% for MOD,, CNT-MODq, CNT-BC, and CNT-SLC
respectiely. The perfamance improvemeats over FF for
MOD3, BC andsLC were 46%, 37% and41% resyectively. The
bed performing method is CNT-SLC. However, CNT-MOD,
and MOD, offer very similar performanceimprovemants.
Recall,that CNT-SLC reguires both a slice table ard cluster
prediction talde. In cortrast, CNT-MOD; recpiresorly aclus-
ter predction table.Finally, MOD,4 has minimal spacerequire-
ments.

Figure 5(b) shows a breakawn of delayed instructions for
the adapive methals. The lower part of eat bar reports the

3. We did not obsewre asignificant difference comparedto counter-
basedextensbnsto MODs.

fraction of committedinstructons that were delayeddue to
inter-cluster commuitation. The pper partshows the fraction
of committed instrictions delayed due to issue-andvidth
unavailability. Again, it appearsthat a bettera method per-
forms the more instructions are stalled. However, the differ-
encesamang the various methods are small. This further
justifiesusing the four models of issue-landwidth ard commu-
nication (see Section 3.1) to determire how sersitive each
methal is to eachof theserestrictions. The resuts areshavn in
Figure 6 wherethe basecaseis the clusered F~basecdconfigu-
ration. We restrictour attention to MoD, and CNT-MOD;. The
general trends with respecto issue-bandavidth and commuri-
cation restrictions have not changed by much. However, the
gap betweenNI-NC and the other models has been rediced
andso have, for the most part, the differerces betweenNI-C
andI|-NC.

Finally, in Figure 7 we report the relative performanceof our
adapive methods over a non-clusteredarchitecture with the
sarre clock rate. The voting-basedmethals performvery simi-
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accordingly, lower is beter.

larly, with MOD, offering comgtitive perfamarce. CNT-

MOD; has narraved the gap down to 15.2%, CNT-SLC to

14.1% while MOD,4 to 14.6%. In absdute terms,the improve-

ments appear relatively minor. However, they are sizeable
when comparedto theoriginal gap between the best nan-adap-
tive method and the centralizedarchitecture (abaut 3% off the

maximum paossible ¢ 17%).

In this sectia, we have shown that it is possilie to further
improve perfamance using adapive techriques.The bestper-
forming methods where the adaptive-modilo andthe counter-
based extensionto MOD;.

5 Sensitivity Analysis

In this section we investigate the sersitivity of somemeth-
ods to key architectural parameters In Section5.1, we vary
inter-cluster communication lateng, while in Sedion 5.2, we
investigate how tolerantour mechanisms ae to increases irthe

front-end pipeline degh. Finally, in Sectim 5.3, we we study
configurations with 4-way, 2-way ard sirgle-issue clusers.

5.1 Inter-Cluster Communication L atency

Figure 8reports perfamance when e irter-cluster commu-
nication delay is increaedto two ¢ycles. We repat slovdowvns
over the default centalized configuration operaing at the sane
frequeny. No addtional commurication delays are imposed
for the base configuration. As expected,the performance gap
increaes CNT-SLC is the bestperforming method being about
24% slower than the base.MOD3; remans the bestnon-adap-
tive methal. While MOD, still improvesover the non-adagive
methals, the other, voting-basedadapive methals now per-
form sigrificantly better.

5.2 Front-End Latency

We alsotake a look at how increasirg the numberof front-
erd pipeline stagesmpactssome of the bestperfaming meth-
ods. As we discussedn Sectio 2, depeiing on the specifcs
of the pipeline, the informationutilized and the steps required
by adistribution method, we might beforcedto introduceadd-
tional pipeline stages.igure 9 repats hav perfamarce varies
for one (fart (a)) @ two (part (b)) addtional ceaode stages.
restrict aur atention to BC,CNT-BC, 9.C, andCNT-SLC. We
choose thesemethods since they utilize program-irformation
ard/or awiliary tables.Corsequently, they are more likely to
impact the depth of the front-erd pipeline. We report slow-
downs withresped to the default centralized canfiguration that
does not include ary addtional decode stages. Inter-cluster

commurication lateng is one cycle. Overall, the perfomarce
gap hasincresed However, the relative trerds do not charge
by much. The adaptive methals still perfam better than the
nonradapive mes,with CNT-SLC beirg the lest me.

5.3 Issue-Bandwidth

Finally, we experimentwith three quad-cluster configura-
tions: Onemadeup of 4-way clusters,one with 2-way clusters
and arother with single-issue clusters. The total issueband
width is 16, 8 ard 4 respectively. In all cass, we assume2
cycles for inter-cluster communication. The resuts are shavn
in Figure 10, parts (a) through (c). For esseof comparisonwe
usethe 4way certralizedcorfiguration as our basecase Num-
bers greaterthan 1 representspeedp while numbers lower
than 1repesert slovdown.

As expected the higher the issuebandwidth of ead cluster
the higher the performance. 6r the single-isste cluster corfig-
uration of part (c) all distribution mettods perform similarly
with the exeption of BC andCNT-BC. Notably, CNT-BC per-
forms worse that its non-acdhptive counterpart BC. This is
because rarelyreeissue-slts &istin other clusters pbecause
seleting an alternateclusterintroduces aditional canmunica-
tiondelas.

As we move to dual-issueand quad-isse clusters(parts(b)
and(a)) the BC- and SLC-basedmethods perform betterthan
MODa and MOD3. CNT-MOD;, however, remairs competi-
tive. SLC performspoorly for the 4-way cluster corfiguration.
Recdl that SLC will spread Unrelated’ slicesaccraoss dusters.
However, since it doesnot consider menory dependences, it
often assigs depencent load-staesto differentclusters.This
resuts in increasd store-lcad forwarding delays. Given that
clusters are 4-way issue,we are better off assiging multiple
slicesto the same cluster rather than distibuting themin a
round-robin fashon. CNT-SLC detects innefficient cluster
assigments ard improves upon them. Notahlly, BC perfoms
very closeto both CNT-SLC ard CNT-BC. This makesBC an
attractie choice for this corfiguration Recall,thatthe costof
BCis low comparedo both CNT-BC andCNT-SLC.

6 Related Work

A plethaa of studies have investigatedpartitioning as away
of scalig over existing, certralized dynamicallyscheduled
syperscéar architectures.A classof methalsaims atextracting
parallelism by making norcortinuous or large predction-
based stgps in the dynamic instriction stream, e.g,
[1,7,1314,16]. Here we restrict our attertion to works that
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investigated partitioning atraditional archiecture.

Palacharla, Jouppi and Smith studied the delay charecteris-
tics of key processa strictures[12]. They demorstratedthatit
will not be possilie to naively scale existing designs without
adverseeffectson clock cycle. They proposedusirg clusterirg
as a solution ard studed various nontraditional schedding
medanismsfor dual-clusteral architectures (e.g, FIFO-based
schedilers) and also used dependences to optimize cluster
assigment. Dueto the limited spaceavailalle, aninvestigation
of thesealternatve schediler orgarizationsis beyond the scope
of this paper.

Farkas,Chow, Jowpp ard Vransevic proposed andstudied a
dual-clusteral archiecture along with a cluste-aware static
schediling technique [6]. Canal, Parcerisaand Gorealez stud-
ied a variety of nonradapitve instruction distribution methods
also for a non-uniform dual-clusered archiecture [4]. They
alsoproposedthe slice-basel methal ard explained how slice
information can be extraded dynamically. Finaly, the ALPHA
21264 alreadyemplq/s a dial-cluster micro-archedure [9).

7 Conclusion

Clusterirg provides a patentily viable pathfor wider ard
deeper instruction windows and higher operaing frequencies.
In this work, we have studied a variety of instructia distribu-
tion methods for quadecluster processas. We studied non-
adaptive methods and adapive techriques with varying com-
plexity ard costrequirements.Thesemettods utilized various
types of information, including instruction-type, dependerces
ard pasthistory to betterdistribute instructions acrossclusters.

We have found that a relatively simple method, MOD3

offers comptitive performance.lt was within 17% of a non-

clustered organization operatingat the samefrequeng. More-
over, wehave seerthat it is possible to redwce this gap down to
abait 14% via a counter-based prediction scteme. While in
absdute termsthis is a minor improvemert, it doesrepresena
sizedle redtction in relative terms (as comparedo the 17%
gap with MOD3). We have also investigatedthe sensitivity of
our methods to inter-clustercommunication lateng and front-
endpipeline depth We found that perfamance is muchmore
sensiive D intercluster conmunication for the ketter grform-
ing methals. The performancegap for the best performing
methal incresedto 24% when inter-cluster commurication
latercy was increasedtwo cycles.In contract, even whentwo
addtional front-erd pipeline stages were introduced, this gap
wasonly 20%.

While we studied a reasomble seé of configurations and
methals, thereis still a plethaa of design points andpossble
other mettods that warrart further study. There are multiple
directions for further experimentation, including non-uniform
cluster organizatias, restrictins on interclustercommunica-
tion bandvidth, the effect of previously proposed compiler
optimizations [6] and alternative schedder desigrs swch as
those @pearirg in[12]. Of particular interest ae organizations
where executbn clusters (i.e., functional units, register files
and cache ports) ard schedlers are decoupled. In such a
design, aninstrwction isfirst assigned to a schediler, and then
basedon input operandavailaklity is ser to the apgopriate
execution cluster
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