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Abstract
As the gap between memory and processor speeds continues

to widen, cache efficiency is an increasingly important component
of processor performance. Compiler techniques have been used
to improve instruction cache performance by mapping code with
temporal locality to different cache blocks in the virtual address
space eliminating cache conflicts. These code placement techniques
can be applied directly to the problem of placing data for improved
data cache performance.

In this paper we present a general framework for Cache Con-
scious Data Placement. This is a compiler directed approach that
creates an address placement for the stack (local variables), global
variables, heap objects, and constants in order to reduce data cache
misses. The placement of data objects is guided by a temporal rela-
tionship graph between objects generated via profiling. Our results
show that profile driven data placement significantly reduces the
data miss rate by 24% on average.
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Much effort has been invested in reducing the impact of cache misses
on program performance. As with any other latency, cache miss la-
tency can be tolerated using compile-time techniques such as in-
struction scheduling [19], or run-time techniques including out-
of-order issue, decoupled execution [31], or non-blocking loads
[9]. It is also possible to reduce the latency of cache misses us-
ing techniques that include multi-level caches [18], victim caches
[17], and prefetching [26]. Reducing the frequency of cache misses
also works to reduce the performance impact of cache misses; ap-
proaches along these lines include set-associative caches [21], column-
associative caches [1], stride tolerant address mappings [10], page
coloring [20], and program restructuring to improve data [4] or in-
struction cache performance [28].

In this paper, a novel software-based data placement optimiza-
tion, called Cache-Conscious Data Placement (CCDP), is intro-
duced as a technique for reducing the frequency of data cache misses.
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To apply the approach, a program is first profiled to characterize
how data is used. The profile information then guides heuristic data
placement algorithms in finding a placement solution that decreases
predicted inter-object conflict, and increases predicted cache line
utilization and block prefetch. The generated placement solution
specifies the location of global, stack (local variables), heap, and
constants. Placement of global variables and the start of the stack
are implemented at compile time using a modified linker. Heap
variable placement is implemented at run time using customized
allocation routines.

The remainder of this paper details the design, implementa-
tion, and analysis of cache-conscious data placement. Section 2
motivates the approach by demonstrating how variable placement
can affect data cache performance. Section 3 describes the cache-
conscious data placement optimization framework. Section 4 de-
scribes the methodology used to gather the results for this paper.
Section 5 presents performance results of programs optimized with
cache-conscious data placement, and Section 6 describes related
work. Finally, Section 7 summarizes the contributions of this work.

� ������� ������� ���

Data placement is the process of assigning (virtual) addresses to
data objects. In the context of this work, we term an object as any
region of memory that the program views as a single contiguous
space. Therefore, each global variable (e.g, a scalar, structure, or
an array) is treated as a single object, and each allocated heap seg-
ment is treated as a single object. In this paper we will use the
term object and variable interchangeably. For cache-conscious data
placement, we split the objects into four categories and treat each
category differently when performing data placement:

1. Stack - All references to the stack are treated as references to
one large contiguous stack object. In this study, we chose not
rearrange the order of local variables on the stack. Instead,
the stack is profiled and placed as a single object. Since most
programs have excellent temporal and spatial locality in stack
references, this approach has worked well for the programs
we examined.

2. Global - Global variables are located in the global data seg-
ment and the addresses for these variables are determined
during compilation. The data placement algorithm will pro-
vide new starting addresses for each global variable.

3. Heap - All objects that are allocated via dynamic memory
management (e.g., malloc, realloc) are labeled as heap ob-
jects. Cache-conscious data placement is used to determine a
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preferred starting location in the data cache for these objects.
Then customized allocation routines can be used to allocate
these objects at these preferred locations.

4. Constants - All loads that come from inside the text seg-
ment are treated as loads to constant data. In this study we
do not move these constant objects, however, during place-
ment their profiling information is used to determine where
to place other objects.

An object is assigned an address when it is created. For global
variables, addresses are assigned at compile-time, typically when
the program is linked. The start of the stack is also set at link-time
or load-time. For stack and heap variables, addresses are assigned
at run time, when the dynamic storage is allocated.

The address assigned to a data object affects its location in
the data cache. An object’s address modulo the data cache block
size determines its location within a cache block. For a virtually-
indexed cache, an object’s address modulo the data cache set size
determines the cache set into which the variable will reside. Conse-
quently, data placement can be used as a mechanism to control both
the contents of a cache block and location within the cache.

With data placement to control the contents and location of data
cache blocks, it becomes possible to influence the performance of
the data cache. Consider how changing a variables placement af-
fects a data cache miss from each of the three miss classes [14]:

Conflict Misses: Conflict misses occur when the number of fre-
quently referenced blocks of memory map to the same cache
set is greater than the associativity of the cache. Blocks that
do not fit into the cache set will displace other blocks each
time they are referenced. By placing objects with high tem-
poral locality into different cache blocks, the number of cache
conflicts will decrease.

Capacity Misses: Capacity misses result when the working set of
the program does not fit in the cache. Referenced cache
blocks will displace other blocks because there is simply not
enough space in the cache to contain all the frequently ac-
cessed blocks. By moving infrequently referenced variables
out of cache blocks and replacing them with more frequently
referenced variables, cache line utilization can be increased.
With better utilization of cache lines, the working set of the
cache (in cache blocks) may be decreased, and capacity misses
may be eliminated. In addition page utilization will increase.

Compulsory Misses: Compulsory misses occur the first time a vari-
able is referenced. If the variable’s cache block has not been
previously fetched into the cache, a miss will occur. By
grouping variables with high temporal locality into the same
cache block so that they do not overlap, cache block prefetches
will be used more effectively, and compulsory misses may be
eliminated.

� � � � ����� �����	�
�����

In this section we describe the CCDP optimization framework. There
are three main parts to the optimization framework; (1) the profiler,
(2) a data placement optimizer, and (3) run-time support for custom
allocation of heap objects.

A program to be optimized is first profiled to gather informa-
tion characterizing its data usage. Two profiles are generated. In
the profiles there is an object data structure for each global vari-
able, each allocated heap object, each constant variable, and one
object for the stack. The first profile, Name, is a profile listing each
unique object encountered during execution along with the object’s

Id (name), reference count, size, and life-time information. The
second profile generated is a Temporal Relationship Graph (TRG)
between different objects. An edge between two objects in the TRG
provides an estimation of the number of cache conflicts that would
arise if these two objects were overlapped in the same cache line.

Once the Name and TRG profiles are generated they are fed
back into the compiler/linker for data placement optimization. The
data placement optimizer reorders the global data segment and de-
termines the new starting location for the data segment and the
stack. At this point, if heap optimization is performed, customized
allocation routines are generated to guide the placement of heap
objects. At run-time these customized malloc routines attempt to
allocate data at the preferred locations determined by the data place-
ment algorithm. Essential to an accurate customized malloc is the
naming strategy used to identify objects.

��� �� � 	 � ����� ��� �	� � ����� �
	 � �������
The data placement framework requires that profile information
collected in one run of the program be used to direct variable place-
ment in another run of the program. To implement this binding,
profile and placement tools must assign names to all variables. De-
sign of the variable naming strategy is an important consideration
because it has a profound effect on the quality of profile informa-
tion and the effectiveness of variable placement. There are many
strategies to choose from. The one chosen should best meet the
following two constraints: (1) variable names should not change
between runs with different inputs of a program, and (2) computing
variable names should incur minimal run-time overheads.

In the implemented framework, global variables are named us-
ing their address. This approach works well to satisfy the above
listed constraints. A variable at address X in one run of the program
is the same variable at address X in another run, provided the pro-
gram is not recompiled between runs. In addition, global variable
names can be computed at compile time with no run-time cost. A
similar naming strategy is used for naming stack variables. Since
the the stack is profiled and placed as a single object, the entire
stack is assigned a single name.

Generating names for heap variables is a more challenging task.
Heap object addresses can change with different inputs to the pro-
gram, making their address an unsuitable name. The approach im-
plemented in this work is based on the naming scheme of Barrett
and Zorn [3]. Heap variables are named when they are created
(e.g., at calls to malloc()) using the address of the call site to
malloc() combined (with XOR-folding) with a few return ad-
dresses from the stack. Similar heap naming schemes were also
employed by Lebeck and Wood [22]. This naming approach does a
reasonably good job of satisfying the constraints listed above. Since
the addresses of call sites and function returns do not change be-
tween runs of a program (provided the program is not recompiled),
heap variable names do not change between runs. Computing heap
allocation names is very efficient, requiring only a few instructions.
This approach does, however, have complications that do not arise
with global variables. It is possible for concurrently live heap vari-
ables to possess the same name. The placement algorithms recog-
nize this possibility and take this into consideration to try to prevent
possibly expensive cache conflicts.

��� � ���	��	������������ �	� �!�"�#����	 �������	� � ��� �����%$��&���
The Name profile just described provides for each object a unique
Name, number of time the object was referenced, size of object, and
the life-time of the object. For the objects in this profile we need
to create a relationship between the objects in order to determine a
placement that minimizes cache conflicts.
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In order to determine the ordering for placing objects in the
cache, a conflict cost metric is needed. This metric should esti-
mate the number of cache misses that would be caused by placing
a group of overlapped objects into the same cache line. To create
this metric we use the Temporal Relationship Graph (TRG) from
previous procedure placement work by Gloy et al. [11]. The TRG
contains weighted edges between objects, which represents their
degree of temporal locality. A TRG edge is between two objects,
and the weight is the estimated number of cache misses that would
occur if the two objects mapped to the same cache set (but were in
different cache blocks). We term the TRG described in this section
the TRGplace graph, since it is used to calculate the conflict cost
metric when placing the objects into the data cache.

The TRG is created during profiling by keeping a queue Q of
the most recently accessed data objects. When an object obj is
referenced via a load or store, the queue Q is searched for obj
starting at the front of Q. If the object obj is found in Q, the conflict
weight on the TRG edge (obj,X) is incremented for each object
X from the front of Q to obj. The TRG edge (obj,X) weight is
incremented because a reference to object X occurred between two
references to object obj, thereby creating a temporal relationship.
If X and obj are mapped to an overlapping location in the cache,
this will cause a cache miss for obj, assuming a direct mapped
cache. After the edge weights have been incremented, the current
object obj is removed from its location in Q and placed at the front
of Q.

When the size of all the objects in Q grows larger than a queue-
threshold, objects are removed from the end of Q until the total size
is below the queue-threshold. By limiting the total size of objects
in Q, temporal relationships will not be recorded for old objects
removed from the Q. These older objects have a high likelihood of
being displaced from the cache due to capacity constraints on the
cache. For this study, we used a queue-threshold of twice the size
of the data cache, since our results have shown this to provide most
of the important relationships.

The TRGplace graph used for data placement is slightly mod-
ified from the above description to keep track of relationships on
a smaller granularity than objects. One result from the procedure
placement study [11] was that it is hard to place large procedures
especially if they are larger than the cache. To effectively place
large procedures the temporal information needs to be kept track
of on a smaller granularity. We found this same result applies to
placing data. Therefore, the TRG maintains edges between object
chunks, rather than between whole objects. Each object is bro-
ken into a set of chunks ���������
	����������������������� ������� . The edges
in the TRG now represent the temporal relationship between (ob-
ject,chunk) pairs. When placing two objects in the cache the con-
flict cost metric is calculated by examining the TRGplace edges
between the (object,chunk) pairs that map to each cache block. For
the results presented in this paper we used a chunk size of 256 bytes.
This size was large enough to keep the TRG within a manageable
size, and small enough to allow large objects to be placed. See [11]
for the complete details and tradeoffs for building a TRG.

���&� � � � ����� �����	�
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The cache-conscious data placement algorithm uses the profiled
TRG, the size of the objects, and the structure of the target cache
(i.e., cache size and block size) to eliminate cache conflicts and in-
crease cache line utilization. Figure 1 shows the overall outline of
the algorithm. When placing data objects we use a CACHE struc-
ture, which stores for each cache block (object ID, chunk NUM)
pairs indicating that the chunk NUM of object ID is mapped to this
location in the cache. We can then easily calculate the conflict cost
estimate by looking up the edges between all the (ID,NUM) pairs

Input: temporal relationship graph
Output: placement map

Method: /* read inputs */
read TRG graph();

/* PHASE 0: split objects into popular and unpopular sets */
split popular unpopular();

/* PHASE 1: preprocess the heap objects and assign bin tags */
preprocess heap objects();

/* PHASE 2: place stack in relation to constant objects */
place stack and constants();

/* PHASE 3: make popular objects into compound nodes */
create compound nodes();

/* PHASE 4: create TRG select edges between compound nodes */
create TRG select edges();

/* PHASE 5: place small objects together for cache line reuse */
cache line reuse for small objects();

/* PHASE 6: place global and heap objects to minimize conflict */
while (there exists a TRGselect edge) �

edge = max weighted TRGselect edge;
merge compound nodes(edge � n1,edge � n2) 

/* PHASE 7: place global variables emphasizing cache line reuse */
choose final global placement();

/* PHASE 8: finished placing variables, write placement map */
write placement map();

Figure 1: Outline of data placement algorithm.

that map to the the same cache block in the TRGplace graph. The
size of the CACHE structure is equal to the size of the hardware
cache for which we are placing the objects.

�"!#� �%$'&��
The first phase of the algorithm partitions the objects

into popular and unpopular sets. This partitioning has two benefits,
(1) it decreases the execution time of the algorithm by concentrating
on only the important relationships, and (2) it identifies infrequently
used global objects that can be used to fill in gaps generated during
the placement of popular globals. The popularity of an object is the
sum of the weights of the TRGplace edges that reference it. There-
fore, objects with the most temporal relationships with other objects
will possess the highest popularity. The placement algorithm works
hard to eliminate cache conflicts for these objects. All objects that
account for up to 99% of the total popularity of all objects are con-
sidered popular, and the rest are unpopular.

�"!#� �%$ ���
Heap objects are preprocessed, grouping heap objects

which have temporal use and allocation locality together into heap
allocation bins. Many of these heap objects will not be marked
as popular because they are short lived. Section 3.4 describes this
phase in detail.

�"!#� �%$ ���
In this study we chose to keep the constants located in

the text segment fixed. As a result, we build up a Stack Const
cache structure in a similar manner described in 3.3.1, first plac-
ing all the constant data in the cache using their default virtual ad-
dresses. We then determine the best starting block in the cache
for the stack based the TRGplace conflict metric between the con-
stant and stack (object,chunk) pairs. Once the starting location
for the stack is chosen, the (stack,chunk) pairs are added to the
Stack Const CACHE, which is then used in phase 5 of the algo-
rithm for placing the globals and heap objects. The algorithm first
picks the best starting location for the stack in terms of the constant
objects. These locations are then fixed, and next we will determine
the best starting locations for the global and heap objects.
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A compound node structure is created for each popu-

lar object. Initially, each compound node contains only one object,
this is done in preparation of Phase 5 which groups objects to re-
duce conflict. A compound node is a set of objects that have been
grouped together in the cache during data placement.

�"!#� �%$ � �
An order needs to be chosen for combining com-

pound nodes. The order in which compound nodes are combined is
important because as nodes are combined (merged) this adds con-
straints to the possible placement of nodes to be merged in the fu-
ture. This is because once objects are combined together into the
same compound node, their relative offsets to one another are fixed.
To determine the order in which to process the compound nodes,
we create a new graph TRGselect with edges between compound
nodes. There are several possible ways to create TRGselect. For
this paper, we create TRGselect from TRGplace. Each TRGplace
edge is between two (obj1,chunk1) and (obj2,chunk2)
pairs with a weight W. For each TRGplace edge we create a com-
pound edge in TRGselect between the compound nodes for obj1
and obj2 with a weight of W, iff obj1 and obj2 are identified as
popular objects in phase 1. If this edge already exists we increase
that edge’s weight by W. These compound edges are used to form
the TRGselect graph.

�"!#� �%$����
To enable cache block reuse we first make a pass

over the global objects that are of size less than the cache block size
(32 bytes). Using the TRG place graph, small objects with high
temporal locality are placed together into the same cache block.
This will allow cache block reuse, and the objects will benefit from
prefetching.

�"!#� �%$����
Once the TRGselect graph is created it is used to de-

termine the order in which to process the compound nodes. The
highest weighted TRGselect edge between compound nodes is cho-
sen and the two compound nodes are placed in the cache. After
the compound nodes are placed they are combined into a single
compound node and their edges are coalesced. This part of the al-
gorithm is described in detail in � 3.3.1. The compound nodes are
combined until there are no more edges left in TRGselect.

�"!#� �%$����
After phase 5 each popular global and heap object

have associated with them a preferred starting offset in the cache.
For the popular heap objects this offset is used in the custom malloc
to allocate predicted heap names to a memory location that maps
to this cache offset. For the global objects this offset is used to
determine the ordering for global objects. The global objects are
combined in an order to achieve cache block reuse; this algorithm
is described in more detail in � 3.3.2.

�"!#� �%$	���
Finally, the linking of the global objects in the new

order and the custom malloc routine are created, along with a start-
ing location for the stack.

���&��� � � ������	 � � ��� �	��
 ����$	��� � ��� �"�
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Figure 2 shows the algorithm used to combine compound nodes.
The algorithm works to eliminate cache conflicts between global,
heap, stack and constant objects. As described earlier, the CACHE
structure contains a set of blocks and each block contains a list of
(object,chunk) pairs mapped to that block. The algorithm starts by
mapping the two compound nodes n1 and n2 to a CACHE struc-
ture c1 and c2. Once all the objects in each compound node are
mapped to the two CACHE structures, the algorithm can then go

Procedure: merge compound nodes(compoundNode n1, compoundNode n2)
Input: compound node n1 and n2 from TRGselect edge
Output: a merged compound node and merged TRGselect edges

Method: CACHE c1, c2;

if (n1 has never been processed) �
find location for n1 in relationship to stack and constants;
adjust offsets in n1 to reflect new starting location; 

foreach obj in n1
place (obj,chunk) pairs in c1

foreach obj in n2
place (obj,chunk) pairs in c2

preferred start = choose intelligent initial starting point();
best offset = preferred start;
best cost = infinity;

for (i=0; i � NUM CACHE LINES; i++) �
start loc = (preferred start + i) % NUM CACHE LINES;
cost = 0;
for (j=0; j � NUM CACHE LINES; j++) �

fixed index = (start loc + j) % NUM CACHE LINES;
cost += cost placing same block(c1[fixed index],c2[j]);
cost += cost placing same block(Stack Const[fixed index],c2[j]); 

if (cost � best cost) �
best cost = cost;
best offset = start loc; 

 

foreach obj in n2 �
adjust starting cache offset for obj using best offset;
merge obj into n1; 

coalesce outgoing TRG select edges(n1,n2);
delete n2 from graph;

Figure 2: Algorithm for combining compound nodes. The goal
is to find the best location in the cache to merge the heap and
global object in compound node n2 with the objects in n1 and the
Stack Const CACHE.

block by block calculating the conflict cost metric using the TRG-
place graph. The goal is to determine the starting location for
the second compound node CACHE, c2, in relationship to the first
compound node CACHE, c1, which has the minimum number of
cache conflicts. The cost of each starting location for c2 is cal-
culated by going line by line through the each of the three caches
(Stack Const, c1, c2) and calculating the estimated number of
conflicts for each block using the TRGplace graph.

The first step of the algorithm checks to see if compound node
n1 has been processed. If it has not, then it is first placed with re-
spect the Stack Const cache, in order to eliminate conflicts with
the stack and constant objects. Otherwise the compound node n1
has already been placed, and its offsets have already been adjusted
to eliminate stack and constant object misses.

After the main for loop in Figure 2 has finished executing, the
least cost starting location for c2 has been found, and the offsets
for all the objects in n2 are adjusted to represent the new place-
ment. Then the two compound nodes are merged into a single com-
pound node, and the TRGselect edges between n1 and n2 and the
other compound nodes are coalesced. If there is a TRGselect edge
(n1,n3,x) and (n2,n3,y), where x and y are the edge weights, this
results in a single edge in the TRGselect graph (n1,n3,x+y) as-
suming n2 has been merged into n1. In this paper we model an
8K direct mapped data cache with 32 byte blocks, and our CACHE
structure contains 256 lines of size 32 bytes.

���&��� ��
 $������
� ����� � ���	��� � � ������� 	 ���	�� �	��� � $��"� �����
The final ordering for the global objects is picked to eliminate cache
conflicts, group together popular objects, and increase cache line
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utilization. A final ordering for the global objects, starts by finding
the most popular global object and using this to initialize the start
of the global data segment. The global objects are then searched
for a popular object that has a preferred offset adjacent to the end-
ing offset of the previously processed global. If several candidates
exist, the one with the highest temporal locality with the previously
placed popular object is chosen. If no popular object can be placed
adjacent to the last placed popular object, a gap is created between
popular objects. When this occurs, the popular object closest to the
end of the previous placed global is chosen to be the next popu-
lar object placed. The gap created between the last placed object
and the preferred location of this new popular object is filled with
unpopular global objects. After all the popular objects have been
placed, the unprocessed unpopular objects are placed in the order
of most frequently referenced to least frequently referenced.

��� � 
 �	��� � � � � � � � � ��� ����� � ! � ��� � ��� �������
Heap allocation placement is implemented at run-time using a cus-
tomized malloc routine. The modified malloc first computes the
heap allocation name, an integer value, by XOR-folding N return
addresses from the stack. For the results in this paper we used a
name depth of 4, which other researchers have also found to have
reasonable results [30].

The heap allocator we model is similar to previously proposed
heap allocators that map objects of similar sizes to the same pages
of memory during allocation [12]. The difference is we use data
placement to guide heap objects into allocation bins. In the CCDP
custom allocator, there are several free lists each with an associ-
ated bin tag. When an object is custom allocated and there is a
corresponding tag for its XOR name, the object is allocated from
the free-list associated with that tag. This strategy allocates objects
with temporal locality near each other in memory.

After the TRGplace and Name profile are generated and before
any placement occurs, CCDP performs some preprocessing on the
heap objects in Phase 1 of Figure 1. Heap objects with tempo-
ral use and allocation locality are assigned the same allocation bin
tag. Objects with the same tag will use the same free list for al-
location and benefit from potentially being allocated close to one
another. In addition in Phase 1, all objects that do not have a unique
XOR name are marked as unpopular, but they can still benefit from
the custom malloc if the object XOR name was assigned a heap
allocation bin tag. Therefore, only the popular heap objects with
unique XOR names are passed to the placement algorithm to elimi-
nate cache conflicts with the stack and global data objects. Besides
possibly being assigned an allocation tag, these popular heap ob-
jects are given a preferred cache start offset. When an object is
allocated, if an allocation bin tag is found, the heap free list corre-
sponding to that tag is used to allocate the object. If there is no tag,
then the default free list is used. During custom allocation, if the
object has a preferred cache offset the object is allocated in the free
list (chosen by the bin tag or default free list) so that the start of the
object maps to the preferred cache block.

� � ��� $�� �� � �����

To perform our evaluation, we collected information for 6 of the
SPEC95 programs, and 2 C++ programs (deltablue and groff),
and espresso. The C and FORTRAN programs were compiled
on a DEC Alpha AXP-21164 processor using the DEC C and FOR-
TRAN compilers. The C++ programs were compiled with GCC.
We compiled the SPEC benchmark suite under OSF/1 V4.0 operat-
ing system using full compiler optimization (-O4 -ifo).

For the results in this paper we used ATOM [32] to instrument
the programs, gather the Name and TRG profiles, perform the data
placement optimization, and finally gather the data cache simula-
tion miss rate results. The ATOM instrumentation tool has an in-
terface that allows the elements of the program executable, such as
instructions, basic blocks, and procedures, to be queried and ma-
nipulated. In particular, ATOM allows an “instrumentation” pro-
gram to navigate through the basic blocks of a program executable,
and collect information about registers used, opcodes, branch con-
ditions, and perform control-flow and data-flow analysis. ATOM
allows access to the program’s structure but not the data. Therefore,
we get the location and size of each global data variable by parsing
the symbol table, and reading that into the ATOM instrumentation
code.

The Name and TRG profiles produced by ATOM are used by
the data placement optimization framework to generate (1) a new
ordering for global objects and a new starting address for the data
segment, (2) the new starting stack address, and (3) a lookup table
of XOR heap Names and predictions for customized malloc. We
then simulate the programs to gather their data cache miss rates
using this new placement by mapping each old address given by
ATOM to the new global, stack, or custom-allocated heap address.

When building profiles and performing the data cache simula-
tions, we track data object allocation and deallocation by instru-
menting malloc, free and realloc. We treat each realloc
as a malloc followed by a free. During cache simulation, the
instrumented malloc routine calls our custom malloc, which com-
putes the allocation’s XOR name by XOR-folding the 4 most recent
call sites; it then uses this value as an index into our customized al-
location table. If the XOR name is found, the allocation table would
return a customized bin tag and/or a preferred starting location for
the heap object. If the bin tag is valid, the object will be allocated
from the bin tag free list. If the preferred starting cache offset is
valid, the object will be allocated at a free space starting at that off-
set. If there is no match in the custom allocation table, we allocate
the object from the default free list.

� �!��� � � ���

For the results presented in this paper, we only applied heap place-
ment to deltablue, espresso, groff, and gcc. For the re-
maining 5 programs, we only applied the dataplacement to the con-
stant, stack and global variables. Therefore, these 5 programs have
no run-time overhead associated with the use of CCDP dataplace-
ment.

Table 1 shows the two data sets we used in gathering results for
each program, along with the program’s characteristics. The first
input listed for each program is the training data set, and the sec-
ond input listed is the testing data set. We created the TRG and
Name profiles for the first input and used these to perform the data
placement optimization. The new data placement mapping is then
used to report the data cache miss rate results for both the first in-
put and second input. Using the same data set for both testing and
training provides an ideal performance, and making them different
provides realistic performance. In the next section we provide re-
sults for both.

The third column in Table 1 shows the number of instructions
executed for each input in millions. The fourth column shows the
percent of instructions executed that were loads, and the fifth col-
umn is the percent of instructions executed that were stores. The
next four columns show the percent of all load and store references
that where to the Stack, Global, Heap and Constant objects. For
example, the results for gcc using data set 1recog has 49% of its
executed memory references to the Stack, 21% to the Global data
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Instr % % % % % % Num Avg Num Avg
Program Input (M) Lds Sts Stack Global Heap Const Malloc Size Free Size
deltablue short 32 28 10 31 19 45 0 37292 38 30817 26
deltablue long 96 28 10 47 24 20 1 110106 50 91178 28
espresso short 25 23 6 14 28 56 0 24743 71 24638 70
espresso cps 513 22 5 7 15 76 0 411757 96 411548 92
groff me 51 23 11 51 19 23 7 10633 88 8259 75
groff man 52 23 11 51 20 21 7 12547 79 10678 68
gcc 1recog 264 19 9 49 21 27 2 16844 827 16522 823
gcc 1stmt 337 24 11 51 23 23 2 34244 745 33726 731

compress cshort 12 22 9 15 85 0 0 1 16 0 0
compress ref 117 21 7 14 86 0 0 1 16 0 0
go 2stone9 699 22 6 37 63 0 0 4 3084 3 4096
go 5stone21 41678 22 6 35 65 0 0 4 3084 3 4096
m88ksim train 159 15 9 54 35 11 0 15 531367 7 18081
m88ksim ref 90508 16 9 46 51 3 0 28 1412988 20 1933823
fpppp train 311 25 10 65 34 0 1 1175 84 26 1664
fpppp ref 162866 25 9 68 31 0 1 1175 84 10 2050
mgrid train 9271 36 3 0 100 0 0 1218 153 69 1905
mgrid ref 69167 38 2 0 100 0 0 1170 75 5 2050

Table 1: Statistics for data sets used in gathering results for each program.

segment, 27% to the Heap, and 2% to Constants in the text segment.
The last four columns in Table 1 show the number of executed al-
locations (calls to malloc), the average allocation size, the number
of deallocations (calls to free) and the average deallocation size.

��� � � � � ��
 ��� $�� � ��	 � ��	 � ��� ���
Tables 2 and 4 show the data placement performance in terms of the
improvement in cache miss rate. Results are shown for the Origi-
nal program and for cache-conscious data placement (CCDP) for a
direct mapped 8K cache with 32 byte lines. The column labeled
D-Miss, is the percent of overall data cache misses. The four
columns following D-Miss show the miss rate broken down across
our four different types of data (Stack, Global, Heap and Constant).
When a cache miss occurs the data object that is referencing mem-
ory is assigned blame for that cache miss. The last column shown in
these tables is the percent reduction in miss rate achieved for CCDP
in comparison to the original placement.

Table 2 shows the miss rates using the first input in Table 1 to
both generate the CCDP placement and gather the miss rate results.
The results show a large reduction in the data cache miss rate from
8.7% down to 6.6%, a 30% reduction in miss rate. For the origi-
nal placement, the data objects that cause the largest problem are
the global variables. The CCDP algorithm is able to reduce these
misses by 34%. For the programs we examined, correctly deter-
mining the starting location for the stack has a big impact on per-
formance. The CCDP placement algorithm places global and heap
data objects so that the do not interfere with the stack when there is
a high degree of temporal locality. This allows CCDP to reduce the
number of misses cause by stack references by 61%. The heap pro-
vided the smallest improvement of all, with only an 5% reduction
in miss rate.

Table 3 breaks down the frequency of references to objects by
size in bytes. Each column represents the objects that have a size
within the range (in bytes) of the column header. The first column
shows the total number of static objects referenced during execu-
tion. The first number in each column shows the number of objects
of that size. The first number in parenthesis indicates the total per-
cent of dynamic references to objects of that size, and the second
number indicates the average percent of all references directed to
each object of that size. This second number is calculated by tak-

ing the percent of dynamic references to objects of that size and
dividing this by the number of objects of that size. For example,
compress has 4 objects referenced between the sizes of 128 bytes
and 1024 bytes. These 4 objects account for 22% of the dynamic
data references for compress . Therefore, each of these 4 objects
accounts on average for 5.5% of the data references.

A number of observations regarding the capability of our algo-
rithm can be made by comparing the cache performance impacts
from Table 2 with the size statistics of Table 3. The smallest im-
provement in cache performance was for mgrid. This was due
to most (100%) of the references being directed to a single object
much larger than the cache. As a result, most of the misses are
intra-variable misses, and our placement algorithm can do little to
help cache performance. For objects of this size other compiler
techniques like blocking or tiling could be used to reduce cache
misses. These optimizations change the access patterns to the data
to eliminate capacity and conflict misses. A large object could even
potentially be broken into smaller objects, but this would only be
possible if all the code that traverses the object could be identified
and also modified. Most of the programs our algorithm performed
well on had a set of popular objects with most of them smaller than
the cache, e.g., compress, m88ksim, and fpppp. In these cases
the algorithm can allocate variables effectively within the limited
cache space.

Figure 3 shows the behavior of the heap objects for deltablue,
espresso, groff, and gcc, and shows the challenge of per-
forming effective CCDP heap placement for these programs. Each
point in the graph represents an allocated heap object. The Y-axis
shows the percent miss rate for the object, and the X-axis shows
the number of times the object was referenced. These results show
that most of the objects that have a large miss rate are only refer-
ence a handful of times. These objects tend to be small, short-lived,
and they have a high miss rate. The accumulated reference count
of these objects accounts for most of the heap-based cache misses
seen in the simulation results. This is why our current approach to
CCDP is not as effective for heap objects.

To obtain a more realistic view of the performance of CCDP,
Table 4 shows the miss rates for the second input, using CCDP
guided by profiles from the first input. The results show a 24%
reduction in the average miss rate.

6



Original Placement CCDP Placement
Miss Rate by Object Miss Rate by Object Percent

Program D-Miss Stack Global Heap Const D-Miss Stack Global Heap Const Reduction
deltablue 21.79 0.38 0.57 20.79 0.05 20.84 0.30 0.47 20.01 0.06 4.36
espresso 3.11 0.49 1.16 1.46 0.00 2.43 0.13 0.49 1.82 0.00 21.64
gcc 8.47 1.10 2.04 4.76 0.56 7.28 0.63 1.33 4.75 0.56 14.06
groff 6.49 1.47 1.51 2.60 0.91 3.63 0.71 0.61 1.55 0.77 44.01
compress 10.92 0.14 10.78 0.00 0.00 7.38 0.12 7.27 0.00 0.00 32.40
go 9.66 1.57 8.09 0.00 0.00 6.26 0.32 5.93 0.00 0.01 35.20
m88ksim 5.20 0.19 3.52 1.49 0.00 1.93 0.13 0.35 1.45 0.00 62.93
fpppp 5.80 1.80 3.70 0.00 0.29 2.41 0.42 1.69 0.00 0.31 58.40
mgrid 7.60 0.01 7.58 0.00 0.01 7.59 0.01 7.57 0.00 0.01 0.13
Average 8.78 0.79 4.33 3.46 0.20 6.64 0.31 2.86 3.29 0.19 30.35

Table 2: Data cache miss rates using the first input to both create the profile and placement and to gather the miss rates. Results are for an 8K
direct mapped cache with 32 byte lines.

Static 0
�

8
�

128
�

1024
�

4096
�

8192
�

Program Num
���

8
���

128
���

1024
���

4096
���

8192
���

32768 � 32768
deltablue 37347 3254 ( 8, 0) 30843 (40, 0) 3243 (37, 0) 4 ( 9, 2) 2 ( 6, 3) 1 ( 0, 0) 0 ( 0, 0)
espresso 24617 9461 (13, 0) 12936 (42, 0) 2071 (26, 0) 139 ( 1, 0) 8 ( 8, 1) 2 ( 9, 4) 0 ( 0, 0)
gcc 17436 511 ( 8, 0) 10480 ( 9, 0) 2268 ( 6, 0) 4080 (55, 0) 71 ( 3, 0) 24 ( 3, 0) 2 (14, 7)
groff 10822 147 (12, 0) 9720 (26, 0) 869 (30, 0) 47 ( 4, 0) 19 ( 1, 0) 19 (18, 1) 1 (10,10)
compress 51 30 (18, 1) 12 (14, 1) 4 (22, 5) 1 (25,25) 0 ( 0, 0) 2 ( 7, 3) 2 (14, 7)
go 315 100 (13, 0) 79 ( 0, 0) 32 (11, 0) 84 (23, 0) 6 ( 3, 0) 11 (18, 2) 3 (33,11)
m88ksim 150 80 (21, 0) 15 ( 1, 0) 26 (28, 1) 12 ( 2, 0) 2 ( 0, 0) 8 (22, 3) 7 (27, 4)
fpppp 1224 25 ( 0, 0) 1170 ( 4, 0) 12 ( 0, 0) 4 (84,21) 3 ( 1, 0) 7 ( 7, 1) 3 ( 4, 1)
mgrid 1213 24 ( 0, 0) 1166 ( 0, 0) 10 ( 0, 0) 4 ( 0, 0) 4 ( 0, 0) 4 ( 0, 0) 1 (100,100)

Table 3: Breakdown of the frequency of references to objects in terms of their size in bytes. Each column represents the objects that have
a size within the range of the column header. For each column, the first number is the percent of static global and heap objects executed of
that size. The first number in parenthesis is the percent of dynamic references accounted for by objects of that size. The next number is the
average percent of references per object of that size.

Original Placement CCDP Placement
Miss Rate by Object Miss Rate by Object Percent

Program D-Miss Stack Global Heap Const D-Miss Stack Global Heap Const Reduction
deltablue 20.90 0.31 0.47 20.10 0.02 20.45 0.32 0.45 19.63 0.06 2.15
espresso 5.74 0.42 0.52 4.79 0.00 5.41 0.20 0.31 4.90 0.00 5.68
gcc 7.66 1.19 2.26 3.58 0.62 6.28 0.65 1.50 3.52 0.61 18.05
groff 5.90 1.31 1.59 2.00 1.00 4.76 0.91 0.92 1.99 0.94 19.24
compress 15.21 0.21 15.00 0.00 0.00 12.11 0.18 11.93 0.00 0.00 20.41
go 11.46 1.07 10.38 0.00 0.01 10.21 0.52 9.68 0.00 0.01 10.95
m88ksim 3.23 0.18 2.64 0.41 0.00 0.83 0.05 0.40 0.37 0.00 74.41
fpppp 5.84 1.97 3.57 0.00 0.30 2.17 0.39 1.50 0.00 0.28 62.84
mgrid 5.32 0.00 5.31 0.00 0.01 5.32 0.00 5.31 0.00 0.01 0.00
Average 9.03 0.74 4.64 3.43 0.22 7.50 0.36 3.56 3.38 0.21 23.75

Table 4: Data cache miss rates for the second input, using the first input to guide the data placement. Results are for an 8K direct mapped
cache with 32 byte lines.
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Figure 3: Plot of allocated heap objects, with their cache miss rates on the Y-axis and the number of references to each object on the X-axis.
Each point represents an allocated heap object.

Although not shown in the tables, we also compared the perfor-
mance of random placement to natural (original) placement. With
random placement, we simply map global and heap objects into
memory with arbitrary order. Strikingly, we found most programs
suffered significantly more data cache misses with random place-
ment, often showing increases of 20% or more. This result clearly
shows that natural placement is not a bad one - programs already
contain some level of temporal and spatial locality between vari-
ables. This is likely the result of programmers textually group-
ing logically related variables, more often than not they end up
near each other in memory as well. In light of this result, we
were very encouraged that our placement algorithm consistently
improved data cache performance, even when using different in-
puts to test and train.

While we describe our approach in the context of improving
data cache performance, other levels of the memory hierarchy can
benefit from data placement optimizations as well. Table 5 shows
the data cache miss rates (from Table 4) and total virtual memory
sizes and working set sizes. The Total column shows the total num-
ber of 8 KByte pages used during execution. The working set size
is computed using a window (tau) of 1% of total execution time.
A few programs saw little impact on the working set size, while
most of the programs saw the working set size slightly increase.
The working set size can actually increase because we are con-
centrating on eliminating cache misses and not page reuse. Our
placement algorithm could be further tuned to improve specifically
virtual memory performance, this is an area of future study.

The main reason for an increase in page usage for the heap pro-
gram is the allocation algorithm. The original placement uses a
single heap bin with a first-fit heap allocator [12]. Whereas our
heap placement algorithm uses a temporal-fit heap allocation algo-

rithm, and several different allocation heap bins might be used as
specified by the placement algorithm. Temporal-fit sorts the free
chunks by the last time a chunk of free memory was touched, in-
stead of by size as in a first-fit allocator. For temporal-fit, a free
chunk of memory is touched if either of its sides are allocated or if
part of the free chunk is deallocated. When allocating an object, we
would allocate an object in the first most recently touched chunk
of free memory that the object would fit in. We examined several
different heap placement allocation algorithms which concentrate
on temporal-fit and spatial-fit, but they provided similar cache and
page placement results. We are currently investigating different al-
location algorithms to help improve cache and page heap placement
performance.

��� � � � �����	�
����� � ��	 � � � ��� � � � 
 ����$	� 
 ��� � ����	 � ��� ���	�
It is ideal to perform data placement once for a given cache config-
uration, but an executable can be run on a line of processors with
potentially different cache configurations. In the placement phase,
variables are sorted to minimize inter-variable conflicts for the tar-
get cache geometry. Since variable placement occurs at compile
time, the target cache geometry should be selected as the smallest
cache size on which the developer expects to attain good (or toler-
able) performance for the program being optimized. If the target
cache size selected is too small, the resulting placement will be so
strapped by conflict that the placement algorithm will probably not
find a good placement solution. If the target cache size selected is
too large, the placement algorithm may produce a variable place-
ment solution without considering potentially expensive conflicts
in smaller cache sizes.

We are currently extending our placement algorithm to asso-
ciative caches. The algorithm works the same by placing chunks
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Original CCDP Placement
Pages Used Pages Used

Program D-Miss Total Working Set D-Miss Total Working Set
deltablue 20.90 378 10 20.45 428 13
espresso 5.74 52 9 5.41 60 11
gcc 7.66 588 26 6.28 604 33
groff 5.90 59 14 4.76 71 17
compress 15.21 93 90 12.11 95 90
go 11.46 78 56 10.21 79 60
m88ksim 3.23 4744 546 0.83 4744 545
fpppp 5.84 64 27 2.17 64 27
mgrid 5.32 966 804 5.32 968 804
Average 9.03 780 176 7.50 790 179

Table 5: Paging results showing the total number of 8KByte pages used during execution and the average number of pages in the working set.

into cache sets instead of cache lines. The only real change in the
algorithm is the cost conflict metric to be used in the TRG graph.
An edge in the TRG graph as described in this paper, represents
the number of cache conflicts that would occur if the two objects
were placed in the same line of a direct mapped cache. Therefore,
the TRG graph is representing conflicts for a direct mapped cache.
To accurately model an associative TRG, these edges would need
to be between sets of objects up to the associativity of the cache.
This can be expensive to build during profiling, so we are looking
at alternative techniques for gathering this information such as time
sampling. Alternatively, the TRG graph for a direct mapped cache
may provide enough information to achieve most of the potential
from data placement for associative caches.

� �!�	� ������ � ��	��

A number of peripheral works employ data relocation to improve
data cache performance. Page coloring [23, 20] techniques have
leveraged the memory mapping capability of virtual memory to re-
duce conflicts in physically indexed caches. User-programmable
cache set mappings [8] have been proposed for similar benefits.
Compiler-directed array dimension extension [5] and array variable
padding [29] work to relocate data within large arrays, giving op-
portunity to improve data cache performance when a large array
conflicts with itself. Placement optimizations have been used to re-
duce false sharing in shared memory multiprocessors [16]. Compiler-
directed variable partitioning has been proposed as an approach to
reduce inter-variable interactions [27] for the purpose of improv-
ing the predictability of cache access latencies in real-time systems.
The Scout operating system [25] employs data placement to reduce
data cache conflict between active protocol stacks.

Many parallels to this work can be found in software techniques
developed for improving instruction cache performance. Techniques
such as basic block re-ordering [15, 28], function grouping [34, 15,
28], reordering based on control structure [24], and reordering of
system code [33] have all been shown to significantly improve in-
struction cache performance. Like this work, the approaches usu-
ally rely on profile information to guide heuristic algorithms in
placing instructions to minimize instruction cache conflicts, and
maximize cache line utilization and block prefetch.

Recent work on procedure placement for improve instruction
cache performance has shown that further improvements in per-
formance can be achieved by keeping track of which cache lines
procedures are placed to eliminate conflict misses, and by using
temporal information to guide the placement algorithm [13, 11].
This research showed that taking into consideration the cache at-
tributes when performing the placement and the temporal relation-

ships between procedures significantly reduces the cache miss rate.
We used the approach presented in [11] for procedure placement as
the basis for our cache-conscious data placement algorithm. The
data placement mechanisms were adapted from [2].

A report by Seidl and Zorn [30] examined the issues dealing
with naming heap allocated objects for potential data placement.
Their study examined several different prediction mechanisms used
to name heap objects. Their techniques focussed on the XOR nam-
ing scheme described earlier in this paper. Their results showed that
XORing too many call site addresses can over specialize a custom
malloc routine, leading to poor prediction performance between
different inputs. They found using an XOR stack depth of 3 to 4
call sites performed well for the programs they examined. They also
proposed using the size of the object as an effective means to help
distinguish between heap objects that have the same XOR name.
Our results confirm theirs, and we use a stack depth of 4 when cal-
culating the XOR heap names. Their study did not quantify the
performance of data placement. It was a study focused on tech-
niques to predict heap object names for use in a customized malloc.
Our work is different in that our study has focused on developing
an overall approach to efficient data placement. Our results show
that a holistic approach must be taken to data placement, accurately
placing the stack, global, heap, and constants.

Concurrently, Chilimbi et al. developed similar techniques for
optimizing heap data placement. In [7] they describe a data place-
ment optimization for tree-like structures. Their approach is semi-
automatic, permitting more aggressive optimizations, such as the
splitting of structure variables. In [6] they extend this approach to
support on-line profiling and data placement for Cecil, an object-
oriented language with generational garbage collection.

� 
 ��� � � �	� � ���	�

Cache-conscious data placement is introduced as a software-based
technique to improve data cache performance by relocating vari-
ables in the virtual memory space. The approach employs data
profiling to characterize variable usage. Profile information then
guides compile-time variable placement algorithms in finding a vari-
able placement solution that decreases predicted inter-variable con-
flicts, and increases predicted cache line utilization and block prefetch.
The generated placement solution would then be implemented us-
ing a modified linker and customized dynamic allocation routines.

Specifically, our work makes three contributions:

� We present the first general framework for data layout opti-
mization, one which supports analysis and relocation of global,
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stack, heap, and constant objects. To accommodate this flex-
ibility, we present techniques for naming dynamic objects,
profiling temporal relationships, and placing dynamic objects
with compile-time placement decisions that are cache-conscious.

� We motivate the need for a highly-capable holistic approach
to data layout optimization. We found through simulation
that random placement performs significantly worse than nat-
ural placement - this sets the bar high for data placement
algorithms. Furthermore, we show that data caches misses
arise from interactions between all segments of the program
address space, necessitating a placement approach that can
accommodate relocation of global, stack, and heap objects.

� We couple our layout optimization framework with an effec-
tive data placement algorithm. Adapted from previous work
on text layout optimization [11], we demonstrate that the al-
gorithm finds placement solutions that improve data cache
performance, with a 24% miss rate reduction on average.
Moreover, it consistently improves data cache performance
across all experiments, even when profiling inputs different
from analyzed inputs.

Future work entails implementing CCDP to examine execution
performance. Benefiting from heap placement with using XOR
names will require a very efficient implementation. For the results
we reported, 5 programs (compress, go, m88ksim, fpppp, and
mgrid) did not use heap placement or XOR naming. For these pro-
grams, there is no run-time overhead execution cost after CCDP is
applied, since the stack and global data objects are placed at com-
pile time. For these programs, their average 26% reduction in cache
miss rate should help program performance.

� � �����
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