
Abstract

We investigate instruction distribution methods for quad-
cluster, dynamically-scheduled superscalar processors. We
study a variety of methods with different cost, performance and
complexity characteristics. We investigate both non-adaptive
and adaptive methods and their sensitivity both to inter-cluster
communication latencies and pipeline depth. Furthermore, we
develop a set of models that allow us to identify how well each
method attacks issue-bandwidth and inter-cluster
communication restrictions. We find that a relatively simple
method that changes clusters every other three instructions
offers only a 17% performance slowdown compared to a non-
clustered configuration operating at the same frequency.
Moreover, we show that by utilizing adaptive methods it is
possible to further reduce this gap down to about 14%.
Furthermore, performance appears to be more sensitive to
inter-cluster communication latencies rather than to pipeline
depth. The best performing method offers a slowdown of about
24% when inter-cluster communication latency is two cycle.
This gap is only 20% when two additional stages are
introduced in the front-end pipeline.

1 Introduction
Exploiting instruction-level parallelism via out-of-order exe-

cution facilitated rapid performance improvements during the
past decade. An evolutionary path to continuing this perfor-
mance growth calls for larger and wider instruction windows.
The hope is that such instruction windows will expose more
parallelism leading to higher concurrency and hence higher
performance. Unfortunately, it is now widely believed that sim-
ply scaling the existing centralized window designs may not be
possible without adversely affecting clock cycle and conse-
quently performance. There are several reasons why including
fundamental scaling limitations of centralized designs [12] and
changing semiconductor technology trade-offs, e.g., [2,10]
(e.g., it may not be possible to route results within a single
cycle in a wide superscalar processor).

Accordingly, clustering has been proposed as an alternative
to wide and deep organizations. In clustering, a collection of
smaller windows with associated functional units is used to
approximate a much wider and deeper window. Compared to a
centralized organization, clustered designs trade-off scheduling
flexibility for higher clock rates. Consequently, to achieve high
performance we need to distribute instructions among the clus-
ters so that clustering-induced stalls are minimized. Such stalls

are primary the result of restricted intra-cluster issue band-
width and of increased inter-cluster communication latency.

Previous work investigated various instruction distribution
(or, cluster assignment) methods for dual-cluster designs
[4,6,12] (see Section 6 for additional information). Moreover,
the ALPHA 21264 processor already uses a dual-cluster core
[9]. Building even wider and deeper windows may require
additional clusters. However, whether such designs are appro-
priate requires close investigation of the underlying trade-offs.
Accordingly, in this work we investigate instruction distribu-
tion methods for a quad-cluster, dynamically-scheduled super-
scalar organization. We investigate a variety of methods with
various cost, complexity and performance characteristics
including adaptive and non-adaptive methods. Non-adaptive
methods use fixed policies that do not change during run-time,
while adaptive methods may change their decisions based on
past behavior. We study methods that utilize various types of
information, including dependences, dataflow graph depth,
instruction types and past behavior. To gain additional insight
we also vary intra-cluster issue and inter-cluster communica-
tion restrictions. Finally, we investigate the sensitivity of these
methods to relevant architectural parameters, i.e., inter-cluster
communication latency and pipeline depth.

Some (i.e., the non-adaptive), but not all of the methods have
been proposed and evaluated before in the context of dual-clus-
ter processors. To the best of our knowledge, no other study of
instruction distribution heuristics for quad-clustered, dynami-
cally-scheduled superscalar processors has been published. Of
course, there is a multitude of architectural parameters that are
relevant for clustered designs and for the methods we studied.
Moreover, cluster-aware compiler scheduling techniques war-
rant further attention. However, such an extensive investigation
is not possible given the limited space available. Nevertheless,
we study a variety of representative configurations varying a
set of key architectural parameters.

The rest of this paper is organized as follows. In Section 2,
we briefly discuss a number of trade-offs relevant to the design
of instruction distribution methods. Here, we also discuss our
methodology. In Section 3 we present a number of non-adap-
tive heuristics and evaluate their performance. In Section 4, we
discuss a number of adaptive heuristics. In Section 5, we inves-
tigate the sensitivity of the better performing heuristics to
increased inter-cluster communication latency and front-end
pipeline stages. In Section 6 we review related work. Finally, in
Section 7 we summarize our findings and offer concluding
remarks. For clarity we use the term distribution method in

Instruction Distribution Heuristics for Quad-Cluster,
Dynamically-Scheduled, Superscalar Processors

Amirali Baniasadi
Electrical and Computer Engineering

Northwestern University
amirali@ece.northwestern.edu

Andreas Moshovos
Electrical And Computer Engineering

University of Toronto
moshovos@eecg.toronto.edu

place of instruction distribution method. We also use communi-
cation instead of inter-cluster communication. Finally, we use
the terms centralized and non-clustered architecture inter-
changeably.

2 Distribution Trade-offs and Methodology
In this Section, we discuss the trade-offs involved in devel-

oping instruction distribution methods. Throughout this study
we assume a uniform, quad-cluster organization (the details are
given later in this Section). The front-end delivers instructions
which are then distributed to the four clusters via a distribution
mechanism. Our focus is on this distribution mechanism. As
we later show, this assignment process can dramatically impact
performance. We assume that each cluster contains each own
scheduler and set of functional-units. Furthermore, we assume
that once an instruction is assigned to a cluster the decision is
final. An alternative would be to decouple execution resources
and schedulers, however, such a study is beyond the scope of
this paper. Each cluster has its own set of functional units
including data cache ports. Dependent instructions can issue
back-to-back provided that they both reside in the same cluster.
However, propagating results across clusters requires addi-
tional cycles.

Throughout this study, our goal is to maximize performance
through appropriate distribution methods. To achieve maximal
performance an ideal schedule is needed. However, this is a
hard problem even for a centralized architecture. Accordingly,
it is convenient to approach distribution as a problem of mini-
mizing clustering-induced stalls compared to an equivalent
(i.e., same overall instruction window and resources) central-
ized architecture. Clustering-induced stalls are either the result
of limited per cluster issue bandwidth (and in general, resource
distribution including functional units) or of inter-cluster com-
munication latencies.

In contrast to a centralized configuration, each cluster is lim-
ited to only a fraction of the total issue slots per cycle (for
example, each of the four clusters can issue only 2 instructions
of the total of 8 per cycle). Accordingly, it is possible for an
otherwise ready-to-issue instruction to get stalled in one cluster
while free issue slots exist in other clusters. Moreover, since we
assume that it takes additional cycles to propagate results
across clusters, it is possible for an instruction to get stalled
waiting for data that is currently available at another cluster.
However, it is not strictly true that our mechanism should mini-
mize such stalls. To be precise, it is only those stalls that impact
the critical path through the computation that are really impor-
tant. It may be possible to tolerate some stalls. Accordingly, we
can categorize stalls into benign (those that do not affect per-
formance compared to a centralized organization) and harmful.
An example illustrating some of the trade-offs is given in Fig-
ure 1.

While maximum performance is desirable, the potential per-
formance benefits of a distribution method should be weighted
against its cost and complexity. Of particular concern is the
size of any auxili ary structures used. For example, in Section 4,
we wil l study a number of methods that significantly improve
performance while util izing sizeable cache-like structures.

Depending on the real-estate available on-chip, this space may
be better used for other purposes (e.g., branch prediction).

Moreover, care must be taken to consider not only IPC
improvements but also the potential impact on clock cycle and
pipeline depth. Besides the number of steps required by the
method, particular attention should also be given to the type of
information used. It is desirable to use information that is
readily available at the decode stage or earlier and preferably
early in the clock cycle. For example, in Section 3, we will
examine methods that utilize dependence information. While
such information can be easily determined (e.g., via the register
renaming mechanism), we may not have enough time to utili ze
it during the decode phase without introducing an additional
stage or prolonging the clock cycle.

Before we start to describe and evaluate various methods we
first discuss our methodology. We have used the SPECint’95
programs which we compiled for the MIPS-4-like architecture
used by the Simplescalar simulation toolset [3]. We used
GNU’s gcc compiler (flags: -O2 -funroll-loops -finline-func-
tions). To attain reasonable simulation times we modif ied the
standard train or test inputs. Table 1 reports the dynamic
instruction count. In the interest of space, we use the abbrevia-
tions shown under the “Ab.” column.

We have modified Simplescalar’s out-of-order simulator to
model a variety of clustering configurations and instruction
distribution methods. The base configuration is detailed in
Table 2. Our base processor is capable of executing up to 8
instructions per cycle and is equipped with a 256-entry instruc-
tion window. Moreover, an 128-entry load/store scheduler
(load/store queue) capable of scheduling up to four loads and
stores per cycle is used to schedule load/store execution. This
scheduler implements ideal memory dependence speculation
[11]. Previous work has shown that memory dependence spec-
ulation is particularly important for clustered architectures.
Moreover, it has been shown that it is possible to approach
ideal memory dependence speculation via prediction [5,11].

Figure 1: Example illustrating some of the performance trade-
offs in instruction distribution. We assume a dual-cluster
configuration and unit latencies for all operations.
Furthermore, we assume single-issue clusters. (a) Code
fragment with arrows representing data dependences and
boxes instructions. (b) A cluster assignment that maximizes
performance. Notice that while it takes an additional cycle to
propagate C’s result, this does not negatively impact
performance. (c) A non-optimal cluster assignment. Execution
is delayed while A’s result is propagated between the two
clusters.

A

B

D

C A
B
D

C A
C

D
B

(a) (b) (c)

clust. 0 clust. 1 clust. 0 clust. 1

3 Non-Adaptive Methods
We have investigated both adaptive and non-adaptive meth-

ods. Non-adaptive methods use fixed policies that do not
change during run-time. For example, always selecting the
cluster with fewest instructions. Adaptive methods, on the
other hand, base their decisions on dynamically collected infor-
mation. For example, whether the cluster assignment for a par-
ticular instruction resulted in a stall last time it was executed.
In this Section, we are concerned with non-adaptive methods.
Further information on adaptive methods is given in Section 4.

We have investigated a variety of non-adaptive heuristics
with varying complexity and performance characteristics. Here
we restrict our attention to the following representative subset:
First-Fit (FF), Modulo (MOD1 and MOD3), Dependence-based

(DEP), Slice (SLC), Branch-Cut (BC), Load-Cut (LC) and
Dependence-Depth-based (DDB). The first two methods do not
utilize program-related information, while the rest do. We have
considered dependences, instruction types and dataflow depth
as alternative sources of program-related information.
First-Fit (FF): In this method we assign instructions to the
same cluster until it fills up completely. Then we move to the
next cluster and do the same. The primary advantage of this
method is its simplicity. A possible implementation comprises
a per cluster global-AND of the occupied flags of the cluster’s
reservation stations (assuming an RUU-like implementation
[15]) and a global current-cluster pointer. An incoming instruc-
tion is assigned to the current cluster so long there is space
available (the cluster’s global-AND signal is 0, i.e., there is at
least one free slot available). Otherwise, the current-cluster

pointer advances to the next in order cluster1. The impact of
this method on decode/dispatch latency should be minimal as
the information required is independent of the instructions
themselves and can be made available early in the pipeline.
While simple, this method makes no explicit attempt to mini-

mize neither communication- nor issue-induced stalls. Never-
theless, dependent instructions tend to be close in the
instruction stream. This often helps control communication-
induced stalls.
Modulo Methods (MODn): As we will see in Section 3.1, the
first-fit method fails to use issue-bandwidth efficiently. To
improve issue-bandwidth utilization while keeping complexity
at a minimum, we have investigated a variety of modulo n
(MODn) methods. In these methods, instructions are assigned to

clusters in a modulo n fashion where n is a small integer. For
example, in the modulo 3 (MOD3) method the first three instruc-

tions are assigned to cluster 0, the next three to cluster 1 and so
on. Compared to FF, these methods distribute instructions more
fairly among clusters resulting in a better utili zation of issue-
bandwidth. We have experimented with a variety of values for
n and found that the optimal value differs per program. Here,
we restrict our attention to MOD1 and MOD3. As with first-fit,

the information required by modulo methods can be made
available early in the pipeline. While fairly simple, MOD3 per-

forms surprisingly well.
Dependence-based (DEP): Neither of the methods described
so far leverages program-related information. The dependence-
based method uses data-dependence information in an attempt
to reduce communication-induced stalls. In this method we aim
to assign dependent instructions to the same cluster. This is
done as follows: When decoding an instruction, we attempt to

Program Ab. IC Program Ab. IC
126.gcc gcc 1,317 M 130.li li 207 M
129.compress com 154 M 124.m88ksim m88 196 M
099.go go 134 M 134.perl per 177 M
132.ijpeg ijp 130 M 147.vortex vor 377 M

Table 1: Benchmark Execution Characteristics. Instruction counts (“IC” columns) are in millions.

Default Non-Clustered Configuration
 Branch Predictor 64K GShare+64K bimodal w/ 64K selector Fetch Unit Up to 16 instr. per cycle.

Instruction Window Size 256 entries Load/Store Queue 128 entries, 4 loads or stores per cycle

Issue/Decode/Commit
Bandwidth

8 instructions / cycle Functional Unit
Latencies

same as MIPS R10000

L1 - Instruction cache 64K, 2-way SA, 32-byte blocks, 2 cycles L1 - Data cache 64K, 4-way SA, 32-byte blocks, 2 cycles

Unified L2 256K, 4-way SA, 64-byte blocks, 12 cycles Main Memory Infinite, 100 cycles

Default Clustered Configuration

Clusters 4, each 2-way issue w/ uniform distribution
of functional units
64-entry windows and 32-entry load/store
queues per cluster

Inter-cluster delay 1 cycle both for registers and store-load
forwarding

Table 2: Base configuration details. We model an 8-way aggresive, dynamically scheduled superscalar processor having a 256-
entry scheduler and an 128-entry load/store queue. Also shown is the default quad-cluster configuration.

1. Using a global “ is there a free slot available?” signal per cluster
makes distribution a serial process; we have to wait until the first
instruction is assigned before probing for slot availabil ity for the
second instruction. To do in-parallel cluster assignment of multiple
instructions we may use a population count circuit per cluster. This
does not have to be complete population count circuit as the num-
ber of instructions that can be assigned per cycle is limited (i.e.,
decode width). Accordingly, we only care whether up to that num-
ber of slots are available per cluster.

assign it to the same cluster as its parents. If an instruction has
multiple parents that are assigned to different clusters we pick
the cluster holding the youngest in program order parent (i.e.,
closest to this instruction). (We have experimented with other
alternatives and found no signif icant performance variations.)
If the parents have long committed, we just pick the cluster
with the fewest instructions. The data-dependence information
required by this method can be made available via the register
renaming mechanism. Depending on the particular implemen-
tation, deferring cluster assignment till after register renaming
may negatively impact the clock cycle or force us to introduce
additional pipeline stages.
Slice (SLC): Using the DEP method, we often find that the par-
ents of an instruction are assigned to different clusters. This is
the result of the limited, forward-dependence-based scope of
the DEP method. To further reduce communication-induced
stalls it would be better to assign all parents and their consum-
ing child to the same cluster. This is the goal of the slice
method. To do so, we employ the method proposed by Canal,
Parcerisa and González [4]. An auxiliary, PC-indexed table
(the slice table) is used to re-construct the data-flow graph on
the fly. Eventually, a common tag is assigned to all instructions
belonging to the same slice. This tag is used to assign all
dependent instructions to the same cluster the next time they
are encountered. If no space is available in that cluster we pick
the cluster with the fewest instructions. This method reduces
communication stalls since instructions within a slice will
reside mostly in the same cluster. Moreover, our results show
that issue bandwidth is used efficiently. However, these
improvements come at the expense of an auxiliary table. Com-
pared to DEP, the slice-table-provided tag can be made avail-
able much earlier than the register-dependence information
(since the slice table is PC-indexed). We classify this technique
as non-adaptive as it does not utili ze explicit information about
the success of past cluster assignment decisions. We assume
infinite slice tables in our experiments.
Branch- and Load-Cut (BC and LC): While DEP and SLC

offer superior performance they may be too complex or costly
to implement depending on implementation specif ics. Accord-
ingly, we investigated methods that leverage other program-
related information that can be easily extracted at run-time. In
particular, we investigated methods that utilize instruction-type
information. In the branch-cut method we assign consecutive
instructions to the same cluster til l we reach a branch instruc-
tion. The intuition behind this heuristic is that instructions
within a basic-block are mostly dependent. We also investi-
gated variations of the branch-cut method where we changed
clusters only on backward branches. In doing so, we were
motivated by work in thread-level speculation where loop itera-
tions may be assigned to separate clusters for parallel execution
(see Section 6). However, we didn’ t observe signif icant perfor-
mance improvements. Accordingly, we restrict our attention to
the general, all branch-cut method.

We also experimented with a load-cut method where instruc-
tions are assigned to the same cluster until a load is encoun-
tered. The load and the instructions that follow (till the next
load) are then assigned to the next available cluster. The intu-
ition behind this method is that loads often lead a chain of

dependent instructions. Accordingly, the hope is that changing
clusters upon encountering a load should force mostly depen-
dent instructions to the same cluster, while distributing inde-
pendent instructions across clusters. Whenever a sequence of
adjacent loads is encountered we do not change clusters.
Dependence-Depth-based (DDB): Finally, in this method we
categorize instructions based on its position (depth) in the DFG
(Data Flow Graph). Only instructions currently active in the
instruction window are considered in this process. If an instruc-
tion has no parents alive in the window, it belongs to depth 0. If
it has only its direct parents alive it belongs to depth 1, and so
on. We assign an instruction to the cluster having the least
number of instructions of the same level while taking depen-
dence information also into account (when a choice exists, we
will assign to the same cluster as its closest parent). The intu-
ition behind this method is that in a centralized configuration,
instructions at the same level would probably issue around the
same time (ignoring cache misses and other multi-cycle opera-
tions). Therefore by distributing them among clusters we could
use the available issue bandwidth more efficiently. While this
method may be fairly complex to implement, we include it as it
approximates a resource-based scheduling algorithm.

3.1 Non-Adaptive Method Performance
In this Section, we present our analysis of the non-adaptive

methods. We approach each method from two different per-
spectives. First we approach each method as an improvement
over the most simple non-adaptive method (FF). Ultimately
however, clustering is viable only if it results in a sufficiently
higher operating frequency compared to a non-clustered imple-
mentation. For this reason, we also compare each method with
a non-clustered architecture with the same overall resources.

While performance is our ultimate metric, it is desirable to
get additional insight on how each method attacks issue-band-
width restrictions and inter-cluster communication delays. To
do so, we use a two tiered approach. First we report the fraction
of instructions that are delayed as a result of communication or
of issue bandwidth limitations. However, the two performance
degrading factors interact with each other making it difficult to
isolate their impact. Accordingly, we also study each perfor-
mance degrading factor independently (more on this later on).

Figure 2(a) reports relative performance for DEP, BC, LC,
MOD1, SLC, DDB and MOD3 from left to right. The base configu-

ration is a clustered architecture utilizing the FF method. We
can see that on the average, DEP performs the worst among all
heuristics (excluding FF of course). With this method instruc-
tions find that their two parents are assigned to different clus-
ters. Also, this method tends to assign too many dependent
instructions to the same cluster. The first phenomenon results
in inter-cluster communication induced delays, while the sec-
ond phenomenon results in under-utilized issue bandwidth. As
expected, (with the exception of go) the SLC method improves
performance over DEP by placing all dependent instructions in
the same cluster while distributing unrelated slices across clus-
ters. The instruction-type-based heuristics LC and BC offer
competitive and some times better performance even though
they do not require an auxiliary table. The DDB method also
performs similarly for most benchmarks. Further improve-

ments may be possible by utilizing better instruction latency
estimates (currently DDB assumes unit latencies for all instruc-
tions). Finally, MOD3 performs the best. It offers a 45.6%

improvement over FF. Apparently, this method strikes a good
balance in assigning some dependent and some independent
instructions to the same cluster. Go seems to benefit less from
the various methods compared to the other benchmarks. This is
mostly due to the relatively low branch prediction accuracy for
this benchmark which results to relative small number of
simultaneously active instructions. Consequently there isn’ t
much parallelism and littl e room for improving performance
over the simple FF method. Branch prediction accuracy is also
mostly responsible for the higher performance benefits
observed for vortex and to a lesser extend for m88ksim. In
these programs, the vast majority of reservation stations are
occupied. Moreover, these programs exhibit relatively high
parallelism. Consequently, there is much to be gained by care-
fully distributing instructions across clusters. Moreover, these
programs tend to be more tolerant to inter-cluster communica-
tion overhead (parallelism helps to tolerate these delays).

Figure 2(b) reports the fraction of committed instructions
that are delayed waiting for a result from a different cluster
(lower bar) or because issue-bandwidth was unavailable (upper
bar). Whenever an instruction is delayed both due to inter-clus-
ter communication and issue-bandwidth limitations we assign
it to the inter-cluster communication delayed category. In gen-
eral, performance and the fraction of instructions that are
delayed are not correlated. However, in most cases, the best a
method is, the higher the fraction of instructions that are
delayed. This is the result of higher concurrency. (When distri-
bution is not good, very few instructions are executing at any
given point, resulting in very few instructions that are ready, or

that would be ready if they had immediate access to the results
in other clusters.) An observation can also be made about the
relative fractions of instructions delayed due to communication
or issued-bandwidth and performance. For the worse perform-
ing methods (FF and DEP), most instructions are delayed due
to insufficient issue-bandwidth (upper bar). As we distribute
instructions to better utilize issue-bandwidth, communication
delays start to become more common (lower bar).

 In a realistic clustered configuration, issue-bandwidth
restrictions and communication delays interact making it diffi-
cult to draw conclusions. Accordingly, we introduce four
machine models: NI-NC, I-NC, NI-C and I-C. In this notation, I

indicates that the model includes per cluster issue bandwidth
restrictions, while C indicates that communication delays are
incurred. The inverse notation, NI and NC, indicates that the
model does not include per cluster issue-bandwidth restrictions
or inter-cluster communication delays respectively. The NI-NC

model corresponds to a non-clustered architecture while the I-C

model corresponds to a realistic, clustered architecture. The
two other models do not correspond to realistic architectures.
However, they provide additional insight on the effectiveness
of each method. The NI-C model shows how well we could
have done if no issue-bandwidth restrictions were applicable
(total issue bandwidth is still limited to 8 instructions per cycle,
however, these instructions can come from any cluster, possi-
bly all from the same one). Similarly, the I-NC model shows
how well the heuristic performs in attacking issue bandwidth
restrictions (no communication stalls possible).

Figure 3 reports performance improvements over the base
clustered configuration that uses the FF method. Due to space
limitations we restrict our attention to FF, MOD3, the instruc-

tion-type-based BC and the dependence-based SLC. As

Figure 2: (a) Performance of non-adaptive heuristics over a base configuration utilizing the first-fit (FF) method. Here we
approach each method as an improvement over the simplest method we studied. Higher is better. (b) Fractions of committed
instructions that are stalled as the result of inter-cluster communication (lower part) or issue-bandwidth restrictions (upper part).
The following methods are reported: FF, DEP, BC, LC, MOD1, SLC, DDB and MOD3 from left to right per benchmark (same

order as in part (a) with the addition of FF).

0%
20%
40%
60%
80%

100%

gcc com go ijp li m88 per vor AVG
DEP BC LC MOD1 SLC DDB MOD3

0%

20%

40%

60%

80%

100%

gcc com go ijp li m88 per vor

(a)

(b)

COMMUNICATION ISSUE

expected, the FF method (part (a)) does not perform well com-
pared to the non-clustered architecture (NI-NC) (there are no I-
C bars here since I-C with FF is the base case). In the best case
of go, the difference is about 45%, while, it grows as large as
approximately 110% for m88ksim. The two models NI-C and I-
NC reveal that much of this performance loss is the result of
issue-bandwidth distribution. When issue bandwidth is not
restricted (NI-C), performance is very close to that of the non-
clustered architecture (NI-NC). However, when issue is
restricted and even without any communication delays (I-NC),
performance drops rapidly and is very close to the realistic
clustered architecture (I-C). While, the FF method is somewhat
sensitive to communication delays, it is primarily crippled by
inefficient use of issue-bandwidth. Issue-bandwidth restrictions
seem to be more important than communication delays for BC
also (part (b)). With the exception of m88ksim, BC performs
better under NI-C than under I-NC. This trend is reversed for

most benchmarks for both SLC and MOD3 (parts (c) and (d)).

As we have seen in Figure 2, these methods perform much bet-
ter than either FF or BC. This result suggests that once we
begin using issue bandwidth more effectively, then inter-cluster
communication latencies become more important. Interest-
ingly, the differences between I-NC and NC-I are smaller for
MOD3 for most benchmarks. This result supports our previous

observation that MOD3 strikes a better balance in attacking

issue-bandwidth and communication restrictions. Notably, I-C
and NI-C perform almost identical in go, suggesting that in this
benchmark it is communication that is most important. This
can be explained by the relatively low branch prediction accu-
racy and the resulting low instruction level parallelism.

Ultimately, a clustered architecture may be viable only if it
offers better performance compared to a centralized one. For
the methods we studied this can only be the result of higher
operating frequency. It is desirable to know how much faster

Figure 3: How well some of the non-adaptive methods attack issue-bandwidth and communication restrictions. Four models are
simulated per method. The four models are derived by selectively modeling issue-bandwidth and communication restrictions. The
models are labeled with an X-Y notation, where X is either I or NI and Y is either C or NC. I indicates that issue bandwidth
restrictions are imposed, while NI that they are not. Similarly, C and NC indicate that inter-cluster communication delays are
modeled or that they are not respectively. NI-NC corresponds to a non-clustered architecture, while I-C corresponds to a realistic
clustered one. Relative performance is reported over the base clustered configuration that utili zes the FF (first-fit) method. Higher
is better.

Figure 4: Relative performance of non-adaptive method over a non-clustered organization assuming the same clock rate.
Reported are slowdowns (lower is better). These slowdowns can serve as bounds on how much faster a clustered implementation’s
clock rate has to be over an non-clustered implementation.

0%
20%
40%
60%
80%

100%
120%

gcc com go ijp li m88 per vor
0%

20%
40%
60%
80%

100%
120%

gcc com go ijp li m88 per vor

0%
20%
40%
60%
80%

100%
120%

gcc com go ijp li m88 per vor
0%

20%
40%
60%
80%

100%
120%

gcc com go ijp li m88 per vor

NI-NC NI-C I-NC I-C

(a) FF (b) BC

(c) SLC (c) MOD3

0%
10%
20%
30%
40%
50%
60%

gcc com go ijp li m88 per vor AVG

FF DEP BC LC MOD1 SLC DDB MOD3

the clock rate of the clustered architecture has to be (vs. the
centralized architecture’s clock rate) to result in higher perfor-
mance. Accordingly, we report performance slowdowns com-
pared to a non-clustered architecture assuming the same clock
frequency. These slowdowns can serve as bounds on how much
faster the clock cycle of the clustered implementation must be.
The results are shown in Figure 4. MOD3, the best non-adap-

tive method, is 17% slower than the centralized configuration.
Notice that some minor differences in the trends exhibited
compared to Figure 2, are the result of using a different base
configuration (in Figure 2, we used the FF-based clustered con-
figuration as our base).

In this Section, we have discussed and evaluated the perfor-
mance of various non-adaptive heuristics. We have found that it
is possible to significantly improve performance over the sim-
plistic first-fit method. However, we have also found that there
is still a sizeable gap in performance (17% on the average for
the best performing method) compared to a centralized archi-
tecture operating at the same frequency. In the next section we
propose methods that aim at reducing this performance gap.

4 Adaptive Methods
In this section, we present and evaluate a number of adaptive

methods. The intuition behind these methods is that programs
tend to exhibit non-random behavior. Accordingly, it may be
possible to learn and avoid inefficient cluster assignments. We
have investigated two classes of adaptive techniques. The first
class is based on voting, while the second attempts to improve
over the fixed modulo techniques we described in the previous
section.
Voting-based Methods (CNT-X): The idea behind these
methods is to identify problematic instruction assignments and
try to avoid them the next time the same instructions are
encountered. For example, these methods can improve instruc-
tion distribution whenever a program follows the same path
repeatedly. In these methods we start with an underlying non-
adaptive technique. Upon executing an instruction we record
information about the success or failure of the current cluster
assignment in a Cluster Prediction Table (CPT). We experi-
mented with PC-indexed CPTs so that they can indexed early
the pipeline. A CPT entry contains four 2-bit up/down saturat-
ing counters one per cluster. The counters indicate how appro-
priate a cluster might be for the matching instruction, with 11
being the best and 00 the least. Initially, all counters are set to
01, indicating that all clusters are equally appropriate. As soon
an instruction becomes ready we update the corresponding
counter in the CPT. If the instruction can issue immediately, we

increment the counter, otherwise we decrement it2. The next
time the same instruction is encountered, the CPT is accessed
in parallel with the non-adaptive method. The instruction is
then assigned to the cluster with the highest counter value
(most appropriate based on past experience). If there are more
than one qualifying clusters, we use either the non-adaptive

method’s recommendation (so long as it is one the clusters with
the highest counter values) or choose the cluster with less
instructions.

As described, the voting-based method reacts only to issue-
bandwidth-induced stalls. We used these stalls as they can eas-
ily identif ied locally at each reservation station (ready signal
vs. allowed to issue). In our simulation environment it is
straightforward to also detect scenarios where inter-cluster
communication is at fault. However, the specifics of a realistic
implementation are beyond the scope of this paper. Accord-
ingly, we restrict our attention to using only issue-bandwidth
related stalls for our adaptive methods.
Adaptive-Modulo (MODa): As we have seen in Section 3,
MOD3 performed best among the non-adaptive techniques. We

have also noted that the best modulo value varied per bench-
mark, with 3 being a good enough comprise across all bench-
marks we studied. Motivated by these observations we have
developed the adaptive-modulo method. In this method, we
start with an initial modulo value of 3. However, as execution
progresses we keep statistics on how often instructions are
stalled as the result of insufficient issue-bandwidth. After a pre-
specified number of instructions have executed (1 million in
our experiments) we try a different modulo value (e.g., increase
to 4). If the new modulo value results in fewer instructions
being stalled, we continue changing the modulo value (e.g.,
move to 5). Otherwise, we alter our direction of change (e.g.,
decrement as opposed to increment). Using this policy, the
modulo value is dynamically adjusted to one that offers better
performance. As described, this policy can get stuck to a local
maximum since it relies on comparisons between adjacent val-
ues. Accordingly, we have also tried a different policy where
we sweep over a pre-specified range of modulo values (i.e., 1
to 16) before deciding on the best one (this scan is repeated at
regular intervals, i.e., 100M instructions). However, we did not
find significant performance improvements.

The primary advantage of this method is that it offers some
adaptability without requiring many additional resources. A
similar method was proposed for selecting an appropriate his-
tory-depth for branch prediction [8].

4.1 Adaptive Method Performance
We report results assuming infinite cluster prediction tables.

We have also experimented with finite prediction structures
and found that 16K-entry non-tagged, counter-based prediction
tables perform very close and sometimes better than the infinite
table (better accuracy is possible via constructive interference).
As with the non-adaptive techniques, we first compare their
performance using the most simple method (FF) as our base.
Moreover, we report a breakdown of stalled instructions and
use our four models (presented in Section 3.1) to isolate issue-
bandwidth and communication related stalls. Finally, we com-
pared with a non-clustered architecture assuming the same
clock rate.

We have experimented with various voting-based methods.
Here we restrict our attention to voting-based extensions to

MOD1
3, Branch-Cut (BC) and Slice (SLC). We also study the

adaptive-modulo technique. Figure 5(a) shows relative perfor-
mance improvements over the FF-based clustered architecture.

2. Actuall y, updates are done at commit time. To do so, a bit is kept in
the reservation station. This bit is set when the reservation station’s
ready signal is set, but the ready-select logic does not all ow the
instruction to execute. Upon commit, the corresponding CPT entry
is updated accordingly.

For ease of comparison, the relevant non-adaptive methods are
also included (repeated from Figure 2). As expected, for most
cases the adaptive-techniques improve performance over the
underlying non-adaptive method. On the average, the perfor-
mance improvements over FF are approximately 50%, 49%,
39% and 50% for MODa, CNT-MOD1, CNT-BC, and CNT-SLC

respectively. The performance improvements over FF for
MOD3, BC and SLC were 46%, 37% and 41% respectively. The

best performing method is CNT-SLC. However, CNT-MOD1

and MODa offer very similar performance improvements.

Recall, that CNT-SLC requires both a slice table and cluster
prediction table. In contrast, CNT-MOD1 requires only a clus-

ter prediction table. Finally, MODa has minimal space require-

ments.
Figure 5(b) shows a breakdown of delayed instructions for

the adaptive methods. The lower part of each bar reports the

fraction of committed instructions that were delayed due to
inter-cluster communication. The upper part shows the fraction
of committed instructions delayed due to issue-bandwidth
unavailability. Again, it appears that a better a method per-
forms the more instructions are stalled. However, the differ-
ences among the various methods are small. This further
justifies using the four models of issue-bandwidth and commu-
nication (see Section 3.1) to determine how sensitive each
method is to each of these restrictions. The results are shown in
Figure 6 where the base case is the clustered FF-based configu-
ration. We restrict our attention to MODa and CNT-MOD1. The

general trends with respect to issue-bandwidth and communi-
cation restrictions have not changed by much. However, the
gap between NI-NC and the other models has been reduced
and so have, for the most part, the differences between NI-C
and I-NC.

Finally, in Figure 7 we report the relative performance of our
adaptive methods over a non-clustered architecture with the
same clock rate. The voting-based methods perform very simi-

Figure 5: (a) Adaptive Method Performance. Performance improvements are over the clustered architecture using the FF method.
For ease of comparison we also include the corresponding non-adaptive methods. A CNT-X notation indicates a counter-based
extension of the X non-adaptive method. Higher is better. (b) Fractions of committed instructions that are stalled as the result of
inter-cluster communication (lower part) or issue-bandwidth restrictions (upper part). The following methods are reported:
MODa, CNT-MOD1, CNT-BC and CNT-SLC from left to right per benchmark (same order as in part (a) excluding the non-

adaptive methods).

Figure 6: How well some of the adaptive methods attack issue-bandwidth and communication restrictions. Four models are
simulated per method. See Figure 3 for an explanation of the four models. Higher is better.

0%
20%
40%
60%
80%

100%

0%

20%
40%

60%
80%

100%

(a)

gcc com go ijp li m88 per vor

(b)

COMMUNICATION ISSUE

MOD3 MODa CNT-MOD1 BC CNT-BC SLC CNT-SLC

gcc com go ijp li m88 per vor AVG

0%

20%

40%

60%

80%

100%

120%

gcc com go ijp li m88 per vor
(a) MODa

0%

20%

40%

60%

80%

100%

120%

gcc com go ijp li m88 per vor

NI-NC NI-C I-NC I-C (b) CNT-MOD1

3. We did not observe a significant difference compared to counter-
based extensions to MOD3.

larly, with MODa offering competitive performance. CNT-

MOD1 has narrowed the gap down to 15.2%, CNT-SLC to

14.1% while MODa to 14.6%. In absolute terms, the improve-

ments appear relatively minor. However, they are sizeable
when compared to the original gap between the best non-adap-
tive method and the centralized architecture (about 3% off the
maximum possible of 17%).

In this section, we have shown that it is possible to further
improve performance using adaptive techniques. The best per-
forming methods where the adaptive-modulo and the counter-
based extension to MOD1.

5 Sensitivity Analysis
In this section, we investigate the sensitivity of some meth-

ods to key architectural parameters. In Section 5.1, we vary
inter-cluster communication latency, while in Section 5.2, we
investigate how tolerant our mechanisms are to increases in the
front-end pipeline depth. Finally, in Section 5.3, we we study
configurations with 4-way, 2-way and single-issue clusters.

5.1 Inter-Cluster Communication Latency
Figure 8 reports performance when the inter-cluster commu-

nication delay is increased to two cycles. We report slowdowns
over the default centralized configuration operating at the same
frequency. No additional communication delays are imposed
for the base configuration. As expected, the performance gap
increases. CNT-SLC is the best performing method being about
24% slower than the base. MOD3 remains the best non-adap-

tive method. While MODa still improves over the non-adaptive

methods, the other, voting-based adaptive methods now per-
form signif icantly better.

5.2 Front-End Latency
We also take a look at how increasing the number of front-

end pipeline stages impacts some of the best performing meth-
ods. As we discussed in Section 2, depending on the specifics
of the pipeline, the information utilized and the steps required
by a distribution method, we might be forced to introduce addi-
tional pipeline stages. Figure 9 reports how performance varies
for one (part (a)) or two (part (b)) additional decode stages. We
restrict our attention to BC, CNT-BC, SLC, and CNT-SLC. We
choose these methods since they utilize program-information
and/or auxil iary tables. Consequently, they are more likely to
impact the depth of the front-end pipeline. We report slow-
downs with respect to the default centralized configuration that
does not include any additional decode stages. Inter-cluster

communication latency is one cycle. Overall, the performance
gap has increased. However, the relative trends do not change
by much. The adaptive methods still perform better than the
non-adaptive ones, with CNT-SLC being the best one.

5.3 Issue-Bandwidth
Finally, we experiment with three quad-cluster configura-

tions: One made up of 4-way clusters, one with 2-way clusters
and another with single-issue clusters. The total issue band-
width is 16, 8 and 4 respectively. In all cases, we assume 2
cycles for inter-cluster communication. The results are shown
in Figure 10, parts (a) through (c). For ease of comparison we
use the 4-way centralized configuration as our base case. Num-
bers greater than 1 represent speedup while numbers lower
than 1 represent slowdown.

As expected, the higher the issue bandwidth of each cluster
the higher the performance. For the single-issue cluster config-
uration of part (c) all distribution methods perform similarly
with the exception of BC and CNT-BC. Notably, CNT-BC per-
forms worse that its non-adaptive counterpart BC. This is
because rarely free issue-slots exist in other clusters or because
selecting an alternate cluster introduces additional communica-
tion delays.

As we move to dual-issue and quad-issue clusters (parts (b)
and (a)) the BC- and SLC-based methods perform better than
MODa and MOD3. CNT-MOD1, however, remains competi-

tive. SLC performs poorly for the 4-way cluster configuration.
Recall that SLC will spread “unrelated” slices accross clusters.
However, since it does not consider memory dependences, it
often assigns dependent load-stores to different clusters. This
results in increased store-load forwarding delays. Given that
clusters are 4-way issue, we are better off assigning multiple
slices to the same cluster rather than distributing them in a
round-robin fashion. CNT-SLC detects innefficient cluster
assignments and improves upon them. Notably, BC perfoms
very close to both CNT-SLC and CNT-BC. This makes BC an
attractive choice for this configuration. Recall, that the cost of
BC is low compared to both CNT-BC and CNT-SLC.

6 Related Work
A plethora of studies have investigated partitioning as a way

of scaling over existing, centralized dynamically-scheduled
superscalar architectures. A class of methods aims at extracting
parallelism by making non-continuous or large prediction-
based steps in the dynamic instruction stream, e.g.,
[1,7,13,14,16]. Here we restrict our attention to works that

Figure 7: Performance of the adaptive methods over a non-clustered architecture with the same clock rate. Shown are slowdowns,
accordingly, lower is better.

0%

10%

20%

30%

gcc com go ijp li m88 per vor AVG
MOD3 MODa CNT-MOD1 BC CNT-BC SLC CNT-SLC

investigated partitioning a traditional architecture.
Palacharla, Jouppi and Smith studied the delay characteris-

tics of key processor structures [12]. They demonstrated that it
wil l not be possible to naively scale existing designs without
adverse effects on clock cycle. They proposed using clustering
as a solution and studied various non-traditional scheduling
mechanisms for dual-clustered architectures (e.g., FIFO-based
schedulers) and also used dependences to optimize cluster
assignment. Due to the limited space available, an investigation
of these alternative scheduler organizations is beyond the scope
of this paper.

Farkas, Chow, Jouppi and Vransevic proposed and studied a
dual-clustered architecture along with a cluster-aware static
scheduling technique [6]. Canal, Parcerisa and González stud-
ied a variety of non-adaptive instruction distribution methods
also for a non-uniform dual-clustered architecture [4]. They
also proposed the slice-based method and explained how slice
information can be extracted dynamically. Finally, the ALPHA
21264 already employs a dual-cluster micro-architecture [9].

7 Conclusion
Clustering provides a potentially viable path for wider and

deeper instruction windows and higher operating frequencies.
In this work, we have studied a variety of instruction distribu-
tion methods for quad-cluster processors. We studied non-
adaptive methods and adaptive techniques with varying com-
plexity and cost requirements. These methods utilized various
types of information, including instruction-type, dependences
and past history to better distribute instructions across clusters.

We have found that a relatively simple method, MOD3

offers competitive performance. It was within 17% of a non-

clustered organization operating at the same frequency. More-
over, we have seen that it is possible to reduce this gap down to
about 14% via a counter-based prediction scheme. While in
absolute terms this is a minor improvement, it does represent a
sizeable reduction in relative terms (as compared to the 17%
gap with MOD3). We have also investigated the sensitivity of

our methods to inter-cluster communication latency and front-
end pipeline depth. We found that performance is much more
sensitive to inter-cluster communication for the better perform-
ing methods. The performance gap for the best performing
method increased to 24% when inter-cluster communication
latency was increased two cycles. In contract, even when two
additional front-end pipeline stages were introduced, this gap
was only 20%.

While we studied a reasonable set of configurations and
methods, there is still a plethora of design points and possible
other methods that warrant further study. There are multiple
directions for further experimentation, including non-uniform
cluster organizations, restrictions on inter-cluster communica-
tion bandwidth, the effect of previously proposed compiler
optimizations [6] and alternative scheduler designs such as
those appearing in [12]. Of particular interest are organizations
where execution clusters (i.e., functional units, register files
and cache ports) and schedulers are decoupled. In such a
design, an instruction is first assigned to a scheduler, and then,
based on input operand availability is sent to the appropriate
execution cluster.

Acknowledgements
We thank the anonymous reviewers and Eric Sprangle
for their insightful suggestions. We also thank Scott

Figure 8: Performance of some methods when inter-cluster communication latency is increased to 2 cycles. The default centralized
configuration without (no communication delays) is the base. Lower is better.

Figure 9: Performance of some methods with deeper front-end pipelines. We include methods that utilize instruction-type and
dependence information. Slowdowns are reported over the default non-clustered architecture without any additional front-end
stages. Part (a) introduces one more decode stage while part (b) two.

0%
10%
20%
30%
40%

gcc com go ijp li m88 per vor AVG

MOD3 MODa CNT-MOD1 BC CNT-BC SLC CNT-SLC

0%

10%

20%

30%

40%

gcc com go ijp li m88 per vor AVG

BC CNT-BC

0%

10%

20%

30%

40%

gcc com go ijp li m88 per vor AVG

(a) (b)SLC CNT-SLC

Breach for early discussions that lead to this study. This
research was supported by an NSF Career Award.

References
[1] H. Akkary and M. A. Driscoll . A dynamic multithreading proces-

sor. In Annual International Symposium on Microarchitecture-31,
Nov. 1998.

[2] M. T. Bohr. Interconnect scaling - the real limiter to high perfor-
mance ULSI. International Electron Devices Meeting Technical
Digest, 1995.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set, version
2.0. Technical Report Computer Sciences Tech. Report #1342,
University of Wisconsin-Madison, June 1997.

[4] R. Canal, J.M. Parcerisa, and A. Gonzalez. Dynamic Cluster As-
signment Mechanisms. In Proc. High Performance Architecture
6, Jan. 2000.

[5] G. Z. Chrysos and J.S. Emer. Memory dependence prediction us-
ing store sets. In Proc. International Symposium on Computer Ar-
chitecture-25, June 1998.

[6] K. I. Farkas, P.Chow, N. P. Jouppi, and Z. Vranesic. The Multi-
cluster Architecture: Reducing Cycle Time Through Partitioning.
In Proc. Annual International Symposium on Microarchitecture-
30, Dec. 1997.

[7] L. Hammond, M. Wil ley, and K. Olukotun. Data speculation sup-
port for a chip multiprocessor. In Proc. Symposium on Architec-
tural Support for Languages and Operating Systems VIII , Oct.
1998.

[8] T. Juan, S.Sanjeevan, and J.J. Navarro. Dynamic history-length

fitting: A third level of adaptivity for branch prediction. In Proc.
25th Annual International Symposium on Computer Architecture,
pages 155–166, June-July 1998.

[9] R. E. Kessler, E. J. McLellan, and D.A. Webb. The Alpha 21264
architecture. In Proc. of International Conference on Computer
Design, Dec. 1998.

[10] D. Matzke. Will Physical Scalabil ity Sabotaze Performance
Gains? . In IEEE Computer, 30(9), Sept. 1997.

[11] A. Moshovos, S.Breach, T. Vi jaykumar, and G. Sohi. Dynamic
speculation and synchronization of data dependences. In Proc. In-
ternational Symposium on Computer Architecture-24, June 1997.

[12] S.Palacharla, N. P. Jouppi, and J.E. Smith. Complexity-effective
superscalar processors. In Proc. International Symposium on
Computer Architecture-24, June 1997.

[13] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.Smith. Trace pro-
cessors. In Proc. on Annual International Symposium on Microar-
chitecture-30, Dec. 1997.

[14] G. S. Sohi, S.E. Breach, and T. N. Vi jaykumar. Multiscalar pro-
cessors. In Proc. International Symposium on Computer Architec-
ture-22, June 1995.

[15] G. S. Sohi and S. Vajapeyam. Instruction issue logic for high-per-
formance, interruptible pipelined processors. In Proc. 14th Annual
International Symposium on Computer Architecture, pages 27–
34, Pittsburgh, PA, June 1987.

[16] J.G. Steffan and T. Mowry. The potential for using thread-level
data speculation to facil itate automatic parall elization. In Proc.
High Performance Computer Architecture-4, Jan. 1998.

Figure 10: Performance as a function of total issue bandwidth. All configurations use four clusters. (a) 4-way clusters (16-way
total), (b) 2-way clusters (8-way total), and (c) single-issue clusters (4-way total). Performance is normalized to a 4-way
centralized configuration. All clustered configurations incur 2 cycles for inter-cluster communication. The base, centralized
configuration does not incur any communication delays. Higher is better.

0.0 0.5 1.0 1.5 2.0

gcc

com

go

ijp

li

m88

per

vor

AVG

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
(a) 16-way (b) 8-way (c) 4-way

MOD3

MODa

CNT-MOD1

BC

CNT-BC

SLC

CNT-SLC

CENTRALIZED

