
P
�

ipeRench Implementation of the Instruction Path Coprocessor

Yuan Chou, Pazhani Pillai, Herman Schmit, John Paul Shen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

{yuanchou,pillai,herman,shen}@ece.cmu.edu

Ab
�

stract

T
�

his paper demonstrates how an Instruction Path Co-
pr� ocessor (I-COP) can be efficiently implemented using the
P
�

ipeRench reconfigurable architecture. An I-COP is a pro-
gr� ammable on-chip coprocessor that operates on the core
pr� ocessor’s instructions to transform them into a new for-
mat t� hat can be more efficiently executed. The I-COP can be
us� ed to implement many sophisticated hardware code mod-
if
�

ication techniques. We show how four specifi c techniques
c	 an be mapped to t he PipeRench pipelined computation
mode� l. The experimental results show that a PipeRench I-
COP used to perform trace construction and trace optimi-
z
 ations for a tr ace cache fi ll unit not only achieves good
pe� rformance gains but can potentially be implemented in
le
�

ss than 10 mm2
�
 (assuming 0.18 micron technology) or ap-

pr� oximately 3% of the die area of a current high-end micro-
pr� ocessor. W e be lieve these r esults d emonstrate the
us� efulness and feasibil ity of the I-COP concept.

1 Introduction

1.1 Dynamic Code Modification
S

purred by relentless progress in VLSI design and fab-
ric� ation, hardware design is evolving at a rapid pace and
inc
�

reasingly s ophisticated m icroarchitectures a re being
im
�

plemented. On t he ot her hand, s oftware i s c hanging
m� uch more slowly. One reason is the existence of a large
ins
�

talled base of l egacy code that is too expensive to be
re� placed or recompiled. Another reason is that the deploy-
m� ent of ne w high ly opti mizing compilers usually la gs
be
�

hind the deployment of new microarchitectures. The end
r� esult is the increasing incompatibility between the com-
pil� er-produced object code and the most efficient im ple-
m� entations of fast execution cores that must execute these
obj� ect code.

One
�

 recently proposed approach to solve this problem
is
�

 to add hardware in the microarchitecture to dynamically

m� odify the object code into an internal format that can be
m� ore e fficiently processed by fa st execution cores. W e
re� fer to this general approach as ha

�
rdware code modifi ca-

tio� n. For example, the Intel P6 [1] decoders translate the
x86 ins� tructions into an internal format called uops that are
the
�

n executed by the execution core. Another example is
th
�

e t race cache [2], which r earranges t he o rdering o f
ins
�

tructions s o t hat fre quently e xecuted s equences o f
ins
�

tructions are stored i n contiguous locations. The trace
c� ache c an reduce t he complexity of i nstruction fetching
a� nd decoding. There are also proposals to optimize these
tr
�

aces [9][10] before lo ading them int o the tr ace cache.
Re
�

cently, there is a proposal to perform run-time program
re� -layout in hardware [25]. We believe that in the quest for
e� ver higher performance, increasingly sophisticated hard-
wa� re code modification techniques wil l be needed in the
fut
�

ure.

An Instruction Path Coprocessor (I-COP), proposed
in [3], is a programmable on-chip coprocessor that allows
the
�

se hardware code modifications to be implemented in
s� oftware much like microcode. An I-COP is analogous to a
d

atapath coprocessor, except that it operates on the core

p� rocessor’s in
�

structions themselves. The programmable
nature of an I-COP affords several advantages. First, com-
ple� x c ode m odifications t hat a re dif ficult t o im plement
dire

ctly i n hardwired logi c m ay be m ore e asily imple-
mented in I-COP code. Second, it allows many code modi-
fication techniques to be implemented using the same
en� gine, each of which can be selectively and adaptively
invoked at run-time. Third, it allows specialization of
microprocessors with the use of different I-COP code or
e� ven dif ferent I-COP implementations. Fourth, it makes it
pos� sible to modify a nd upgrade t he machine simply by
c� hanging I-COP code without changing the hardware. We
be
�

lieve an I-COP can potentially be a valuable addition to
the
�

 microarchitect’s toolbox.

I
!
n evaluating the feasibil ity of the I-COP concept, [3]

s� howed that an I-COP programmed to i mplement trace
c� onstruction and trace optimizations achieves good perfor-
m� ance. T he l onger l atency (a s c ompared to hardwired
log
"

ic) that the programmable I-COP takes to perform the
c� ode m odifications ha d li ttle i mpact on pe rformance
b
�
ecause the I-COP is l ocated at the back-end of the core

proc� essor and because of t he frequent reuse of t he modi-
fied code. The prototype I-COP proposed consists of two
VL
#

IWs each wi th four general function units. Such an I-
C
$

OP i mplementation can require a significant amount of
ch� ip area.

T
%

his paper proposes a novel and much more efficient
I-COP
!

 implementation using a reconfigurable architecture
c� alled PipeRench [4]. In such an implementation, I-COP
p� rograms are actually c	 onfiguration bits that are down-
loa
"

ded to the reconfigurable fabric at run-time. After con-
figu
�

ration, the fabric be comes a ha rdware design that
im
�

plements the desired computation. What distinguishes
P
&

ipeRench from other reconfigurable fabrics is that it sup-
port� s very f ast reconfiguration as well as a vir tualization
te
�

chnique called pipe� line reconfiguration, wh' ich allows a
la
"

rge logical design to be implemented on a small piece of
ha
(

rdware thro ugh rapid c onfiguration of tha t hardware.
T
%

his virtuali zation en ables s maller I -COP implementa-
ti
�

ons, and also allows complex I-COP programs to be writ-
te
�

n without the concern that they may not fit within the size
of � the reconfigurable fabric.

It was shown in [4] that the PipeRench reconfigurable
fabric provides significant performance benefit s for an
a� pplication that exhibits one or more of the following fea-
tur
�

es:

1. It operates on bit-widths that are different from a pro-
ce� ssor’s basic word size.

2. Its data dependencies allow multiple function units to
ope� rate in parallel.

3.
)

It is composed of a series of basic operations that can be
c� ombined into one specialized operation.

4. It can be pipelined.
5.
*

Constant propagation can be performed, reducing the
c� omplexity of the operations.

6.
+

 The input values are reused many times within the com-
put� ation.
The results in [3] suggest that the potential I-COP

ap� plications exhibit many of these features. For example,
the
�

 data bit-widths in t he I-COP applications are odd and
v, aried. There is also abundant parallelism in these I -COP
progr� ams, thus allowing multiple functional units to oper-
a� te in parallel. In addition, large portions of these programs
a� re composed of basic operations t hat can be combined
into specialized operations. In this paper, we show how
hardware code modifications can be mapped to the PipeR-
e� nch pipelined computation model and that the PipeRench

I-COP
!

 achieves good performance. Furthermore, we dem-
ons� trate that a PipeRench I-COP can be implemented at
ve, ry reasonable hardware cost, and in so doing, further val-
ida
�

te the usefulness of the I-COP concept.

T
%

he rest of this paper is organized as follows. Section
2 f
-

amiliarizes the reader wi th the I -COP concept and the
P
&

ipeRench reconfigurable architecture. Section 3 describes
our P� ipeRench I-COP design and how I-COP applications
ar� e implemented in thi s design. Section 4 presents the
re� sults of our exploration of the PipeRench design space as
w� ell as die-area estimates of selected designs. Section 5
c� oncludes this paper.

2 Background

2.
.

1 Instruction Path Coprocessors
An I-COP
/

 i s a programmable coprocessor that oper-
at� es on the core processor’s instructions to transform them
int
�

o a new format that can be more efficiently processed by
fa
�

st execution cores. These transformations can involve the
orde� ring of instructions, the type of instructions (e.g. from
the
�

 ori ginal i nstruction to a sequence of simpler instruc-
tio
�

ns) and even the instruction set (e.g. f rom the original
I
!
SA to a new ISA tailored to the microarchitecture).

2.
0

1.1 Interface With Core Processor
T
%

he I-COP is located on the same chip as the core pro-
c� essor and runs concurrently wit h the core processor. In
orde� r not to negatively i mpact the core processor’s cycle
t
�
ime, i t is situated at the core processor’s back-end and

int
�

eracts primarily with the core pr ocessor’s comple-
tio
�

n/retirement stage. The I-COP requires minimal explicit
c� ontrol by the core processor and rarely stalls the core pro-
c� essor. Figure 1 s hows t he i nterface between the I -COP
a� nd the core processor.

An I-COP should be able to access non-architected
e� ntities of the core processor, such as instruction and data
ca� ches, trace cache, branch and value predictor tables etc.
W
1

here such accesses are allowed, careful c onsiderations
a� re made to ensure that they do not affect the core proces-
s� or’s criti cal timing paths.

In order for the I-COP to intell igently invoke the
a� ppropriate I-COP code based on application characteris-
tic
�

s, the core processor has bui lt-in monitors to track it s
c� urrently executing application’s behavior. The I-COP can
e� ither poll t hese monitors or the I-COP can be in terrupt-
d

riven. In the latter case, when the monitors exceed or dip

be
�

low threshold levels, they interrupt the I-COP and cause
it to vector to specif ic I-COP routines.

Com piler

Fixed
Point
Unit

Float
Point
Unit

Media
Unit

Load
Store
Unit

Branch
Unit

Object
Code

Modified
Code

Fetch

Com plete

core processor

Instruction

Path

Coprocessor

polling

interrupt

Data
Path

modified
instructions

retiring
instructions

Hardware
Code
Modification

2.1.2 Initial Implementation
T
%

he ini tial I-COP im plementation [3] was based on
c� onventional CPU design and comprised of one or more
VL
#

IW engines (called slices) operating in parallel. For the
I-COP
!

 applications studied, two VL IW s lices with four
ge2 neral functional units each represented a good cost-per-
f
�
ormance trade-off. The VLIW organization was chosen to

m� inimize hardware complexity, since I-COP programs are
re� latively small and can easily be statically scheduled. All
t
�
he slices share a common data memory. Since an I-COP

re� places hardwired designs wit h a programmable engine,
s� low-down can be expected. To ensure adequate perfor-
m� ance, parallelisms i n I-C OP programs were exploited;
ins
�

truction-level parallelism was exploited within a VL IW
s� lice and task-level parallelism was exploited across VLIW
s� lices.

The instruction set for the I-COP VLIW slices con-
s� isted of 22 instructions. The core of the instruction set was
a� simple integer-based load/store architecture. In addition,
t
�
en speciali zed instructions were provided to facili tate writ-

ing efficient I-COP programs. The most important of these
a� re powerful (and complex) pattern matching instructions
to e
�

nable regular expression recognition to be performed
qui3 ckly. Predication support as well as branch delay slots
w� ere also provided to eliminate the need for branch predic-
ti
�

on. More details about this implementation can be found
in [3].

The experimental results showed that this initial I-
COP
$

 implementation achieved good performance for the I-
COP
$

 applications studied. However, the drawback is that it
requires a signifi cant amount of hardware and can poten-
t
�
ially consume sizable chip area.

2.2 PipeRench
PipeRench [4] is a reconfigurable fabric that supports

the
�

 computational model shown in Figure 2. In this model,
a co� mputation on a data stream is expressed as a li nearly

int
�

erconnected set of S
4

 pipeline stages, where every stage
is
�

 a function of the registered output of the previous stage
a� nd the registered output of the current stage. Many media
a� nd embedded computational ke rnels c an be m apped to
thi
�

s model with many pipeline stages, which allows for
high
(

 clock speeds and high throughputs. The small amount
o� f feedback al lows f or ef ficient implementation. M any
ins
�

truction transformation techniques can also be mapped
to thi
�

s model. In most instruction transformations, the par-
tic
�

ular t ransformations in iti ated by any ins truction only
a� ffect subsequent instructions, which fi ts the l imited feed-
ba
�

ck model.

Assuming that new inputs arrive every cycle, an
implementation of this pipeline will require S

5
 stages. In

PipeRench, the technique of pipeline reconfiguration [5] is
us6 ed t o support t he cases when the input stream has an
a� rrival rate, or throughput T,' which is less than one every
c� ycle. In this case, S

5
 physical stages cannot be kept busy.

Alternatively the technique is also useful when the cost of
S
5
 stages is prohibitive. The technique is illustrated in

Figure3, where the number of stages in the application, S
5
,'

is five and the number of physical pipeline stages P, is'
thre
�

e. As the figure shows, the configuration of stages hap-
pe� ns concurrently with the execution of other stages.

 Using pipeline reconfiguration, the relationship

be
�

tween S
5
, ' P and T is given by . If

a� nd the input streams consist of a set of N
7

 words, the entire

F
8

igure 2. PipeRench computation model.

f1()
9

clk:

f2()
9

clk:

fN()
9

clk:

...
S

T max
P
S
5--- 1,; 

<
=

= P S≥

F
8

igure 1. Interface between I-COP and core processor.

c� omputation wi ll have a l atency of c ycles. If
, t' hen virtualization is necessary, and the computa-

ti
�

on will take cycles to complete. In the rest of

thi
�

s paper, we use the term v> irtual stripes to r
�

efer to the
pip� eline stages required by t he application and the t erm
phy� sical s tripes to refer to the physical pipeline stages
a� vailable. As any virtual stripe can be mapped to any phys-
ic
�

al stripe, all the physical stripes must have the same func-
ti
�

onality and interconnect.

T
%

he current architecture of PipeRench is optimized by
e� valuating a set of media-centric applications and is i llus-
tra
�

ted in Figure4. Each physical stripe consists of sixteen
AL
/

Us (labelled PEs), which are each eight bits wide, con-
n? ected w ith a byte-wise crossbar and an elaborate set of
s� hift registers. The ALUs are capable of all possible bit-
wis� e functions on two operands, as well as addition, sub-
tra
�

ction and multiplexing. Each of the AL Us also contains
a� n eight entry register f ile whi ch is pi pelined to provide
pip� eline interconnect to downstream pipeline stages. State
va, lues (those feeding back in Figure 2) can only be stored
in
�

one specif ic register i n the register fi le. An i nput and
out� put bus moves operands on and off the execution fabric.

A phys
/

ical design of this architecture has been com-

N S
@

+
P S<

S
5 N

@

P
�---- P+

Figure 3. PipeRench pipeline reconfiguration.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

1 2 3 4 5 6Cycle:

Virtual Pipestage

1Stage 1

Stage 2

Stage 3

4

5

1

2

1

2

3

2

3

4

3

Physical Pipestage

Configuring ExecutingLegend:

4

5

1

7

2

5

1

F
8

igure 4. PipeRench Architecture.

PEk

Interconnect Network

PE 15 PE 14 PE 0

Interconnect Network

S
tri

pe
 N

S
tri

pe
 N

 -
1

S
tri

pe
 N

 +
 1

PE
A

15 PE
A

14 PE
A

0

RegFile

ALU
B

Muxes /
Shifters

ple� ted i n 0.35 micron and 0.18 micron process technolo-
gie2 s. In 0. 18 micron, a single p hysical stripe c onsumes
1.03 sq mm of silicon area, and operates at over 200MHz.
S

ome small additional chip area is required for storage of
c� onfiguration information and state that needs to be held
duri

ng vi rtualization. This i s a very conservative design,
with� static CMOS circuits and fabricated in an ASIC pro-
c� ess. We expect considerable headroom in improving both
die

 area and clock speed.

P
&

ipeRench applications are writ ten in the Dataf
C

low
Inte
D

rmediate L anguage (DIL), which is a single-assign-
m� ent language with C operators and a type system t hat
al� lows the bit-width of variables to be specified. The DIL
c� ompiler [6] c onverts the source in to a dataflow graph,
de

composes t his graph i nto the native operators of the
ar� chitecture and places and routes the operators on the Pip-
e� Rench fabric. The output of the compiler is a set of co	 n-
fig
E

uration bits (actually divided into a number of subsets,
one� subset per virtual stripe) that are used to configure the
phys� ical stripes at run-time.

2.
.

3 PipeRench I-COP Advantages
In addition to being area-eff icient, which we will dem-

ons� trate in Section 4.3, the PipeRench I-COP implementa-
tio
�

n a lso o ffers a num ber of oth er advantages. T he
PipeRench architecture allows the designer to easily trade
of� f the size of the reconfigurable fabric with other parts of
the
�

 microarchitecture to optimize the overall design. Since
the
�

 DIL code for the I-COP applications do not even need
to b
�

e modified, changes to the number of physical stripes
c� an be made very late in the design cycle. Moreover, when
the
�

 same microarchitecture is implemented in the next pro-
c� ess generation, the designer has the option of increasing
the
�

 number of physical stripes available to increase perfor-
mance. Since physical stripes in the reconfigurable fabric
ar� e identical, this can be accomplished with m inimum
redesign. The designer can also choose to upgrade the resi-
de

nt I-COP programs to further enhance performance. All
in all, the PipeRench I-COP allows the designer to improve
the
�

 performance of the core processor wi th minimal logic
a� nd circuit redesign.

T
%

he Pi peRench I-C OP also retains t he ot her I -COP
a� dvantages li ke allowing complex hardware code modifi -
c� ation techniques to be implemented as I-COP code and
a� llowing many hardware code modifications to be imple-
m� ented using the same engine, each of which can be selec-
tiv
�

ely and adaptively invoked at run-time. In addition, the
P
&

ipeRench I-COP makes it especially easy to speciali ze the
c� ore processor by varying the size of the r econfigurable
fa
�

bric to achieve different performance goals and support
dif

ferent le vels of complexity in t he I -COP pr o-
gra2 ms.

Figure 5. PipeRench I-COP implementation.

Co
F

re

Processor

I-COP
Data

MemoryG

P
ip

eR
en

ch
 P

ip
el

in
e

PhyG sical

Stripes

T
H

race B uffer

T
H

ask Queue

Fill Buffer I-
I

COP reJ tiringK
instructions

Trace Buffer

PhyG sical

Stripes

t
L
races

(
M
opt imized)

P
ip

eR
en

ch
 P

ip
el

in
e

3
N

 PipeRench I-COP Implementation
In this section, we describe the design of the Pipe-

Rench I-COP. In order to assess its performance and die
a� rea requirements, we study how it can implement four
s� pecifi c hardware code modification techniques: namely
tra
�

ce construction, register move trace optimization, stride
da

ta prefetch trace optimization, and li nked data structure
p� refetch trace optimization. These are the same techniques
implemented in the earlier study [3] and therefore allows
us6 to compare the PipeRench and VLIW implementations
in terms of performance and area efficiency. In Section 3.2,
we� describe how these four code modification techniques
a� re im plemented on the P ipeRench I-C OP as DIL pro-
gra2 ms. W e anticipate th at in the fut ure, many o ther
a� dvanced code modifi cations will be mapped to the PipeR-
e� nch I-COP computation model.

3.
O

1 PipeRench I-COP Design
The PipeRench I-COP implementation comprises of

one� or more PipeRench pipelines (each consisting of one
or m� ore physical stripes) o perating i n parallel. A P ipe-
Rench pipeline constructs and optimizes traces by treating
t
�
he retiring instructions from the core processor as stP ream-

ing
�

 inp
�

ut data. The outputs of each PipeRench pipeline are
wr� itten to it s local tr

�
ace buffer, ' which acts as temporary

s� torage to hold a trace as it i s being constructed. When a
tr
�

ace is full y constructed, it is copied from the trace buffer
to
�

 t he trace cache. A PipeRench I -COP i mplementation
wit� h two pipelines is shown in Figure 5. The fi ll buffer col-
lects the retiring instructions from the core processor, and
the
�

 task queue distributes them to the PipeRench pipelines.
W
1

hen the fi ll buf fer i s ful l, i nstructions are dropped at
ba
�

sic block boundaries. If a PipeRench pipeline has suffi-
c� ient physical stripes to match the number of virtual stripes
required by the I-COP applications, it accepts one fill
buf
�

fer instruction per cycle as input and writes one instruc-
ti
�

on to the trace buffer per cycle as output. Otherwise, the
phys� ical stripes are time multiplexed and the throughput of

tr
�

ace processing will be less than one instruction per cycle.
In S
!

ection 4, we evaluate the performance impact of vary-
ing t
�

he number of Pipe-Rench pipelines and the number of
phys� ical stripes per pipeline.

3.
O

2 Implementing Code Modifications Using Pip-
eQ Rench

T
%

o implement code modifications on the PipeRench I-
CO
$

P, they are first mapped to the PipeRench computation
m� odel described in Section 2.2. They are then writ ten in
the
�

 DIL language and compiled by the DIL compiler to
produc� e the configuration bits used to configure the physi-
c� al stripes of the PipeRench I-COP at run-time.

3.
R

2.1 Trace Construction
T
%

he t race cache [2][7][8] s tores frequently executed
s� equences of instructions in physically contiguous storage
loc
"

ations, thus allowing high bandwidth instruction fetch
with� out m ultiple c ache port s nor ins truction a lignment
logi
"

c. T his d ynamic re grouping of i nstructions i s per-
form
�

ed by a hardware structure called the fi
E

ll unit which is
lo
"

cated at the back-end of the machine. A trace comprises
not onl? y of regrouped instructions but also the outcomes of
t
�
he branches in the trace, the exit addresses of the trace (to

fa
�

cilitate partial m atching [7]) a nd t he type of t he last
ins
�

truction in the trace.

In our I-COP
!

 im plementation, logi c associated with
the
�

 f ill buffer examines its f irst 16 entries and determines
the
�

 end of a new trace. It th en copies those instructions
from
�

 the fil l buffer to the I-COP memory and inserts a task
int
�

o th e t ask queue. Whenever a PipeRench pipeline i s
fre
�

e, it picks up a task from the front of the task queue and
t
�
reating the fi ll buf fer instructions i n I-C OP memory as

s� treaming input, processes one instruction in the trace at a
tim
�

e and outputs t he processed instructions t o the trace
buf
�

fer (see Figure 6). In the case of branch instructions, the
PipeRench pipeline also outputs the branch outcome and

ex� it address associated with that branch to the trace buffer.
W
1

hen the trace is full y constructed, the trace cache inside
the
�

 core processor is read to check if there is an existing
t
�
race with the same starting PC. The new trace is written to

t
�
he trace cache as l ong as i t i s not a subset of an existing

tra
�

ce. The PipeRench pipeline i s then ready to pick up a
new task. Based on the reconfigurable fabric’s resource
c� onstraints (16 8-bit AL Us per stripe), t he DIL compiler
maps the trace construction logic to 11 virtual stripes. More
de

tails on the PipeRench implementation of trace construc-
ti
�

on and the o ther c ode m odification techniques c an be
found in [26].

3.
R

2.2 Register Move Trace Optimization
Beyond basic trace construction, the I-COP can per-

form optimizations on traces to achieve additional perfor-
mance. Recently, there have been proposals for various
tr
�

ace optimizations [9][10]. T he register move optimiza-
ti
�

on [9] is one such example. In this optimization, instruc-
ti
�

ons within a trace which move a value from one register
to a
�

nother re gister wit hout m odifying i t a re m arked as
eS xplicit move instructions by the fill unit. Examples of such
instructions are:

ADD Ra <- Rb + 0

S

HIFT Ra <- Rb << 0

Instead of using execution resources to execute these
instructions, their output registers are renamed to the same
phys� ical registers (or operand tags depending on the regis-
te
�

r renaming scheme used) as their input registers. Aside
from saving execution resources, this also enables depen-
d

ent instructions to execute earlier. The register renaming

logic is modified to handle such explicit moves. A slight
c� omplication is t hat t he in put registers of dependent
instructions within the same trace have to be substituted
wit� h the input register of the eS xplicit move instruction.

In our PipeRench I-COP implementation shown in
Figure 7, the register move optimization is performed after
tr
�

ace construction and before the trace is written from the
tr
�

ace buffer to the trace cache. Because this optimization is
fairly expensive, it is not applied the first time a trace is

instruction_ in

bran ch _taken

bra nch_tgt

in st_loc
n um _bran ches
in structio n_ou t

b ranch_ dir
e xit_ add re ss
last_ inst_type Tr

ac
e

B
u

ff
er

Construct
PC

Figure 6. Trace construction using PipeRench.

TraceTrace

Construct

St
T

ageU

instruction_out = instruction_in
if (instruction_in.type = COND BR)

branch_di r = branch_taken
i f (branch_taken)

exi t_address = branch_tgt
else exi t_address = PC + 4

last_inst_typV e = instruction_in.typV e
inst_loc ++

num_branches++

State:
inst_ loc, num_branches

wr� itten into the trace cache. It is only applied to a trace that
is found to be already in the trace cache and has been
ac� cessed xW number of times. We found x =W 5 to be a good
c� hoice. Also, a trace is only optimized i f i t contains more
tha
�

n one conditional branch, since we assume the compiler
a� lready performs this optimization within a basic block.
The input to the optimization is a stream of instructions
from the result of trace construction and the output is a
s� tream of op timized i nstructions that are written t o the
tra
�

ce buf fer. For every in put i nstruction, two op erations
have to be performed. First, it must be determined if this
instruction is a candidate for the optimization and if so, its
type
�

 should be changed to that of an eS xplicit move. Second,
one� or both of it s source operand specif iers (i. e. register
numbers) must be modified if that operand is dependent on
an� earlier register move candidate in the trace.

T
%

he fi rst operation is essentially combinational logic
a� nd is performed by the Detect Stage shown in Figure 7.
T
%

he DIL c ompiler produces a design of t his stage t hat
re� quires 10 virtual stripes.

The second operation is accomplished by keeping a set
of m� appings, labelled as the Mapping Stages in Figure 7.
Each stage stores four values:

* a valiX d flag
* a 5-bit value RD w� hich represents a r egister that is
be
�

ing mapped
* another 5-bit value RS whic� h represents the register to
whic� h RD gets mapped
* a single bit, called the useY d flag, which is set if this
s� tage has a valid mapping or ever had a valid mapping

At th
/

e beginning of each new trace, all of t he stages
ar� e set to in

Z
valid and unY used. When an instruction enters a

s� tage, if the stage i s valX id and if a source register of the
inc
�

oming instruction (rs_in) matches RD
[

,' then that source
re� gister wi ll be renamed (rs_out) t o RS

[
. If the incoming

Figure 7. Register move optimization using PipeRench.

inst_lo c

num _b ranche s

instruction

branch _dir
exit_a ddress

Tr
ac

e
B

u
ff

er

Detect

St
T

ageUTrace

Construct
St
T

ageU

Map
St
T

ageU
1last_inst_

Map
St
T

ageU
N

type

(
\
11 strip] es^)

(10 str ipes) (12 strip_ es)

State:
RS, RD, Used, Val id

I f (rs_in == RS || rd_in == RD)
Val id = FA L SE;

I f (RD == rs_in & & Val id)
rs_out = RS;

I f (Reg M ov candidate & & !Used)
RD = rd_in
RS = rs_in
Used = TRUE
Valid = TRUE

rs_ in rs_ou t

ins
�

truction is a register move candidate and the stage is
unY used,' and if this instruction’s mapping has not yet been
s� tored, then the stage w ill be marked as useY d and valX id.
T
%

he source and destination of t he instruction (rs_in and
rd_i� n) will be stored in RS

[
 and RD

[
 respectively. A one bit

flag will be sent to downstream stages indicating that the
mapping for this instruction has already been stored.

I
!
f an instruction reaches a stage in which the destina-

ti
�

on of the instruction (rd_in) matches either RD
[

 or RS
[

, t' he
s� tage will be set to in

Z
valid. However, the stage will remain

m� arked as useY d,' since it previously had a valid mapping in
i
�
t. This prevents future register move candidates from stor-

ing
�

 their mappings ahead (in s tage order) of a n already
s� tored m apping and ensures t hat old er mappings in the
tr
�

ace always appear earlier in s tage order. T his in tur n
e� nsures that when a new register move candidate stores its
m� apping, it s source register wil l have already been cor-
re� ctly re named. Each instruction onl y ne eds to p ass
thro
�

ugh the pipeline just once, thus enabling a throughput
of one� instruction per cycle.

For a simple example of how this design works (it can
al� so handle all the complex cases), consider the following
e� xample of a trace with just three instructions:

ADD r2 <- r1 + 0 (1)
`

ADD r4 <- r3 + r2 (2
`

)

ADD r2 <- r10 + r11 (3)
`

Ins
!

truction 1
a
 is eligible for the optimization and will

c� reate the mapping (RD
[

 = 2, RS
[

 = 1). Instruction 2
b
 is not

e� ligible for the optimization but one of its source operands
m� atches the stored mapping (RD

[
 = 2, RS

[
 = 1) and so the

ins
�

truction is transformed to ADD r4 <- r3 + r1. Instruction
3
c
 is also not eligible for the optimization and since its des-

ti
�

nation matches the stored mapping (RD
[

 = 2, RS
[

 = 1), the
m� apping is invalidated.

 The DIL compiler produces a design that requires 12
virt, ual stripes for each Map Stage. In our simulations, we
found that having just one set of mapping (i.e. only one
eS xplicit move is allowed in a trace) achieves most of the
per� formance gains of this trace optimization. This means
thi
�

s trace optimization takes a total of 10 + 12 = 22 virtual
s� tripes i n addition to the 11 vi rtual stripes for t race con-
s� truction.

3.
R

2.3 Stride Prefetch Trace Optimization
The stride prefetching scheme we implement in the I-

COP
$

 is based closely on the hardware scheme proposed by
Ch
$

en and Baer [11]. The basic idea is to record the effec-
t
�
ive addresses of l oads as they are executed, compute the

latest stride by comparing this address to the last effective
a� ddress generated by the same static load, and update a 2-
bit
�

 state machine. Depending on the resulting state of the

s� tate machine, a prefetch request may be generated. All
thi
�

s information is recorded in a table called the Reference
P
&

rediction Table (RPT) stored in the I-COP data memory.
W
1

henever a load is encountered during the construction of
a tr� ace, the 512-entry RPT is consulted to determine if it
has a consistent stride. If so, a prefetch instruction is
inserted in the trace before it is written to the trace cache.
The prefetch instruction is only inserted if there is an
em� pty slot in that particular trace cache line. This optimi-
zation is performed after trace construction and before the
tr
�

ace is written from the trace buffer to the trace cache. The
input to the optimization is a stream of instructions from
the
�

 result of trace construction and the output is a stream of
the
�

 same i nstructions plus possibly one or more prefetch
instructions. The DIL compiler produces a design that
requires 14 virtual stripes.

3
R

.2.4 LDS Prefetch Trace Optimization
Linked data structures (LDS) include linked lists, trees

a� nd graphs etc., where i ndividual nodes are dynamically
a� llocated from the heap and linked together through point-
e� rs to form the overall structure. The LDS prefetching we
implement is based on that proposed by Roth et al. [12]. In
thi
�

s scheme, the goal is to correlate pairs of loads li ke the
following, where the result of the first load is used as the
ba
�

se address for the second load:

L
d

OAD r2<- M[0(r1)]

LOAD r3<- M[8(r2)]

Af ter the correlation is established, whenever the first
load is executed, a prefetch can be issued for the second
load to hide the potential cache miss latency. Correlations
ar� e established by actual values rather than by symbolic
means, with the help of two tables stored in the I-COP data
memory: the 256-entry Potential Producer Window (PPW)
a� nd the 512-entry Correlation Table (CT). Whenever a load
is encountered during the construction of a trace, it updates
the
�

 PPW and CT. It also searches the CT and if it is found
to be
�

 a producer, a prefetch instruction is inserted as part of
the
�

 trace before the trace is written to the trace cache. The
DIL compiler produces a design that requires 9 virtual
st� ripes.

3
R

.2.5 Comparison With VLIW-based I-COP
Table 1 compares the number of virtual stripes

required by the PipeRench I-COP programs to the number
of � operations and cycles needed by the VLIW-based I-COP
for the same programs. For the PipeRench I-COP, the num-
be
�

r of cycles required to execute the program depends on
the
�

 number of physical stripes available and is governed by
the
�

 equations in Section 2.2. In Section 4.2, we study the
pe� rformance i mpact of va rying t he number of p hysical
st� ripes.

4 Experimental Results

4.
e

1 Simulation Methodology
Our pe
�

rformance simulator is bui lt around Digital’s
A
/

TOM tool [13] and uses the Alpha ISA [14]. Al though it
is
�

 trace-driven, i t models the resource contention (but not
ca� che effects) due to instructions on the mispredicted path.

The organization of the core processor is as follows.
The trace cache contains 128KB of instructions (2048 lines
of 16 � instructions) and i s 4-way set associative. Partial
matching is implemented. The branch predictor is as
de

scribed in [7]. It is an adaptation of the gs� hare predictor,
a� nd makes 3 predictions per cycle. We assume a perfect
return address stack which is used to predict subroutine
returns. The L1 instruction cache is 16KB and direct-
mapped, with a 14 cycle miss latency. Because of the low
instruction cache miss rates, an L2 instruction cache is not
modeled.

T
%

he front -end pipeline of t he c ore pr ocessor, from
fe
�

tch to dispatch, is four stages deep. Instructions are dis-
pa� tched to a 512 entry centralized instruction window and
a� re allowed to i ssue out-of-order. Perfect memory disam-
big
�

uation is assumed. The f unctional unit m ix and their
e� xecution l atencies are shown in Table 2; all functional
uni6 ts are ful ly pipelined. The L1 data cache is 16KB and
dire

ct-mapped and the miss latency to the L2 data cache
(
f
assumed off ch ip) is 14 cy cles. Th e L 2 d ata c ache is

256KB a
-

nd 2-way set associative, wit h a miss latency to
m� ain memory of 75 cycles. In our data prefetching experi-
m� ents, prefetched data are brought into a 64 entry fu lly -
a� ssociative prefetch buffer. The PipeRench I-COP model is
i
�
ntegrated with the core processor’s simulator and is simu-

I-COP Application
Virtual
Stripes

VLIW
ops

VLIW
cycles

Trace construction 11 50 18

Register move trace optimization 22 423 106

Stride prefetch trace optimization 14 130 33

LDS prefetch trace optimization 9 86 22

T
g

able 1: Comparison between PipeRench and VLIW-
ba
h

sed I-COP implementations.

Functional Units Units Latency

Si
i

mple Integer
C
j

omplex Integer
Load/Store
Branch
Floating-Point Add/Multiply
Floating-Point Divide

8
4
4
4
4
4

1
4

2/1
1
3

11(sp), 15(dp)

Table 2: Core processor execution resources.

la
"

ted in detail at the machine cycle level.

S

even SPECint95 benchmarks [15] and three pointer-
int
�

ensive Olden benchmarks [16] are used. Their input sets
a� nd dynamic instruction counts are shown in Table 3. The
be
�

nchmarks are compiled using the default op timization
fla
�

gs of the SPEC distribution and are run to completion.

4.2 Performance Data
In this section, we show the performance of the core

proc� essor under different PipeRench I-COP organizations.
In particular, we vary the number of physical stripes per
PipeRench pipeline as well as the number of PipeRench
pipe� lines. Since the reconfigurable fabric may have to be
c� locked at a slower clock speed than the core processor, we
s� how two sets of results. The f irst assumes the reconfig-
u6 rable fabric is clocked at the same speed as the core pro-
ce� ssor while the second assumes it is clocked at half the
sp� eed.

W
1

hile evaluating the dif ferent design points of the
de

sign space, it is helpful to bear in mind that each physical
s� tripe in a 0.18 micron process occupies 1.03 sq mm of sil-
ic
�

on area (approximately 1/300th the area of a 300 sq mm
die

 used in current high-end microprocessors).

4.2.1 Trace Construction
F
k

igure 8 shows the performance of the core processor
with� its I-COP implemented in different PipeRench organi-
zl ations for t race construction. In p articular, we vary the
num? ber of PipeRench pipelines as well as the number of
phys� ical stripes per pipeline. The upper graph assumes that
the
�

 PipeRench I-COP runs at the same speed as the core
proc� essor while the lower graph assumes that it runs at half
the
�

 speed. In both graphs, the ym axis shows the harmonic
m� ean of the IPCs of the seven SPECint95 benchmarks and
the
�

 xW axis represents the total number of physical stripes.
T
%

he sets of data points on each graph represent varying the
num? ber of P ipeRench pipelines. The number of physical
s� tripes per pi peline can be derived by di viding the total
num? ber of physical stripes by the number of pipelines. For

Benchmark Input Set Inst Count

compress
ij peg

m8n 8ksim
goo
gcco
li

pep rl
hea
q

lth
perp imeter
tr reeadd

10000 e 2231
tinyrose.ppm
dhry2tiny.li t

5 9
-O genoutput.i

queens 6
trainscrabbl

5 levels, 500 iters
4K x 4K image
1024K nodes

54M
89M
99M
78M
106M
56M
47M
176M
43M
98M

Table 3: Benchmark characteristics

e� xample, the data point [2 pipelines (PL), 14 total physical
s� tripes] implies there are seven physical stripes per PipeR-
e� nch pipeline. For c omparison, the performance of the
VL
#

IW-based I-C OP (l abeled VL IW) a s well as a hard-
w� ired trace cache fill unit (labeled HW) are also shown.

The throughput at which the I-COP constructs traces is
dire

ctly proportional to the total number of physical stripes
a� vailable, w hile th e la tency o f tr ace construction i s
inversely proportional to it. When the throughput of trace
c� onstruction i s re duced, m ore i nstructions are dr opped
from the fill buffer since the I-COP is not able to keep up
w� ith the rate at which instructions are retired by the core
proc� essor. However, because of the frequent reuse of previ-
ous� ly constructed traces, these dropped instructions do not
a� dversely affect overall performance. Mo reover, because
t
�
he I-COP is located at the back end of the core processor,

longer latencies in trace construction also do not seriously
a� ffect performance. Therefore, there is diminishing returns
in performance as the total number of physical stripes is
increased.

Give
s

n a fi xed total number of phys ical stripes (and
thro
�

ughput), performance varies slightly depending on the
e� xact PipeRench organization. This i s due to several fac-
tor
�

s. First, the latency of trace construction has a ceiling
func
�

tion (see Section 2.2) that produces discontinuiti es. In
pa� rticular, 11 physical stripes per pipeline results in partic-
ula6 rly good performance because the average trace length
is approximately 11 instructions. Second, the number of

F
8

igure 8. Trace construction performance.

Trace Construction (1:1)

2.50

2.55

2.60

2.65

2.70

2.75

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C 1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW

Tr
t

ace Construction (1:2)

2.45

2.50

2.55

2.60

2.65

2.70

2.75

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C 1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW

P
&

ipeRench pip elines a ffects trace s election because
ins
�

tructions are dropped from the fi ll buf fer at a different
t
�
iming. When th ere are m ore p ipelines, th ere will b e a

long
"

er series o f c ontiguous t races foll owed by a larger
num? ber of dro pped ins tructions. When t here a re f ewer
pipe� lines, there wil l be a shorter series of contiguous traces
foll owed by a smaller number of dropped instructions. The
former situation is more desirable than the latter, so in gen-
e� ral, for a given number of total physical stripes, it is better
to
�

have more pipelines and fewer physical stripes per pipe-
line.

F
k

or a particular performance level (i .e. fixed value on
ym axis), the most desirable PipeRench I-COP organization
is
�

 the one wit h the least total number of physical stripes.
F
k

or example, if we want to match the performance of the
VL
#

IW I -COP i mplementation, the design point [3 pi pe-
lin
"

es, 15 total physical stripes] is t he best or ganization
whe� n the clock speed of the PipeRench I-COP matches the
c� lock speed of the core processor. When the clock speed is
ha
(

lf t hat of the core processor, the design point [3 pi pe-
lin
"

es, 33 total physical stripes] is the best organization.

4.
u

2.2 Register Move Trace Optimization
F
k

igure 9 s hows the performance of different PipeR-
e� nch organizations when the register move optimization is
a� pplied in addition to basic trace construction.

The graphs in Figure 9 are organized in a similar fash-
ion to those in Figure 8. Because the PipeRench I-COP is
e� ffi cient i n i mplementing t his optimization (22 v irtual
s� tripes in addition to 11 vir tual stripes for basic trace con-
s� truction; in contrast, the VL IW requires 423 instructions
in addition to 50 instructions for basic trace construction),
fewer total physical stripes are needed to match the VLIW
implementation. When the PipeRench I-COP runs at the
s� ame speed as the core processor, the [4 pipelines, 12 total
phys� ical stripes] organization matches the performance of
the
�

 VL IW I-COP. W hen it runs at half the speed, the [5
pipe� lines, 2 5 t otal physical stripes] organization accom-
p� l ishes the same goal.

From the results, we also observe that when compared
to ba
�

sic trace construction, given the same PipeRench I-
COP
$

 or ganization, a pplying thi s opt imization improves
pe� rformance. For example, the harmonic mean IPC of the
I-COP organization [3 pipelines, 15 total physical stripes]
(a
f

ssuming I-COP and core processor run at the same clock
s� peed) increases from 2.69 to 2.72. Alt hough these perfor-
mance improvements are modest, no additional I-COP
hardware was required; only the I-COP code, i.e. the Pip-
e� Rench c	 onfiguration bits, are changed.

4.2.3 Stride Prefetch Trace Optimization
Figure 10 shows the performance of different PipeR-

en� ch organizations when the stride data prefetch optimiza-
ti
�

on is applied in addition to basic trace construction. This
o� ptimization is applied to all traces. The results are clearly
s� uperior to those in Figure 8, demonstrating the advantage
of a� n I-COP in being able to improve core processor per-
formance by modifying I-COP code and without changing
t
�
he I-COP hardware. The PipeRench I-COP is effi cient in

implementing this optimization, requiring only a [3 pipe-
lines, 9 total physical stripes] organization to match the
V
#

LIW I-COP when it is running at the same clock speed as
the
�

 core processor. When it i s running at half the speed, a
[5 pipelines, 15 total physical stripes] organization is
required. Note also that these I-COP organizations also
handily exceed the performance of the hardwired trace
ca� che f ill unit performing trace construction with no trace
opt� imization (labeled HW (No Opt) in Figure 10).

4.2.4 LDS Prefetch Trace Optimization
Figure 11 shows the performance of a PipeRench I-

C
$

OP running at the same clock speed as the core processor
whe� n the L DS da ta prefetch optimization i s a pplied.
Because the IPC performance of the he

�
alth benchmark is

a� n order of m agnitude lower than those of t he other two
Olde
�

n benchmarks, we avoid using the harmonic mean of
t
�
heir IPCs. Instead, the performance of each benchmark is

s� hown separately. T he I-COP organization shown is the

Figure 9. Register move optimization performance.

Trace Construction + Reg Move Optization (1:1)

2.55

2.60

2.65

2.70

2.75

2.80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

v

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C 1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW (No Opt)

Trace Construction + Reg Move Optimization (1:2)

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

v

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C 1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW (No Opt)

s� ame one t hat matches the performance of the VL IW I -
COP
$

 for the stride data prefetch optimization, i .e. 3 pipe-
lines, 9 total physical stripes. We observe that a small Pip-
eRe� nch I -COP is able t o m atch the performance o f the
VL
#

IW I -COP. The performance of this PipeRench I-COP
a� lso exceeds that of the hardwired trace cache fill unit with
no trace optimization by a considerable margin.

F
k

igure 12 is similar to Figure 11 except that the results
s� hown are for an I-COP that runs at half the clock speed of
the
�

 core processor. The I-COP organization shown is the
s� ame one t hat matches the performance of the VL IW I -
COP
$

 for the stride data prefetch optimization, i .e. 5 pipe-
lin
"

es, 15 total physical stripes. Again, we observe that a
s� mall PipeRench I-COP is able to match the performance
of � the VLIW I-COP.

Figure 10. Stride prefetch performance.

Tr
t

ace Construction + Stride Prefe tch Optimization (1:1)

2.60

2.65

2.70

2.75

2.80

2.85

2.90

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

v

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C

1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW (No Opt)

wyx z|{|}�~������ ��x ��{ ��� �������|��x � ��}���x }�� }���{����y����� ��� ��z ��� ����� �|� �|¡

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Tota l Physical Stripes

H
ar

m
o

n
ic

 M
ea

n
 IP

C 1 PL

2 PL

3 PL

4 PL

5 PL

VLIW

HW (No Opt)

Figure 11. LDS prefetch performance (1:1 clock speed).

Trace Construction + LDS Prefetch

0

0.5

1

1.5

2

2.5

3

3.5

4

perimeter treeadd

Benchmark

IP
C

 Optimization (1:1)

0.21

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

0.26

0.26

health

Benchmark

IP
C

PipeRench

VLIW

HW (No Opt)

4.2.5 Estimated Area of PipeRench I-COP
T
%

o match or exceed the VLIW I-COP performance for
tr
�

ace construction and all thr ee trace optimizations, and
a� ssuming that the PipeRench I-COP is only able to run at
ha
(

lf the speed of the core processor, the estimated die area
of t� he PipeRench I-COP (33 total physical stripes) fabri-
c� ated in a 0.18 micron process is 33 x 1.03 = 34 sq mm. To
put� thi s in perspective, Table 4 shows the estimated die

a� reas of other microarchitecture structures in the same pro-
c� ess. The PipeRench I-COP is roughly equivalent in area to
256KB o
-

f fast SRAM, or about 11% of the die area of a
c� urrent hi gh-end microprocessor. If t he I-C OP i s able to
r� un at the same speed as the core processor, the die area
re� quired drops to approximately 15 x 1.03 = 15 sq mm, or
rough� ly equivalent to 128KB of fast SRAM, or about 5%
o� f the die area.

As noted in Section 2.2, these area estimates are likely
to be
�

 conservative due to the conservative circuit design
a� nd fabrication process assumed. Al so, the DIL compiler
a� chieves relatively low uti lization of PipeRench resources
b
�
ecause of it s fast and greedy approach to placement and

routing, as il lustrated in Table 5. The percentage resource
uti6 l ization numbers are obtained by dividing the total num-
be
�

r of native PipeRench operations in th e application by

Component
% of
die

Process
(u)

Area

(mm2
¢
)

Area
scaled

for
0.18 u

IBM G6 [17] FPU 7.1 0.22 15.3 10.2

Transmeta 3120 [18] FPU 12.3 0.22 9.5 6.3

UltraSparc-2i [19] FPU 12.0 0.29 18.0 6.9

AMD K6 [20] FPU 14.3 0.35 23.1 6.1

NEC MP98 [21] 64KB
cache

8.0 0.15 9.1 13.1

NEC Cache SRAM
[22]

512K
cache

100.0 0.25 132.0 68.4

Table 4: Die areas of microarchitecture structures.

Figure 12. LDS prefetch performance (1:2 clock speed).

Trace Construction + LDS Prefetch

0

0.5

1

1.5

2

2.5

3

3.5

perimeter treeadd

Benchmark

IP
C

 Optimization (1:2)

0.2

0.21

0.22

0.23

0.24

0.25

0.26

health

Benchmark

IP
C

PipeRench

VLIW

HW (No Opt)

the
�

 total number of AL Us available in a design with the
re� sultant number of physical stripes. S ignificant perfor-
m� ance improvements can easily be obtained by optimizing
the
�

 PipeRench architecture, circuit design and compiler for
I-COP
!

 applications.

If one is willi ng to trade off a little performance (2.6%
lower for trace construction, 1.8% for the register move
tra
�

ce optimization, 1.1% l ower for s tride prefetch trace
opti� mization), and assuming the PipeRench I-COP is only
ab� le to run at half the speed of the core processor, one can
implement the [3 pipelines, 9 total physical stripes] I-COP
in 9 x 1.03 = 9.27 sq mm, which is roughly equivalent in
ar� ea to 64KB of fast SRAM, or 3% of the die area of a cur-
rent high-end microprocessor. In future fabrication pro-
c� esses (0.13 micron and beyond), the I-COP will occupy
an� even smaller fraction of the available die area.

5 Conclusions and Future Work
In this paper, we have described an efficient means of

implementing an I-COP by using the PipeRench reconfig-
ura6 ble a rchitecture. W e a lso show how hardware c ode
modifications can be mapped to the PipeRench pipelined
c� omputation model. In our e xperimental evaluation, we
found that a PipeRench I-COP used to perform trace con-
s� truction and trace optimizations for a trace cache fill unit
not only achieves good performance but can be imple-
mented in less than 11% of the area of a current high-end
microprocessor. If one is willing to trade off only a little
pe� rformance, this figure can be reduced to 3% or lower. We
b
�
elieve that this demonstrates that an I-COP can be imple-

mented in a reasonable amount of chip area.

In
!

addition to being area-efficient, the PipeRench I-
CO
$

P im plementation al so a llows th e designer to easily
tra
�

de off the size of the reconfigurable fabric wi th other
pa� rts of the microarchitecture to maximize overall perfor-
m� ance. As the PipeRench configuration bits do not need to
be
�

 modifi ed, this trade-off can be changed very late in the
de

sign cycle. The PipeRench I-COP implementation is also
high
(

ly scalable. As I-COP programs become more com-
ple� x or more I-COP programs need to be run concurrently,
the
�

 number of physical stripes in the reconfigurable fabric
c� an be increased with minimal design effort.

I-COP Application
Resources Utilized

Per Stripe

Trace construction 54%

Register move trace optimization 55%

Stride prefetch trace optimization 70%

LDS prefetch trace optimization 56%

T
g

able 5: Utilization of PipeRench fabric resources.

In c
!

onclusion, we believe that we have demonstrated
the
�

 I-COP concept to be useful and feasible. With the need
f
�
or increasingly sophisticated hardware code modification

te
�

chniques, we believe that an I-COP is a potentially pow-
er� ful t ool in the microarchitect’s arsenal. We also believe
tha
�

t hardware code modification techniques enabled by the
I-COP can be synergistically combined with software run-
ti
�

me code optimization techniques to f urther improve the
pe� rformance of future high performance microprocessors.

Our c
�

urrent research focuses on studying other I-COP
a� pplications like using an I-COP to perform run-time trace
s� cheduling [23] and completion-time branch prediction in
th
�

e context of a trace cache [24]. We also plan to study the
in
�

terface between th e I -COP and t he core p rocessor i n
gre2 ater detail, and in particular how the core processor can
s� electively and adaptively i nvoke the appropriate I-COP
progr� ams based on application behavior. Finally, we hope
tha
�

t the demonstrated feasibility of the I-COP concept will
s� erve to stimulate further research into advanced hardware
c� ode modification techniques.

 Acknowledgment
P
&

ipeRench development was primarily sponsored by
DARP
£

A, under contract DABT 63-96-C-0083. This work
be
�

nefi ted f rom machines donated by I ntel, and was also
s� upported in part by ON R (N00014-97-1-0701, N00014-
96-1-
¤

0928) and in part by Intel Corp.

References
[1] Linley Gwennap, “Intel's P6 Uses Decoupled Superscalar

Design,” in Microprocessor Report, Vol. 9, Issue 2, February
1995.

[2] E. Rotenberg, S. Bennett and J. Smith, “Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching,”
in Proc. of 29th International Symposium on
Microarchitecture, 1996.

[3] Y. Chou and J. Shen, “Instruction Path Coprocessors,” in
Proc. of 27th International Symposium on Computer
Architecture, June 2000.

[4] S. Goldstein et al., “PipeRench: A Coprocessor for
Streaming Multimedia Acceleration,” in Proc. of 26th
International Symposium on Computer Architecture, May
1999.

[5] H. Schmit, “I ncremental Reconfiguration for Pipelined
Applications,” in Proc. of Workshop on FPGAs for Custom
Computing Machines, April 1997.

[6] M. Budiu and S. Goldstein, “Fast Compilation for Pipelined
Reconfigurable Fabrics,” in Proc. of 7th International
Symposium on Field Programmable Gate Arrays, February
1999.

[7] S. Patel, D. Friendly and Y. Patt, “Critical Issues Regarding
the Trace Cache Fetch Mechanism,” Technical Report CSE-
TR-335-97, University of Michigan, May 1997.

[8] B. Black, B. Rychlik and J. Shen, “The Block-based Trace

Cache,” in Proc. of 26th International Symposium on
Computer Architecture, May 1999.

[9] D. Friendly, S. Patel and Y. Patt, “Putting the Fill Unit to
W
¥

ork: D ynamic Optimizations f or T race Ca che
Microprocessors”, in Proc. of 31st International Symposium
on Microarchitecture, 1998.

[10] Q. Jacobson and J. Smith, “Instruction Pre-Processing in
Trace Processors”, in Proc. of 5th International Symposium
on High Performance Computer Architecture, 1999.

[11] T. Chen and J. Baer, “Effective Hardware-Based Data
Prefetching for High-Performance Processors”, IEEE
Transactions on Computers, Vol. 44, No. 5, 1995.

[12] A. Roth and G. Sohi, “Effective Jump-Pointer Prefetching
for Linked Data Structures”, in Proc. of 26th International
Symposium on Computer Architecture, 1999.

[13] A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools,” i n Proc. of
SIGPLAN Conference on Programming Language Design
and Implementation, 1994.

[14] Alpha Architecture Handbook, Digital Equipment
Corporation, 1992.

[15] http://www.spec.org
[16] A. Rogers, M. Carlisle, J. Reppy and L. Hendren,

“Supporting Dynamic Data Structures on Distributed
Memory Machines”, ACM Transactions on Programming
Languages and Systems, 17(2), March 1995.

[17] K. Diefendorff, “Processors Penetrate Gigahertz Territory,”
Microprocessor Report, Vol. 14, Archive 2, February 2000.

[18] T. Halfhill , “Transmeta Breaks x86 Low-Power Barrier,”
Microprocessor Report, Vol. 14, Archive 2, February 2000.

[19] “Low-Cost UltraSPARC-2i Appears,” Microprocessor
Report, Vol. 12, No. 1, January 26, 1998.

[20] D. Draper et al., “Circuit Techniques in a 266 MHz MMX-
enabled Processor,” IEEE Journal of Solid State Circuits,
Vol. 32, No. 11, November 1997.

[21] P. Glaskowsky, “NEC Decants Merlot,” Microprocessor
Report, Vol. 14, Archive 3, March 2000.

[22] H. Nambu et al., “1.8-ns Access, 550-MHz, 4.5-Mb CMOS
SRAM,” Vol. 33, No. 11, IEEE Journal of Solid State
Circuits, Vol. 33, No. 11, November 1998.

[23] R. Nair and M. Hopkins, “Exploiting Instruction Level
Parallelism in Processors by Caching Scheduled Groups,” in
Proc. of 24th International Symposium on Computer
Architecture, June 1997.

[24] R. Rakvic, B. Black and J. Shen, “Completion Time
Multiple Branch Prediction for Enhancing Trace Cache
Performance,” i n Proc. of 27th International Symposium on
Computer Architecture, June 2000.

[25] M. Merton et. al, “A Hardware Mechanism for Dynamic
Extraction and Relayout of Program Hot Spots,” i n Proc. of
27th International Symposium on Computer Architecture,
June 2000.

[26] P. Pillai, “The Instruction Path Coprocessor Implemented on
the PipeRench Fabric,” CMuART Tech. Report, Carnegie
Mellon Univ., 2000.

