
Abstract

The design and implementation of a modern micro-
processor creates many reliability challenges. Design-
ers must verify the correctness of large complex systems
and construct implementations that work reliably in var-
ied (and occasionally adverse) operating conditions. In
our previous work, we proposed a solution to these
problems by adding a simple, easily verifiable checker
processor at pipeline retirement. Performance analyses
of our initial design were promising, overall slowdowns
due to checker processor hazards were less than 3%.
However, slowdowns for some outlier programs were
larger.

In this paper, we examine closely the operation of the
checker processor. We identify the specific reasons why
the initial design works well for some programs, but
slows others. Our analyses suggest a variety of improve-
ments to the checker processor storage system. Through
the addition of a 4k checker cache and eight entry store
queue, our optimized design eliminates virtually all core
processor slowdowns. Moreover, we develop insights
into why the optimized checker processor performs well,
insights that suggest it should perform well for any pro-
gram.

1. Introduction

The enormous complexity of modern microprocessor
design presents significant challenges in the verification
of these systems. Architects and designers must ensure
that designs operate correctly for all possible programs,
and they must ensure that this correct functionality is
maintained for all (including adverse) operating condi-
tions. If they fail to meet these challenges, the repercus-
sions can destroy profit margins, products, and even
companies. In the worse case, failure to meet these chal-
lenges could even result in loss of life.

To avoid releasing faulty parts, designers spend con-
siderable effort on functional and electrical verification.
Unfortunately, the complexity of modern microproces-
sors makes this verification process both incomplete and
imprecise. The test spaces of stateful design are simply
too immense to fully test, necessitating the development
of ad hoc test generation and coverage analysis tools to
point to where to look for bugs, and when to stop look-
ing. Moreover, the lack of any formality in system defi-
nition often leaves verification teams with a hazy
definition of correctness. Formal verification [8] of a

system works to increase test space coverage by proving
a design is correct, either through model equivalence or
assertion. The approach is significantly more efficient
than simulation-based testing as a single proof can ver-
ify correctness over large portions of a design’s state
space. However, complex modern pipelines with impre-
cise state management, out-of-order execution, and
aggressive speculation are too stateful or incomprehen-
sible to permit complete formal verification.

To further complicate verification, new reliability
challenges are materializing in deep submicron fabrica-
tion technologies (i.e. process technologies with mini-
mum feature sizes below 0.25um). Finer feature sizes
are generally characterized by increased complexity,
more exposure to noise-related faults, and interference
from single event radiation (SER). It appears the current
advances in verification (e.g., formal verification,
model-based test generation) are not keeping pace with
these challenges. As a result, design teams are growing
larger, development costs are increasing, and time-to-
market lengthens. Without significant advances in the
quality and speed of verification, the burden of verifica-
tion will likely slow the rate at which designers can cre-
ate higher-performance computing devices, a significant
source of value in our industry.

1.1. Dynamic Verification

Recently we proposed the use of dynamic verifica-
tion to reduce the burden of verification in complex
microprocessor designs [1,2]. Dynamic verification is
an online instruction checking technique that stems
from the simple observation that speculative execution
is fault tolerant. Consider for example, a branch predic-
tor that contains a design error, e.g., the predictor array
is indexed with the most significant bits of the PC
(instead of the least significant PC bits). The resulting
design, even though the branch predictor contained a
design error, would operate correctly. The only effect on
the system would be significantly reduced branch pre-
dictor accuracy (many more branch mispredictions) and
accordingly reduced system performance. From the
point of view of a correctly designed branch predictor
check mechanism, a bad prediction from a broken pre-
dictor is indistinguishable from a bad prediction from a
correct predictor design. Moreover, predictors are not
only tolerant of permanent errors (e.g., design errors),
but also transient errors (e.g., noise-related faults or nat-
ural radiation particle strikes).

Given this observation, the burden of verification in a
complex design can be decreased by simply increasing

Efficient Checker Processor Design

Saugata Chatterjee, Chris Weaver, and Todd Austin

Electrical Engineering and Computer Science Department

University of Michigan
{ saugatac,chriswea,austin} @eecs.umich.edu

the degree of speculation. Dynamic verification does
this by pushing speculation into all aspects of core pro-
gram execution, making the architecture fully specula-
tive. In a fully speculative architecture, all processor
communication, computation, control and forward
progress is speculative. Accordingly, any permanent
(e.g., design error, defect, or failure) and transient (e.g.,
noise-related) faults in this speculation does not impact
correctness of the program. Figure 1 illustrates the
approach.

To implement dynamic verification, a microproces-
sor is constructed using two heterogeneous internal pro-
cessors that execute the same program. The core
processor is responsible for pre-executing the program
to create the prediction stream. The prediction stream
consists of all executed instructions (delivered in pro-
gram order) with their input values and any memory
addresses referenced. In a baseline design, the core pro-
cessor is identical in every way to the traditional com-
plex microprocessor core up to (but not including) the
retirement stage. In this baseline design, the complex
core processor is ‘‘predicting’ ’ values because it may
contain latent bugs that could render these values incor-
rect.

The checker processor follows the core processor,
verifying the activities of the core processor by re-exe-
cuting all program computation in its wake. The checker
processor is assumed to be correct since its simple
design lends itself to easy verification (including formal
verification). The high-quality stream of predictions
from the core processor serves to simplify the design of
the checker processor and speed its processing. Pre-exe-
cution of the program on the complex core processor
eliminates all the processing hazards (e.g., branch
mispredictions, cache misses, and data dependencies)
that slow simple processors and necessitate complex
microarchitectures. In the event the core produces a bad
prediction value (e.g., due to a design errors), the
checker processor will detect the bad value and flush all
internal state from the core processor and restart it after
the errant instruction. Once restarted, the core processor
will resynchronize with the correct state of the machine
as it reads register and memory values from non-specu-
lative storage.

The resulting dynamic verification architecture
should benefit from a reduced burden of verification,
because only the checker needs to be built correctly. The
checker processor will fix any errors in core processor

computation, reducing the verification of the core to
simply the process of locating and fixing commonly
occurring design errors that could adversely impact sys-
tem performance. Moreover, the simplicity of the
checker processor design (which must be completely
correct) lends itself to high-quality functional and elec-
trical verification. In addition, dynamic verification may
render other benefits and opportunities in the design of
complex microprocessors. A number of promising
directions that we are currently exploring (additional
details are available in [1,2]) include: reduced time-to-
market and design cost, SER and transient fault toler-
ance, aggressive core circuitry implementations, and
reduced core processor complexity.

1.2. Contributions of this Paper

In this paper, we examine in detail the performance
of our initial checker processor design. We found that
for many programs, slowdowns from the checking pro-
cess are minimal, but for others (especially floating
point codes) slowdowns were non-trivial. We attribute
the primary source of these slowdowns to a) core pro-
cessor decoder stalls because of checker processor back-
pressure at retirement, b) storage hazards created as the
core and checker processor compete for storage access
ports, and c) cache misses experienced by the checker
pipeline. Our analyses suggest the addition of a dedi-
cated checker processor register file and store queue to
relieve any retirement backpressure. Remaining storage
hazards and checker processor cache misses are elimi-
nated with the addition of a dedicated checker processor
cache. Using the core processor as a (near) oracle
prefetcher, a dual ported 4k checker processor cache has
virtually no misses and provides sufficient bandwidth
for checker processor accesses. The resulting design
demonstrates that online instruction checking can be
implemented with no slowdowns, and moreover, our
results suggest that the checker should perform well for
any program.

In Section 2 we give a brief description of the base-
line checker processor design. Details pertaining to the
pipeline design can be found in [1,2]. Section 3 presents
a detailed performance analysis of our initial checker
processor design, revealing the specific sources of core
processor slowdown. In Section 4, we motivate design
changes that eliminate these slowdowns; detailed per-
formance analyses of the optimized design confirm that

Predi cti on
stream :

i nsts, inputs,
addr esses,

r esul ts

Core Processor Checker Processor

IF ID REN REG

EX /
M EM

SCH ED U L ER CH K

A rchi tected
Reg/M em

non-speculati ve inputs

CT

Figure 1. Dynamic Verification Architecture

our enhancements work well. Section 5 details addi-
tional related work (not covered in [1,2]). Finally Sec-
tion 6 summarizes, draws conclusions and discusses
future work.

2. Checker Processor Architecture

For dynamic verification to be viable, the checker
processor must be simple and fast. It must be simple
enough to reduce the overall design verification burden,
and fast enough to not slow the core processor. A single-
issue two-stage checker processor is illustrated in Figure
2a. The design shown is very general, it can detect and
correct any error in core processor computation. Later,
we will describe how this design can be simplified if
portions of the core processor design are verified to be
correct.

Figure 2b show the checker in its normal checking
mode. When the core processor retires an instruction,
the checker pipeline receives an instruction with core
processor predictions. These predictions include the
next PC, instruction, instruction inputs, and addresses
referenced (for loads and stores). The checker processor
ensures the correctness of each component of this trans-
fer by using four parallel stages, each of which verifies a
separate component of the prediction stream. Each par-
allel stage implements a substep of instruction execution
and verifies the computed value is identical to that
received from the core. If each prediction from the core
processor is correct, the result of the current instruction
(a register or memory value) as computed by the

checker processor is allowed to retire to non-speculative
storage in the commit (CT) stage of the checker proces-
sor.

In the event any prediction information is found to be
incorrect, the bad prediction is fixed, the core processor
is flushed and restarted, and the core and checker pro-
cessor pipelines are restarted after the errant instruction.
Core flush and restart use the existing branch specula-
tion recovery mechanism contained in all modern high-
performance pipelines. As shown in Figure 2b and 2c,
the routing MUXes can be configured to form a parallel
checker pipeline or a recovery pipeline, respectively.

 In recovery mode the pipeline is reconfigured into a
serial pipeline, very similar to the classic five-stage
pipeline [7]. In this mode, stage computations are sent to
the next logical stage in the checker processor pipeline,
rather than used simply to verify core predictions.
Unlike the classic five-stage pipeline, only one instruc-
tion is allowed to enter the recovery pipeline at a time.
As such, the recovery pipeline configuration does not
require bypass datapaths or complex scheduling logic to
detect hazards. Processing performance for a single
instruction in recovery mode will be quite poor, but as
long as faults are infrequent there will be no perceivable
impact on program performance [4]. Once the instruc-
tion has retired, the checker processor re-enters normal
processing mode and restarts the core processor after the
errant instruction. An important aspect of the checker
design is that the check and recovery modes use the
same checking modules, thereby reducing the area cost
of the checker and its design complexity.

IF CHECK

ID CHECK

EX CHECK

MEM CHECK

CONTROL

CT

instruction
 valid and stall

“ routing”
 mux
 control

Memory

Architected
 State

Register
File

Instruction
Memory

Register A # and value
Register B # and value
Destination # and value
Alu Result
Instruction
PC
NPC

Inputs From Core

<PC, Instruction>

<PC, Instruction>

<Address, Data, Stall>

<RA #, RA Val
 RB #, RB Val>

<IFCORRECT, STALL>

 signals

<IDCORRECT>

<EXCORRECT>

<MEMCORRECT,

<Address, Data, Stall>

 STALL>

<PC, Instruction, Regs>

<Registers, Instruction>

<Registers, Alu Result,

<AluResult, Registers, Instruction>

 Instruction>

<Registers, Alu Result,

 Instruction, NPC>

1

0

IF CHECK

ID CHECK

EX CHECK

MEM CHECK CT

Core Values

CONTROL

IF CHECK

ID CHECK

EX CHECK

MEM CHECK CT

CONTROL

 a)

b)

c)

1

0

1

0

Figure 2. Checker processor pipeline structure for a) a single wide checker processor, b) a checker proces-
sor in CHECK mode, and c) a checker processor in RECOVER mode

 Pipeline scheduling in the checker processor is triv-
ial. If any checker pipeline is blocked for any reason, all
checker processor modules are stalled. This simplifies
control of the checker processor and eliminates the need
for instruction buffering or complex non-blocking stor-
age interfaces. Since there are no dependencies between
instructions in normal processing, checker processor
pipeline stalls will only occur during a cache miss or
structural (resource) hazard.

The design description given assumes a single wide
checker, but we believe that scaling a checker processor
is a simple enough task. To make a deeper checker, the
separate checker modules simply need to be pipelined
deeper. This can be accomplished without adding
bypass or complex control because of the minimal inter-
pipestage dependencies. To make a wider checker, inter-
instruction dependencies must also be verified, but can
be done so in parallel with normal instruction checking.
Checker scalability will be explored more fully in
future work.

3. Performance of the Checker Processor

3.1. Experimental Framework

The simulators used in this study are derived from
the SimpleScalar/Alpha 3.0 tool set [5], a suite of func-
tional and timing simulation tools for the Alpha AXP
ISA. The timing simulator executes only user-level
instructions, performing a detailed timing simulation of
an aggressive 4-way dynamically scheduled micropro-
cessor with two levels of instruction and data cache
memory. Simulation is execution-driven, including exe-
cution down any speculative path until the detection of a
fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results for
nine of the SPEC95 benchmarks [14] and six of the
SPEC2000 benchmarks. There are nine integer pro-
grams and six FP ones. All programs were compiled on
a DEC Alpha AXP-21164 processor using the DEC C
and Fortran compilers under OSF/1 V4.0 operating sys-

tem using full compiler optimization (-O4). The six
Spec2000 benchmarks were compiled on an Alpha
21264 under OSF/1 V4.0 operating system using at least
-O4 optimization. Table 1 shows the benchmarks, the
number of instructions that were executed (fast for-
warded) before actual simulation began, and the number
of instructions simulated for each program (up to 250
million). Also shown are the percentage of dynamic
instructions that were loads and stores and the baseline
machine IPC.

3.2. Baseline Core Processor Architecture

Our baseline simulation configuration models a
future generation out-of-order processor microarchitec-
ture. We’ve selected the parameters to capture underly-
ing trends in microarchitecture design. The processor
has a large window of execution; it can fetch and issue
up to 4 instructions per cycle. It has a 256 entry re-order
buffer with a 64 entry load/store buffer. Loads can only
execute when all prior store addresses are known. In
addition, all stores are issued in program order with
respect to prior stores. There is an 8 cycle minimum
branch misprediction penalty. The processor has 4 inte-
ger ALU units, 2-load/store units, 2-FP adders, 1-integer
MULT/DIV, and 1-FP MULT/DIV. The latencies are:
ALU 1 cycle, MULT 3 cycles, Integer DIV 12 cycles,
FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12
cycles. All functional units, except the divide units, are
fully pipelined allowing a new instruction to initiate
execution each cycle.

The processor we simulated has a 16K direct mapped
instruction cache and a 16k 4-way set-associative data
cache. Both caches have block sizes of 32 bytes. The
data cache is write-back, write-allocate, and is non-
blocking with 2 ports. The data cache access latency is
one cycle (for a total load latency of two cycles). There
is a unified second-level 256k 4-way set-associative
cache with 32 byte blocks, with a 6 cycle cache hit
latency. If there is a second-level cache miss it takes a
total of 34 cycles to make the round trip access to main
memory. We model the bus latency to main memory
with a 10 cycle bus occupancy per request. There is a 32
entry 8-way associative instruction TLB and a 32 entry
8-way associative data TLB, each with a 30 cycle miss
penalty.

3.3. Checker Processor Baseline (Shared) Archi-
tecture

The checker processor in all experiments is a four
instruction wide pipeline that instructions enter when
they have completed and are the oldest instruction in the
machine that has not yet entered the checker pipeline.
Instructions are processed in-order, any instruction that
stalls causes later instructions to also stall. In the base-
line configuration, the computation pipeline latency is
one cycle longer than the functional unit it checks (for
the result comparison). It is assumed that there is a com-
putation pipeline for each of the functional units, as a
result, no structural hazards are introduced. The baseline
communication pipeline takes two cycles unless there
are structural hazards in accessing register file and

Table 1. Benchmarks and baseline statistics

Benchmark
#instr. fwd.

(M)
#instr. exec.

(M)
%ld exec. %st. exec. Base IPC

Compress95 100 250 11.0% 1.0% 1.4303

Crafty00 100 250 32.4% 5.9% 1.4748

Gap00 100 250 25.5% 11.3% 2.2079

Gcc 100 250 25.7% 11.0% 1.2951

Go 100 250 29.3% 8.1% 1.3061

Ijpeg 100 250 18.4% 8.0% 2.6679

Li 100 250 24.3% 11.3% 1.7986

Perl 100 250 23.3% 11.2% 1.2566

Twolf00 100 250 26.3% 8.6% 2.2663

Applu00 100 250 25.9% 10.4% 1.8859

Hydro2d 100 67 23.1% 7.3% 2.2125

Lucas00 100 250 18.4% 0.5% 3.3628

Mesa00 100 250 27.0% 7.3% 2.0450

Tomcatv 0 79 20.1% 7.6% 1.7343

Turb3d 100 250 23.4% 14.9% 2.6035

cache ports. In the baseline checker architecture, the
storage accesses compete with the core processor for
eight architected register file ports and four cache ports,
with priority given to the checker accesses. The core
processor only accesses the architected register file
when an operand is not found in the physical register
file (i.e., it is not in flight). Reorder buffer entries are not
deallocated until instructions exit the commit stage of
the pipeline, after the checker verifies the operation. The
watchdog timer countdown is reset to 60 cycles (the
round trip latency to memory) whenever an instruction
commits.

We omitted the instruction fetch check stage of the
checker processor from our experiments. We believe
that it is sufficiently straightforward to protect against
incorrectly fetched instructions, simply verify correct-
ness of the core processor instruction cache design and
protect all instruction storage in the core processor with
ECC. As such, there is no need to determine if the
instruction has been correctly fetched, the checker pro-
cessor need only determine if the PC of the fetch was
correct.

Our baseline checker processor architecture (Figure
3) is identical to that presented in our previous report
[1]. The baseline storage system looks very similar to a
traditional microprocessor system with the checker pro-
cessor inserted just before commit. The core and
checker processors share ports to a common architected
register file and L1 data cache (possessing eight and two
read ports, respectively). The checker has priority while
accessing the storage elements, and the core can only
access them in a cycle where ports are not fully con-
sumed by checker accesses. When a core instruction is
ready for retirement, it is pushed into the checker pro-
cessor pipeline. During checking, the core processor
must continue to hold speculative state resources (e.g.,
reorder buffer and load/store queue entries) for the
instruction being checked. Once checking is complete,
the commit stage retires nonspeculative values into the
register file and the cache and the core processor may
release speculative storage associated with the finished
instruction.

In this design, there are three ways the checker pro-
cessor can slow the progress of the core processor. First,
any contention for the ports between the checker and
core will lead to core processor stalls. Second, the

checker processor pipeline delays the retirement of
instructions, forcing the core processor to hold specula-
tive state longer, thus creating backpressure at retire-
ment. If speculative state resources fill, the core
processor decoder will stall as it will not be able to allo-
cate re-order buffer and load/store queue resources.
Finally, checker processor cache misses stall the entire
checker pipeline, which again can lead to increased
pressure on core processor speculative state. The
checker processor will only experience misses when
data referenced by the core processor is replaced before
the checker processor is able to re-execute the memory
reference.

As can be seen from Table 2 the average slowdown
from the fifteen benchmarks was 2.48%. Overall, the
slowdown factors are kept mostly in check, however,
there was a wide disparity in the performance for a few
individual benchmarks. The most notable slowdowns
came from the floating point programs hydro2d and
tomcatv, which had slowdowns of roughly 10.5% and
13% respectively. Hydro2d also experiences the largest
increase in the number of decoder stalls, a leading factor
to its poor performance. Hydro2d is a very computation-
ally intensive program, which is used to solve hydrody-
namically Navier Stokes equations in astrophysics
applications. The program is well tuned and it makes
quite efficient use of machine resources, such that any
backpressure will manifest in the form of slowdowns.
Storage access stalls in the core were infrequent; there
are two primary reasons for this. First, storage hazards
are not created when the core processor accesses physi-
cal registers or load/store queue entries. Second, for the
integer programs especially, many storage hazards occur
during misspeculation and thus do not slow nonspecula-
tive core progress.

There were a non-trivial number of L1 cache misses
experienced by the checker processor, especially for the
floating point codes. These programs tend to stream
through memory, touching cache lines only a few times
and then quickly replacing them with other memory
contents. Figure 5 graphs the average delay (in cycles)
between first execution of an instruction and its final re-
execution on the checker pipeline. We term this delay
the slip of the instruction. Tomcatv, which computes
fluid dynamics and geometric translations, experienced
the worst slowdown in conjunction with the largest
increase in L2 accesses. For programs with large slip
values, especially the floating point codes, delaying the
second check reference to retirement can create a non-
trivial number of L1 data cache misses.

4. Increasing Checker Processor Efficiency

4.1. Eliminating Decoder Stalls and Storage
Hazards

It is a simple process to eliminate decoder stalls and
storage hazards, they are both structural hazards that can
be eliminated by simply increasing the number of
resources available to the checker processor. In this
case, speculative state and storage ports. Figure 4 illus-
trates our approach to adding these extra resources; we
call this design the FastShared model. We add a dedi-

Core Pipeline Checker Pipeline CT

 L1 cache

 L2 cache

(shared)
 RF

 (shared)
 8 ports

 4 ports

 (16K 4 way)

Figure 3. Baseline Checker Processor
Architecture

cated checker processor register file, two store queues,
and additional ports to the L1 cache (2 total). The split
register file permits the core to retire register values
(speculatively) into its private register file, thus allow-
ing it to release its internal reorder buffer speculative
state at the time instructions are transferred into the

checker processor pipeline. The checker processor reg-
ister file contains truly non-speculative state, if the
checker processor detects an error in core processor
computation, it must re-synchronize the core processor
register file. This can be easily implemented by copying
the checker processor register file contents to the core
processor register file when faults are declared. The L1
data cache is still shared between the core and checker
processors, however, extra ports eliminate storage
related stalls.

The core store queue (cSTQ) permits the core proces-
sor to release load/store queue entries when instructions
pass to the checker processor, thereby further relieving
speculative state pressure. The cSTQ holds retired stores
until they pass through the checker at which time the
space can be reclaimed. Since the checker writes back
store values to the shared cache, the cSTQ need not
write back the same store values. To ensure a coherent
view of speculative memory state, the core processor
probes the cSTQ in parallel with the L1 data cache, if
any cSTQ entries match the referenced address, the lat-
est value is used in lieu of the L1 data cache value.
Checker stores write to the checker STQ (dSTQ). The
dSTQ writes to the L1 cache and releases cSTQ and
dSTQ entries for the store. When the core executes a
load, if it does not hit in the LSQ, the L1 cache and the
cSTQ have to be searched in parallel with the latest STQ
value overriding L1 cache values. If either the cSTQ or
the dSTQ fills up, the corresponding stage stalls until
the store at the head of the queue is committed and an
entry becomes available. The (dSTQ) serves a similar
purpose: to prevent checker pipeline stalls on store write
misses, store value are placed into the dSTQ and later
written to memory when L1 data cache write ports are
available. The space cost for the store queues is minimal
- two small queues with eight entries each virtually
eliminated all backpressure in the core processor.

Table 3 details the performance of the FastShared
model. It is quite effective in reducing core processor
decoder stalls, in all cases (with the exception of
Applu00) there are less stalls than in the baseline

Figure 4. FastShared Storage Model
(16K 4way) 4 ports (2 dedicated checker Wr. Ports)

Core Pipeline Checker Pipeline CTCT

L1 cache

 L2 cache

 cSTQ dSTQ
 core RF

 Chkr RF8 ports
 8 ports

Slip Values for Fast Shared Model

0
20
40
60
80

100

co
m

p
re

ss
95

cr
af

ty
00

g
ap

00 g
cc g
o

ijp
eg

li

p
er

l

tw
o

lf
00

ap
p

lu
00

h
yd

ro
2d

lu
ca

s0
0

m
es

a0
0

to
m

ca
tv

tu
rb

3d

Benchmark

S
lip

 V
al

u
e

in
 #

 o
f

cy
cl

es

Figure 5. The average slip for the FastShared Model

Table 2. Analysis of Shared Model Checker Performance

Performance Stalls

Benchmark
Slowdown

(Shared Vs. Base)

Decoder Storage Ports Cache Misses L2 Traffic Increase [and incur. %]

Base Shared Base Shared Base %of Dl1 misses
from Shared

Base Increase in L2 Traf-
fic for shared

compress95 0.01% 0.00% 0.00% 0 0.00% 0 0.00% 0 [0]% -3789 [-0.08%]

crafty00 0.04% 0.26% 0.21% 0 2.17% 0 3.17% 0 [0]% 89472 [0.58%]

gap00 3.91% 19.23% 17.50% 0 2.27% 0 80.30% 0 [0]% 1118312 [19.52%]

gcc 2.00% 1.67% 2.72% 0 0.82% 0 28.20% 0 [0]% 1013148 [6.87%]

go 0.18% 0.28% 0.37% 0 0.83% 0 12.12% 0 [0]% 402933 [3.69%]

ijpeg 1.20% 11.31% 9.14% 0 1.93% 0 14.59% 0 [0]% 142868 [12.83%]

li 0.34% 0.52% 0.49% 0 0.57% 0 6.48% 0 [0]% 255959 [3.67%]

perl 0.95% 0.35% 0.74% 0 0.36% 0 43.76% 0 [0]% 738170 [4.06%]

twolf00 0.05% 4.64% 3.69% 0 1.49% 0 19.15% 0 [0]% 28457 [0.72%]

applu00 0.59% 42.32% 35.37% 0 2.21% 0 6.53% 0 [0]% 318688 [2.54%]

hydro2d 10.47% 34.47% 40.14% 0 1.45% 0 27.06% 0 [0]% 803670 [19.40%]

lucas00 2.59% 0.00% 0.00% 0 2.16% 0 99.96% 0 [0]% 328945 [50.02%]

mesa00 -0.09% 1.95% 2.02% 0 1.93% 0 92.43% 0 [0]% 9639 [0.22%]

tomcatv 12.99% 6.31% 2.02% 0 0.45% 0 52.07% 0 [0]% 1630372 [37.01%]

turb3d 1.93% 28.61% 9.32% 0 2.66% 0 43.23% 0 [0]% 1100773 [34.91%]

AVERAGE 2.48% 10.13% 8.25% 0 1.42% 0 33.40% 0 [0]% 531841 [13.06%]

checker processor configuration. The approach even
eliminates stalls that exist in the baseline model due to
store write misses, resulting in less decoder stalls for
most programs than the baseline experiments without a
checker processor. Thus for some programs, Applu00
and Mesa00, there are actually performance gains over
the baseline. Storage ports stalls are completely negated
by the addition of the additional register file and addi-
tional ports to the cache.

Overall, slowdowns improved for some programs,
e.g., GCC and Ijpeg, but worsened for other programs
such as Gap00. The gain in performance would have
been more notable, if this model did not aggravate L1
cache misses. This problem, discussed briefly before in
conjunction with Tomcatv’s slowdown, is the interaction
of two working sets on the same cache. If the slip is too
large there will be replacements in the cache before a
load/store reaches the checker. Thus, the line must be
retrieved again from the L2. This causes a large increase
in the L2 traffic, which is illustrated in the L2 traffic
increase column of the table. The FastShared model
aggravates this condition by adding a store queue that
can increase the lifetime of an instruction in the core
before it is checked. Average slip measurements are
shown in Figure 5. There is a large correlation between
the high slip and low performance in the shared models.
The size of the data set and number of memory access
are also contributing factors. For example, Lucas which
has the second highest slip value does not experience a
large slowdown because it has comparatively very few
data cache misses in the baseline. In other words, there
is less conflict for the cache space since each working
set is smaller.

4.2. Improving Checker Processor Cache Per-
formance

We can address checker processor L1 cache misses
by providing a mechanism by which both core and

checker processor data working sets can easily co-exist.
The simple approach to this is to split the data cache,
giving separate caches to both the checker and the core
processors. Figure 6 illustrates the approach, we call this
new dynamic verification architecture the MiniDiva
model.

The MiniDiva model extends the FastShared model
by removing the shared L1 constraint. It provides a
small dedicated cache for the checker processor, called
the L0 cache. The L0 cache is loaded with whatever data
is touched by the core processor;MiniDiva it taps off the
output port of the L1 cache. If the checker processor
misses in the L0 cache, it blocks the entire checker pipe-
line, and the miss is serviced by the core L2 cache. The
STQ mechanism and the separate RF are the same as
described earlier. When stores commit, they write their

Table 3. Analysis of FastShared Model Checker Performance

Performance Stalls

Benchmark
Slowdown

(FastShared Vs
Base)

Speedup
(FastShared Vs

Shared)

Decoder Storage Ports Cache Misses L2 Traffic Increase [and incr. %]

Shared FastShared Shared FastShared %of Dl1 misses
from Shared

%of Dl1 misses
from Fast Shared

Increase in L2
Traffic for shared

Increase in L2
Traffic for Fast-
shared

compress95 0.00% 0.01% 0.00% 0.00% 0.00% 0 0.00% 0.00% -3789 [-0.08%] 2 [0.00%]

crafty00 0.02% 0.02% 0.21% 0.20% 2.17% 0 3.17% 3.17% 89472 [0.58%] 1042317 [6.78%]

gap00 0.01% 0.03% 17.50% 7.68% 2.27% 0 80.30% 80.30% 1118312[19.52%] 1179802 [20.6%]

gcc 1.25% 0.77% 2.72% 1.19% 0.82% 0 28.20% 29.00% 1013148 [6.87%] 2562353[17.37%]

go 0.15% 0.03% 0.37% 0.08% 0.83% 0 12.12% 12.12% 402933 [3.69%] 1727555[15.80%]

ijpeg 0.28% 0.93% 9.14% 8.73% 1.93% 0 14.59% 14.57% 142868 [12.83%] 154662 [13.88%]

li 0.05% 0.30% 0.49% 0.31% 0.57% 0 6.48% 6.49% 255959 [3.67%] 726937 [10.41%]

perl 0.95% 0.01% 0.74% 0.31% 0.36% 0 43.76% 43.76% 738170 [4.06%] 2822083[15.53%]

twolf00 0.07% -0.02% 3.69% 3.59% 1.49% 0 19.15% 19.15% 28457 [0.72%] 54349 [1.37%]

applu00 -0.13% 0.73% 35.37% 39.46% 2.21% 0 6.53% 6.53% 318688 [2.54%] 2354622[18.74%]

hydro2d 10.49% -0.02% 40.14% 13.77% 1.45% 0 27.06% 27.06% 803670 [19.40%] 806233 [19.46%]

lucas00 2.59% 0.00% 0.00% 0.00% 2.16% 0 99.96% 99.96% 328945 [50.02%] 328945 [50.02%]

mesa00 -0.09% 0.00% 2.02% 2.01% 1.94% 0 92.43% 92.43% 9639 [0.22%] 9933 [0.22%]

tomcatv 12.99% 0.00% 2.02% 0.94% 0.45% 0 52.07% 52.07% 1630372[37.01%] 1419675[32.23%]

turb3d 1.74% 0.19% 9.32% 5.14% 2.66% 0 43.23% 43.56% 1100773[34.91%] 1754036[55.63%]

AVERAGE 2.03% 0.19% 8.25% 5.56% 1.42% 0 33.40% 35.34% 531841 [13.06%] 1126307[18.54%]

Core Pipeline Checker Pipeline CTCT

L1 cache

 L2 cache

 cSTQ

 dSTQ

 core RF Chkr RF L0 cache

 8 ports 8 ports

Figure 6. MiniDiva Storage Model
Core Cache 16K 4 way 2 rd 2 wr ports

Checker Cache 4K 8 way 4 ports

result to the L0 cache and the dSTQ. When a free store
port is available on the L1 cache, the store in the dSTQ
is retired to the L1 cache. If the dSTQ fills the checker
processor pipeline stalls until an entry can be written
back.

The performance of the MiniDiva architecture is
summarized in Table 4. Splitting the caches yields
almost a 3% improvement over the FastShared model.
In fact, the MiniDiva model even exhibits modest per-
formance gains over the baseline model without a
checker processor. We believe that this is due to the
cSTQ, which eliminates store writeback misses at com-
mit that can slow the baseline architecture (without a
checker processor). This effect is demonstrated in the
average decoder stalls percentage which go from
10.13% in the baseline to only 7.74% in the MiniDiva
model. Second, our data shows that some backpressure
may actually cause positive interference in the execut-
ing loads and stores. The LSQ and STQ are considered
to have infinite bandwidth, thus if a memory access can
grab the value it needs from these queues it does not
have to reserve a cache port.

The MiniDiva model is quite efficient, it eliminates
virtually all the checker processor stalls that can slow
the core processor, as well as a few core processor stalls.
In addition, cache performance improves because the
checker processor cache now contains the working set
of the checker processor, i.e., loads and stores in the
window of core processor execution. With the working
set in the L0 cache, core processor activity can no longer
displace checker processor working set. A 4k checker
cache experiences virtually no misses for any programs.
We also looked at slowdowns for a 2k cache, overall
slowdown was only 0.77%, but the worst case slow-
down rose 4.40% for Ijpeg.

While on the surface it may seem adding a second
cache is an expensive proposition, there are two mitigat-
ing factors. First, the L0 cache eliminates the need for
extra ports on the core processor L1 cache, which

increases its size and slows its accesses. Second, the
cache need only needs to hold the data from when it is
first touched in the core until the time it is verified by
the checker processor (i.e., slip latency). As such, the
MiniDiva L0 cache be made very small.

4.3. Eliminating Common Mode L1 failures

In the MiniDiva model, the checker processor has its
own dedicated L0 data cache. The checker processor
register file and L0 and L1 caches hold the architected
nonspeculative state of the machine, whereas the core
register file holds speculative states. If an error is
detected by the checker processor, it rewrites the core
register file with values from its own register file. Since
the checker processor relies on correct information in
the core processor L1 cache, any design errors in this
component will manifest as a common failure that could
impair correct program execution. For many designs
this may not be a significant concern, however, we are
currently exploring core processor design strategies,
such as self-tuning circuits, that benefit greatly if the
core processor L1 cache state is speculative as well.

Figure 7 illustrates an approach to eliminate common
mode failures from the core processor L1 cache, we call
this design the SplitDiva design. There are no STQs
present in this design. The core commit stage specula-
tively commits results to the (speculative) L1 core cache
and the core register file. As in the MiniDiva model,
commits in the core processor are not stalled by the
checker processor pipeline. When a fault is detected by
the checker processor, it must re-synchronize the core
processor L1 with non-speculative storage (i.e., L2
cache state). This process can be easily accomplished by
invalidating all core processor L1 cache state. Given
that faults are infrequent, the performance implications
of this simple (but expensive) approach should be mini-
mal.

Table 4. Analysis of MiniDiva Model Checker Performance

Performance Stalls

Benchmark
Slowdown

(MiniDiva Vs
Base)

Speedup (Mini
Diva Vs

FastShared)

Decoder Storage Ports Cache Misses L2 Traffic Increase [and incr.%]

FastShared Mini Diva FastShared Mini Diva %of Dl1 misses
from FastShared

%of Dl1 misses
from Mini Diva

Increase in L2
Traffic for Fast
shared

Increase in L2
Traffic for Mini
Diva

compress95 0.00% 0.00% 0.00% 0.00% 0 0 0.00% 0 2 [0.00%] 9593 [0.20%]

crafty00 0.01% 0.01% 0.20% 0.21% 0 0 3.17% 0 1042317 [6.78%] 819 [0.01%]

gap00 -0.74% 4.81% 7.68% 12.26% 0 0 80.30% 0 1179802 [20.6%] 6293 [0.11%]

gcc 0.02% 1.25% 1.19% 1.65% 0 0 29.00% 0 2562353[17.37%] 151763 [1.03%]

go 0.00% 0.15% 0.08% 0.22% 0 0 12.13% 0 1727555[15.80%] 39180 [0.36%]

ijpeg -0.25% 0.53% 8.73% 10.35% 0 0 14.57% 0 154662 [13.88%] 57265 [5.14%]

li 0.06% -0.01% 0.31% 0.38% 0 0 6.49% 0 726937 [10.41%] 127888 [1.83%]

perl 0.00% 0.96% 0.31% 0.35% 0 0 43.76% 0 2822083[15.53%] 65049 [0.36%]

twolf00 0.05% 0.02% 3.59% 3.59% 0 0 19.15% 0 54349 [1.37%] -191 [-0.01%]

applu00 -1.28% 1.15% 39.46% 40.85% 0 0 6.53% 0 2354622[18.74%] 3980 [0.03%]

hydro2d -0.47% 12.23% 13.77% 31.75 0 0 27.06% 0 806233 [19.46%] 75965 [1.83%]

lucas00 0.00% 2.66% 0.00% 0.00% 0 0 99.96% 0 328945 [50.02%] 0 [0.00%]

mesa00 -0.09% 0.00% 2.01% 2.01% 0 0 92.43% 0 9933 [0.22%] 482 [0.01%]

tomcatv 0.20% 14.71% 0.94% 5.87% 0 0 52.07% 0 1419675[32.23%] 327437 [7.43%]

turb3d -3.17% 5.00% 5.14% 6.67% 0 0 43.56% 0 1754036[55.63%] 271265 [8.60%]

AVERAGE -0.38% 2.90% 5.56% 7.74% 0 0 35.34% 0 1126307[18.54%] 75786 [1.80%]

To enable a high hit rate for the checker processor L1
cache, whenever the cache is accessed in the core for
loads and stores, the address stream of the reference is
sent as a prefetch to the checker processor cache. The
checker cache services misses directly from the L2.
Thus, there is additional traffic between the checker pro-
cessor cache and the L2, unlike in the MiniDiva model.
To minimize L2 traffic increases, lines written from the
L2 to the core processor L1 are also immediately placed
in the checker processor L1 cache, using a common line
bus. In addition, speculative state in the core processor
L1 need not be written back to the L2.

An interesting feature of this design is that ECC is no
longer needed to protect the core processor L1 cache.
Since this state is completely speculative, transient
errors due to, for instance, energetic particle strikes will
not impair the correct operation of the program. Of
course the checker processor L1 cache will require ECC
to protect the non-speculative program state. Depending
on the size of the checker processor L1 cache and the
ECC coding technique, the saving in core processor L1
ECC could go quite far to make up for the area costs of
the checker processor and its L1 cache.

 Table 5 details the performance of the SplitDiva
model. Again, the slip between the core and the checker
permits memory addresses to be sent as a prefetch
stream. Thus stalls in the checker due to cache misses
are kept to a minimum. However, unlike the small work-
ing set requirements of the MiniDiva model, the Split-
Diva checker processor L1 cache must hold the entire
program working set (or as much of it as it can). Fortu-
nately, the core processor address stream presents a very
high-quality view of future references well in advance
of their use, thus with sufficient L2 cache bandwidth,
most checker processor misses can be averted.

Comparing the slowdown of the SplitDiva model to
the baseline, we notice that this model,with a 4K data
cache, has an average slowdown of 1% for all the
benchmarks. This is superior to all the storage models
discussed so far except the MiniDiva model. The Split-
Diva model, however, offers us greater reliability over
all the other storage models, permitting the core L1
cache to be stripped of ECC. This added reliability
comes at a cost, though, as can be seen from Table 5.

The SplitDiva model has an average slowdown of
1.46% compared to the MiniDiva model. The leading
factor for this is the increase in L2 traffic for the split
model, which is around 75 times that of the MiniDiva
model.

Figure 8 illustrates the sensitivity of the SplitDiva
model to checker processor L1 cache geometry. Results
are shown for increasing cache sizes and associativity.
Clearly, checker processor cache performance is quite
good at 4k or higher sizes, and with more associativity
(i.e., 4 or 8 way) for even 2k and 1k configurations.
However, there is a clear trade-off between cache size
and a L2 traffic increases. For the 4-way cache configu-
rations, for example, L2 traffic increases by 86%, 147%,
and 245% for decreasing cache sizes of 4k, 2k, and 1k
respectively.

4.4. Sensitivity to Other Key Design Parameters

Function Units. To test the MiniDiva checker’s toler-
ance for functional units the number of integer ALUs
and floating point ALUs was varied. Not surprising, it
was found that as the number of ALUs were decreased
so did performance. We saw an average slowdown
across the fifteen benchmarks of roughly 12% when the
number of ALUs were halved from 4 to 2. A subset of
the benchmarks was then simulated with only one float-
ing point ALU and one integer ALU in the checker. This
subset of three floating point i.e., Applu00, Lucas00 and
Mesa00, and three integer programs, i.e., Crafty00,
Gap00 and Twolf00, averaged a 20% slowdown.
Clearly, reducing the number of functional units below
that of the core execution resources can have significant
negative impacts on core processor performance. The
number of functional units in the checker must be equal
to the core to maintain a good balance with the core
commit speed, thereby preventing any slowdowns for
efficient programs.

Memory Ports. The versatility of the MiniDiva checker
was further tested through sensitivity analysis on the

Core Pipeline Checker Pipeline CTCT

core L1 cache

 L2 cache

 core RF Chkr RF
8 ports 8 ports

 Chkr L1 cache

Figure 7. Split Storage Model
Core Cache- (16k 4 way) 2 ports

Checker Cache- (4K 8 way) 4ports Figure 8. Cache Misses With Respect to Diva cache
size and associativity

1 2 4 8

2-way

4-way
8-way

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Number of
Chkr Cache

Misses

Cache Size in Kb

2-way
4-way
8-way

number of memory ports on the checker processor
cache. When the number of memory ports was lowered
from 4 to 2 a slowdown of 1.7% was experienced in the
benchmarks. A 8.1% slowdown was the result of lower-
ing the memory ports to 1. As is the case for functional
unit resources, they should match that of the core to
reduce the possibility of core processor slowdown.
Slowdowns, however, were mitigated by the dSTQ, is it
was able to reduce the impacts of not immediately hav-
ing more ports available.

Pipedepth. We experimented with increasing the pipe-
line depth and functional unit depth for the checker
pipeline. Similar to earlier presented experiments [1,2],
the results were quite encouraging. Increasing the
checker pipeline length four-fold (from 2 stages to 8)
increased average slowdown for the MiniDiva model to
only 2.4%, demonstrating that overall the checker pro-
cessor pipeline is quite tolerant of processing latency.
The integer codes were extremely latency tolerant, aver-
age slowdown for these programs was only 0.04%.
These results suggest that superpipelining the checker
processor to scale checker processor bandwidth will
likely produce very good results. We are currently
exploring this design in detail in conjunction with the
implementation of a physical checker processor design.

I-Cache Check. Fetching is a simple operation which
can be easily made reliable, using encoding techniques
like ECC. Nonetheless, we added a small I-cache (512
entries) to the checker to test performance impacts. The
slowdown experienced was less than 1%. High spatial
locality in instruction memory and core-driven prefetch-
ing eliminated virtually all misses.

Fault Rate. Analysis in our previous work indicated
that recovery from faults did not impact performance
provided the faults were infrequent enough (less than
one every 1000 instructions).

5. Related Work

The related work mentioned here is in addition to
those found in [1,2].

Blum and Wasserman discussed checkers with
respect to the Pentium Division Bug [4]. In addition to
talking about complete checkers, they discussed how a
partial checker could be utilized to achieve checking
accuracy that was almost perfect. They also postulate
that if error rates are kept small enough, correcting pro-
cedures can be very time consuming without impacting
the performance of the system.

A similar idea of having a simple inorder pipeline
that runs in parallel with the main engine is presented by
Nakra et al in [9]. In that paper, instructions that already
have their operations decoded execute on the simple
pipeline upon detection of misprediction in the main
engine.

Rotenberg’s AR-SMT[11] and more recently Slip-
stream[13] processors use multiple threads to eliminate
hazards and verify correct operation. In Slipstream an
advanced stream (A-stream) is used to aid a redundant
stream (R-stream) by providing future knowledge to the
trailing stream. As a result performance can be
increased and the redundancy can be used to detect
errors. However this technique does not provide total
coverage or resistance to design errors.

Other techniques for obtaining reliability include the
redundant hardware approach, as in the IBM S/390 G5
microprocessor [12] and the redundant thread (or SRT)
approach. In the SRT approach proposed in [10], redun-
dant threads run concurrently and compare results for
fault detection. Performance in SRT processors is
improved with one thread prefetching cache misses and
branch outcomes for other threads, similar to the
prefetching ideas in the SplitDiva model.

In a previous study Dundas and Mudge[6] showed
that a performance gain was possible, by ignoring cache
misses and pre-executing instructions while the proces-
sor would normally be stalled. When a cache miss

Table 5. Analysis of SplitDiva Model Checker Performance

Performance Stalls

Benchmark

Slowdown (Split
Vs Base)

Speedup (Split Vs
MiniDiva)

Decoder Storage Ports Cache Misses L2 Traffic Increase [and incr.%]

MiniDiva Split MiniDiva Split %of Dl1 misses
from MiniDiva

%of Dl1 misses
from Split

Increase in L2
Traffic for Fast
MiniDiva

Increase in L2
Traffic for Split

compress95 0.00% 0.00% 0.00% 0.00% 0 0 0 0 9593 [0.20%] 5251070[107.5%]

crafty00 0.06% -0.05% 0.21% 0.31% 0 0 0 0 819 [0.01%] 12461427[81.0%]

gap00 0.14% -0.87% 12.26% 20.02% 0 0 0 0 6293 [0.11%] 2816646[49.17%]

gcc 0.09% -0.07% 1.65% 1.71% 0 0 0 0 151763 [1.03%] 8861076[60.07%]

go -0.01% 0.01% 0.22% 0.27% 0 0 0 0 39180 [0.36%] 13466178[123%]

ijpeg 0.34% -0.59% 10.35% 11.69% 0 0 0 0 57265 [5.14%] 1601495[143.7%]

li -0.01% 0.06% 0.38% 0.55% 0 0 0 0 127888 [1.83%] 2976652[42.62%]

perl -0.01% 0.01% 0.35% 0.39% 0 0 0 0 65049 [0.36%] 11272662[62.0%]

twolf00 0.01% 0.04% 3.59% 4.76% 0 0 0 0 -191 [-0.01%] 396975 [10.02%]

applu00 0.89% -2.13% 40.85% 42.97% 0 0 0 0 3980 [0.03%] 19384421[154%]

hydro2d 7.43% -7.35% 31.75 38.24% 0 0 0 0 75965 [1.83%] 2143317[51.74%]

lucas00 6.86% -6.42% 0.00% 0.00% 0 0 0 0 0 [0.00%] 1973517[300.1%]

mesa00 0.00% -0.09% 2.01% 1.96% 0 0 0 0 482 [0.01%] 43803 [0.98%]

tomcatv 0.57% -0.38% 5.87% 6.94% 0 0 0 0 327437 [7.43%] 627439 [14.24%]

turb3d 1.06% -4.08% 6.67% 29.91% 0 0 0 0 271265 [8.60%] 2997647[95.07%]

AVERAGE 1.16% -1.46% 7.74% 10.65% 0 0 0 0 75786 [1.80%] 5751622[86.38%]

occurred the register file and instruction address would
be backed up and the processor would execute in
runahead mode. By doing this they were able to gener-
ate a fairly accurate prefetch stream. This would in turn
warm up the cache and reduce future stalls. A checker
processor can use similar techniques, because there is
advanced knowledge of the addresses that will be
touched by instructions when they enter the checker. A
similar mechanism for obtaining prefetches was pro-
posed in an earlier paper by Chen and Baer [3].

6. Conclusions and Future Work

Many reliability challenges confront modern micro-
processor designs. Functional design errors and electri-
cal faults can impair the function of a part, rendering it
useless. While functional and electrical verification can
find most of the design errors, there are many examples
of non-trivial bugs that find their way into the field.
Concerns for reliability grow in deep submicron fabrica-
tion technologies due to increased noise-related failure
mechanisms, natural radiation interference, and more
challenging verification due to increased design com-
plexity.

To counter these reliability challenges, we previously
proposed the use of dynamic verification, a technique
that adds a checker processor to the retirement phase of
a processor pipeline. If an incorrect instruction is deliv-
ered by the core processor, for instance due to a design
error or transient fault, the checker processor will fix the
errant computation and restart the core processor using
the processor’s speculation recovery mechanism.
Dynamic verification focuses the verification effort into
the checker processor, whose simple and flexible design
lends itself to high-quality functional and electrical veri-
fication.

We presented detailed analyses of a baseline checker
processor design identical to the one presented in our
initial proposal [1]. We find three factors lead to occa-
sional poor program performance: 1) checker processing
latency delays core processor retirement leading to
decoder stalls, 2) shared storage resources create com-
petition for storage ports which can force the core pro-
cessor to delay issuing instructions, and 3) checker
processor cache misses occur that also create backpres-
sure on core retirement leading to additional decoder
stalls.

To eliminate decoder stalls, we provide a dedicated
register file for the checker processor, thereby permit-
ting the core processor to immediately release specula-
tive state resources when instructions enter the checker
processor. In addition, a store queue is added to the core
processor design , that permits the load/store queue to
also release speculative storage when instructions enter
the checker pipeline. Checker processor cache misses
are eliminated by giving the checker processor its own
dedicated data cache. Our approach employs the core
processor reference stream as a high-quality prefetch
oracle, driving the placement of data into the checker
processor cache in advance of any references. We exam-
ine two designs, one that draws data from the core pro-
cessor L1 cache and a more flexible design that draws
data directly from the L2 cache. Both designs performed
quite well, with 4k 8-way set-associative caches experi-

encing virtually no misses, however, L2 cache traffic
was understandably higher for the latter SplitDiva
design. Our refined design now exhibits negligible
slowdowns for all programs examined, while at the
same time keeping checker pipeline and storage costs
quite low.

We feel that these results strengthen the case that
dynamic verification holds significant promise as a
means to address the cost and quality of verification for
future microprocessors, while at the same time creating
opportunities for faster, cooler, and simpler designs.
Currently, we are in the process of better quantifying
area, power, and performance aspects of our optimized
checker processor design through the development of a
physical checker processor design. In conjunction with
this effort, we are continuing to refine the checker pro-
cessor design. Currently, we are exploring strategies to
better manage the checker processor cache using
advanced prefetching techniques. We are also examin-
ing the cost and utility of partial checking mechanism,
where reduced functionality checkers are employed. We
will report on these results in a future paper.

7. References

[1] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design” , In Micro-32, Nov 99.

[2] T. Austin, “DIVA: A Dynamic Approach to Microprocessor
Verification” , The Journal of Instruction-Level Parallelism Vol-
ume 2, 2000.

[3] J.-L. Baer and T.F Chen, “An effective on-chip preloading
scheme to reduce data access penalty” , In Proc. of Supercom-
puting , pages 176-186, 1991.

[4]M. Blum and H. Wasserman, “Reflections on the Pentium
Division Bug” , Intel Corporation, Oct. 1997.

[5] D. C. Burger and T. M. Austin, “The simplescalar tool set, ver-
sion 2.0” , Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[6] J. Dundas and T. Mudge, “ Improving data cache performance
by pre-executing instructions under a cache miss” , Proc. 1997
Acm Int. Conf. on Supercomputing, July 1997.

[7]J. Hennessy and D. Patterson, Computer Architecture: a Quan-
titative Approach, Morgan Kaufmann Publishers, Inc. 1996.

[8] W. Hunt, “Microprocessor design verification” , Journal of
Automated Reasoning, 5(4):429-460, Dec. 1989.

[9]T. Nakra, R. Gupta, and M.L. Soffa, “Value Prediction in
VLIW Machines” , In ACM/IEEE 26th International Sympo-
sium on Computer Architecture, May 1999.

[10]S. K.Reinhardt and S. S. Mukherjee, “Transient Fault Detec-
tion via Simultaneous Multithreading” , In 27th Annual Interna-
tional Symposium on Computer Architecture (ISCA), June
2000.

[11]E. Rotenberg, “AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microproessors” , Proceedings of the 29th
Fault-Tolerant Computing Symposium, June 1999.

[12]T.J Slegel et al, “ IBM’s S/390 G5 Microprocessor Design” ,
IEEE Micro, pp 12-23, March/April 1999.

[13] K. Sundaramoorthy, Z. Purser, and E.Rotenberg, “Slipstream
Processors: Improving both Performance and Fault Tolerance” ,
9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Nov. 2000.

[14] SPEC newsletter, Fairfax, Virginia, Sept. 1995.

