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Abstract

This paper demondrates how an Instruction Path Co-
processor (I-COP) can be dficiently implemented usng the
PipeRench reconfigurable architecture. An I-COPisapro-
grammabeé on-chip coprocessor that ope ates on the core
processor’s instructions to trandorm them into a new for-
mat hat can bemote dficiently executed. The I-COP can be
used to implement many sophisticated hardware code mod
ification techniques. We show how fourspecifi c techniques
can be mapped to t he PipeRench pipeined computdion
modé. The experimental results show thata PipeRench I-
COP used to peaform trace condruction andtrace optimi-
zationsfor a tr ace cache fill unit not only achieves good
performance gains but can potentially be implemented in
less than10 mn? (assuming Q18 micron technology) or ap-
proximately 3% of the dearea ofa aurrent high-end micro-
processor. W e be lieve theser esultsd emondrate the
usefulness andfeasbility of thel-COP concept.

1 Introduction

1.1 Dynamic Code M odification

Spurred by relentless progress in VLS| design and fab-
rication, hardware design is evolving at arapid pace and
increasingly s ophisticated m icroarchitectures a re beng
implemented. On t he ot her hand, softwarei s c hanging
much more slowly. One reason is the existence of a large
installed base of | egacy codethat is too expensive to be
replaced or recompil ed. Another reason is that the deploy-
ment of ne w high ly opti mizing compilers usudly la gs
behind the deployment of new microarchitectures. The end
result is the increasing incompatibility between the com-
piler-producd object codeand the most efficient im ple-
mentations of fast exeaution cores that must execute these
object code

Onerecently proposed approach to solve this problem
is to add hardware in the microarchitecture to dynamically

modify the object code into an internal format that can be
more efficiently processed by fa st e xecution cores. We
refer to this general approach as hardware code modfica-
tion. For example, the Intel P6 [1] deodess trandlate the
x86 indructions into an internd format called uopsthat are
then executed by the execution core. Another example is
thet race cache[ 2], whichr earrangest he o rdering o f
instructionss o't hat fre quently e xecuted s equences o f
instructions are stored i n contiguouslo cations The trace
cache can reduce t he complexity of i nstruction fetching
and decoding. There are aso proposalsto optimize these
traces [9][10] before lo ading themint o the tr ace cache.
Recently, thereis a proposal to perform run-time program
re-layout in hardware [25]. We bdieve tha in the quest for
ever higher performance, increasingly sophisticated hard-
ware code modification techniques wil | be needed in the
future.

An Instruction Path Copiocessor (I-COP), proposd
in [3], is a progammable on-dip coproessor that allows
these hardware code modificationsto be implemented in
software much like microcode An I-COP s analogousto a
datapath coprocessor, except that it operateson the core
processa’s instructions themselves. The progranmable
nature of an I-COP affords several advantages. First, com-
plex ¢ ode m odificationst hat are dif ficult t o im plement
directly i n hardwired logi c may be moreeasly imple-
mented in I-COP code Second, it allows many code modi-
fication techniques to be implemented usng the same
engine, each of which can be selectively and adaptively
invoked at run-me. Third, it allows specialization o
microprocessors with the use of different 1-COP code or
even different I-COP implementations Fourth, it makes it
possibleto modify and upgrade t he machine simply by
changing I-COP codewithout changing the hardware. We
believe an I-COP can potentially be avaluable addition to
the microarchitect’s toolbox.

In evaluating the feashility of the I-COP concep, [3]



showed that an I-COP programmed to i mplement trace
construction and trace optimizationsachieves goad perfor-
mance. T hel onge | atency (asc omparedto hardwired
logic) that the programmable I-COP takes to perform the
code m odificationsha d li ttlei mpact on pe rformance
because the 1-COP is | ocated atthe back-end of the core
processor and because of t he frequent reuse of t he modi-
fied code The prototype I-COP propcsed consists of two
VL IWSs each with four general function units. Such an I-
COP i mplementation can require a significan amount of
chip area.

This paper proposs a novel and much more efficient
I-COP implementation usng areconfigurable architecture
caled PipeRench [4]. In such an im plementation, I-COP
programs are actually eonfiguration bits that are down-
loaded to the reconfigurable fabric at run-time. After con-
figuration, the fabric be comesa hardware design that
implements the desired computation. What distinguishes
PipeRench from other reconfigurable fabrics is that it sup-
ports very fast reconfiguration as well as a vir tudi zation
technique call ed pipdinereconfiguration, which allows a
large logica design to beimplemented on asmall piece of
hardware through rapid c onfiguration of tha t hardware.
This virtualization enables s maller | -COP implemena
tions and dso allows complex 1-COP programs to be writ-
ten without theconcen tha they may nat fit within the gze
of the reconfigurable fabric.

It was shown in [4] that the PipeRench reconfigurable
fabric provides significant peformance bendfits for an
application that exhibits oneor more of the following fea-
tures:

1. It opeates on hit-widths that are different from a pro-
cessor’s basic word size.

2. Its daa dependencies alow multiple fundion unis to
opegate in paalld.

3. Itis composed of a series of basic opeations tha can be

combined into onespecialized opeation.

It can bepipédined.

5. Congant propagation can be performed, redudng the
complexity of the opaations

6. Theinputvaues are reused many times within the com-
putation.

The results in [3] suggest that the potential I-COP
applications exhibit many of these features For exanple,
the data bit-widthsin the I-COP applicationsare odd and
varied Thereis also abundant parallelism in these |-COP
programs, thus allowing multiple fundional units to oper-
ate in parallel. In addition, large portions of these programs
are composed of basic operationsthat can be combined
into spedalized operations In this pgper, we show how
hardware code modifications can be mapped to the PipeR-
ench pipeined computeation model and that the PipeRench
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I-COP achieves good performance. Furthermore, we dem-
ondrate that a PipeRench [-COP can be implemented at
very reasonéable hardware cost, and in so daing, further val-
idate the usefulness of the I-COP conaept.

The rest of this paper is organized as follows. Section
2 familiarizesthe reader with the 1-COP concept and the
PipeRench reconfigurable architecture. Section 3 describes
our ApeRench I-COPdesign and how I-COP applications
are implemented in thi s design. Section 4 pre<ens the
results of our exploration d the PipeRench design space as
well asdie-areaestimates of selected designs. Section 5
condudes this paper.

2 Background

2.1 Instruction Path Coprocessors

An I-COPisa programmable coprocessor that oper-
ateson the core processor’s instructions to transform them
into anew format that can be more efficiently processed by
fast execution cores. These transformationscan involve the
ordeing of instructions, the type of instructions(e.g. from
theoriginal i nstruction to a sequence of simpler instruc-
tions) and even the instruction set (e.g. from the original
ISA to a rew ISA tailoredto the microarchitecture).

2.1.1 Interface With Core Processor

The I-COPis located on the ssme chip asthe core pro-
cessor and runs concurrently wit h the core processor. In
orde not to negatively impact the core processor’s cycle
time,it is situated atthe core processor’s b ack-end and
interacts primarily with the core pr ocessor’s comple-
tion/retirement stage The I-COP requires minimal explicit
control by the core processor and raely stalls the core pro-
cessor. Figurel showsthe i nterface between the I -COP
and the core proaessor.

An I-COP shoud be able to access non-achitected
entities of the core processor, such as instruction and daa
caches, trace cache, branch and value predictor tablesetc.
Where such accesses are allowed, careful c onsiderations
are made to ensure that they do not affect the core proces
sor’s criticd timing pats.

In order for the I-COP to intelligently invoke the
appropriate I-COP code based on application characteris-
tics, the core processor has built-in monitors to track its
currently executing gpplication’s behavior. The I-COP can
either poll t hese monitors or the I-C OP can be interrupt
driven. In the latter case, whenthe monitors exceedor dip
bdow threshold levels, they interrupt the I-COP and cause
it to vector to gedfic I-COP routines.
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Figure 1. Interface between [-COP and cor e processor.

2.1.2 Initial Implementation

Theinitial [-COPim plementation [3] was based on
conventional CPU design and comprised of one or more
VL IW engines (called dices) operating in parallel. For the
I-COP applications studied, two VL IW sliceswith four
general functiond units each represented a good cost-per-
formance trade-off. The VLIW organization was chosento
minimize hardware complexity, since I-COP programs are
relatively small and can easily be statically scheduled. All
the dicesshare a common data memory. Since an 1-COP
replaces hardwired designswit h a progranmable engine,
slow-down can beexpected. To ensure adequate perfor-
mance, parallelismsin I-C OP programs were e xploited;
instruction-level parall elism was exploited within a VL IW
sliceandtask-level paallelism was exploited across VLIW
slices

The instruction st for the I-COP VLIW dices con
sisted of 22 instructions. The core of theinstruction st was
a simple integer-basedload/store architedure. I'n addition,
ten spedali zed instructions were provided to facili tate writ-
ing efficient I-COP prograns. The most important of these
are powerful (and complex) pattern matching instructions
to enable regular expression recognition to be performed
quickly. Predication support as well as branch delay slots
were aso provided to eiminate the reed for branch predc-
tion. More details abou this implementation can be found
in[3].

The expeimentd results showed tha this initial I-
COPimplementation echieved good peformance for thel-
COPapplicationsstudied. However, thedrawback is that it
requires a sgnificant amount of hardware and can pden-
tially consume sizable chip area

2.2 PipeRench

PipeRench [4] is a reconfigurable fabric that suppots
the computationad modd shown in Fgure 2. In this modd,
a canputation on a data stream is expressed as a linearly

interconnected set of $ pipeine sages, where every stage
is afunction of the registered output of the previousstage
and the registered output of the current stage. Many media
and embedded c omputaiond ke rnes can be m apped to
thismodd with many pipdine stages, which alows for
high clock speeds and high throughputs. The small amount
of feedback al lowsf or efficient implementation. M any
instruction transformation techniques can also be mapped
to this modd. In most instruction transformations, the par-
ticular t rarsformationsin itiated by any ins truction only
affect subsequent instructions, which fits the limited feed-
back model.

Assuming that new inputs amive ewery cycle, an
implementation of this pipdine will require S stages. In
PipeRench, the technique of pipdinereconfiguration [5] is
used to suppat the cases when the input stream hasan
arrival rate, or throughputT, which is less than oneevery
cycle.In this case, $ physical stages cannot be kept busy.
Alternatively the technique isals useful whenthe ccst of
$ dages is prohibitive. The technique is illustrated in
Figure3, whee the nunmber of gages in the application, S,
is five and the number of physical pipdine stages P, is
three. As the figure shows the configuration of dages hgp-
pens concurrently with the execution of other stages.

Using pipeline reconfiguraion, the relationship
between S Pand Tisgivenby T = max@, 1D If P=S

and the input streams condgst of aset of N words, the ertire
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Figure 2. PipeRench computation model.
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computation wi Il havea | atency of N+ S cycles. If
P < S, thenvirtualization is necessary, and the camputa-

tion will take Sﬁ_ﬂ + P cydes to complete. In the rest of

this paper, we use the term virtual stripes to refer to the
pipeline stages required by t he application and the term
physical stripes to refer to the physca pipdine stages
available. As any virtud stripe can bemapped to any phys-
ical dripe, dl the physcal gripes must have the same func-
tiondity and interconrect.

The current architecture of PipeRench is optimized by
evaluating a set of media-centric applicationsand is illus-
trated in Figure4. Each physical stripe condsts of sixteen
AL Us (labelled PEs), which are each eight bits wide, con-
nectedwith a byte-wise crossbar and an elaborate set of
shift registers. The ALUs are capable of all possible hit-
wise functionson two operands as well as addition, sub-
traction and multiplexing. Each of the AL Us also contains
an eight entry register file which is pipdined to provide
pipelineinterconnect to downstream pipeline stages. State
values (those feeding back in Figure 2) can only be stored
in onespecific register in the register file. Aninputand
output bus moves operandson and off the execution fabric.

A physical design of this architecture has been com-
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Figure 4. PipeRench Architecture.

pleted in 0.35 micron and 0.18 micron process technolo-
gies. In 0.18 micron, a single physcal stripe c onsumes
1.03 sqg mm of silicon aea, and opeates at over 200MHz.
Some small additiond chip area is required for storage of
configuration information and state that needs to be held
during virtudization. Thisisa very consrvative design,
with static CMOS circuits and fabricated in an ASIC pro-
cess. We expect considerable headroom in improving both
die area and dock speed.

PipeRench applicationsare writ ten in the Dataflow
Intermediate L anguage (DIL), which is a snge-assign-
ment languaye with C operators and a type system t hat
allows the bit-width of variables to be specified. The DIL
compiler [6] ¢ onverts the source into a dataflow graph,
decomposest his graph into the native operatorsof the
architedure and placesard routes the gperators on the Hp-
eRench fabric. The output of the compiler is a set of eon-
figuration bits (actudly divided into a number of subsets,
onesubset per virtud stripe) that are used to configure the
physcal stripes at run-time.

2.3 PipeRench I-COP Advantages

In addition o bang aea-efficient, which wewill dem-
ondrate in Section 4.3, the PipeRench I-COP implementa-
tion also o ffersa num ber of oth er adventages. T he
PipeRench architecture allows the designer to easily trade
off the size of the reconfigurable fabric with other parts of
the microarchitecture to optimize the overall design. Since
the DIL code for the I-COP applications do not even need
to be modified, changes to the number of physical stripes
can bemadevery late in the design cycle. Moreover, when
the same microarchitecture is implemented in thenext pro-
cess generation, the designe has the option of increasing
the number of phydcal stripes available to increase perfor-
mance. Since physicd stripes in the reconfigurable fabric
are idertical, this can beaccomplished with minimum
redesign. The designer can also choose to upgrale the resi-
dent I-COP programs to further enhance performance. All
in all, the PipeRenchI-COP dlows the designerto improve
the performance of the core processor with minimal logic
and drcuit redesign.

The PipeRench I-C OP also retains the other |1 -COP
advantages li ke allowing complex hardware code modifi-
cation technigues to be im plemented as I-COP codeand
allowing many hardware codemodificationsto be imple-
mented using thesame engine, each of which can be selec-
tively and adaptively invoked at run-time. In addition, the
PipeRench I-COP makes it epecially essy to gpedalizethe
core processor by varying the size of thereconfigurable
fabric to achieve different performance gods and support
differertle vels of complexityint hel -COPpr o-
grams.
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Figure 5. PipeRench I-COP implementation.

3 PipeRench I-COP Implementation

In this section, we describe the design of the Pipe
Rench I-COP In orde to assess its peformance and die
area requirements, we study how it can implement four
specifi c hardware c ode m odification techniques: namely
trace condruction, register move trace optimization, stride
data prefetch trace optimization, and li nked data structure
prefetch trace optimization. These are the same techniques
implemented in the erlier study [3] ard therefore allows
us to compare the PipeRench and VLIW implementations
in terms of performance and aea efficiency. In Section 32,
we describe how these four code modification techniques
are im plemented on the PipeRench I-COPasDIL pro-
grams. W e anticipateth atin thefut ure, many o ther
advanced code modifi cationswill be mapped to thePipeR-
ench 1-COP computation modd.

3.1 PipeRench I-COP Design

The PipeRench I-COP implementation cmprises of
oneor more PipeRench pipdines (each condgsting of one
or more physical stripes) operating in parallel. AP ipe
Rench pipdine condructs and optimizes traces by treating
the retiring instructionsfrom the core processor as stream-
ing input data. The outputs of each PipeRench pipdineare
written to itslocd trace buffer, which acts as temporary
storage to hold a trace as it i s being condructed. When a
trace is fully constructed, it is copied from the trace buffer
to the trace cache. A PipeRerch | -COP i mplemertation
with two ppdinesis shown in Figure5. Thefill buffer col-
lects the retiring instructions from the cae processor, ard
thetask queue distributes them to the PipeRench pipelines.
When thefi Il buffer i sful I, i nstructionsare dropped at
basic block bourdaries. If a PipeRench pipdine has suffi-
cient physcal stripes to match the number of virtua stripes
required by the I-COP appications it acepts one fill
buffer instruction pe cycle as inputand writes oneinstruc-
tion to the trace buffer per cycle as output. Otherwise, the
physcal stripes are time multiplexed and the throughpu of

trace processing will be less than one instruction per cycle.
In Section 4, we evaluate the performance impact of vary-
ing the number of Pipe-Rench pipdines and thenumber of
phydcal stripes per pipdine.

3.2 Implementing Code Madifications Using Pip-
eRench

To implement code modifi cations on the PipeRench I-
CORP, they are first mapped to the FipeRench computation
model described in Section 2.2. T hey are then written in
the DIL language and compiled by the DIL compiler to
produe the configuration bits used to configure the phys-
cal stripes of the PipeRench I-COP at run-time.

3.2.1 Trace Construction

The trace cache [2][7 ][8] s tores frequently executed
sequences of instructionsin physically contiguousstorage
locations thus allowing high bandwidth instruction fetch
without m ultiple c ache ports nor ins truction alignment
logic. T his d ynamic re grouping of i nstructionsi s per-
formed by a hardware structure called the fill unit which is
located at the back-end of the machine. A trace comprises
not ony of regroupdl instructionsbut dso the outcomes of
the branchesin the trace, the ext addresses of the trace (to
facilitate partial m atching [7]) a nd the typeoft he last
instruction in the trace.

In our I-COPim plementation, logi ¢ associated with
thefill buffer examines its first 16 entries and determines
the end of a new trace. It th en copies those in structions
from the fill buffer to the I-COP memory and inserts a task
into th e task queue Whenever a PipeRench pipdineis
free, it picks up atask from the front of the task queue and
treating the fi Il buffer instructionsin I-C OP memory as
streaming input, processes oneinstruction in thetrace at a
time and outputs t he processed instructions to the trace
buffer (see Figure®6). In the case of branch instructions the
PipeRench pipdine dso outputs the branch oucome and
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Figure 6. Trace construction using PipeRench.

exit address associated with that branch to the trace buffer.
Whenthe trace is fully constructed, the trace cache inside
thecore processor is read to check if thereis an existing
trace with the same garting PC. The new trace is written to
the trace cache aslong asitisnot a subset of an existing
trace. The PipeRench pipelineis then ready to pick up a
new task. Based on the reconfigurable fabric’s resource
constraints (16 8-bit AL Us per stripe), the DIL compiler
mapsthe trace congruction logic to 11 virtuad stripes. More
details on the PipeRench implementation d trace construc-
tion and the other codem odification techniques c an be
foundin [26].

3.2.2 Register Move Trace Optimization

Beyond baic trace condruction, the I-COP can pe-
form optimizations on traces to achieve additiond perfor-
mance. Recently, there have been proposals for various
trace optimizatons [ 9][10]. T he register move optimiza-
tion [9] is one such example. In this optimization, instruc-
tionswithin a trace which move a value from oneregister
to another re gister wit houtm odifying it are marked as
explicit move ingructions by thefill unit. Examplesof such
instructions are:

ADD Ra<-Rb+0
SHIFT Ra <-Rb < 0

Instead of using execution resources to execute these
instructions, their output registers are renamed to thesame
physdcal registers (or operand tags depending on the regis-
ter renaming scheme used) as their input registers. Aside
from saving execution resources, this also enables depen-
dent instructions to exeaute earlier. The register renaming
logic is modified to handle such explicit moves. A dight
complication ist hatt hein put registersof dependent
instructions within the sme trace have to ke subdituted
with the input register of the explicit mowe instruction.

In our RpeRench I-COP implementation $hown n
Figure7, theregister move optimization is performed after
trace congruction ard before the trace is written from the
trace buffer to the trace cache. Because this optimization is
fairly expersive, it is not apgied thefirst time a trace is

instructi Stage Stage —»

last_inst ! N

a%yﬁlgs — (12 stripe

| .
inst_loc ‘ \ :
branch_dir >
N exit_address >

(11 stripes) num_branches , \

State:
RS, RD, Used, Valid

If (rs_in == RS || rd_in == RD)
Valid = FAL SE;

If (RD ==rs_in & & Valid)
rs_out = RS;

If (Reg Mov candidate & & !Used)
RD =rd_in
RS =rs_in
Used = TRUE
Valid = TRUE

Figure 7. Register move optimization using PipeRench.

writteninto thetrace cache. It is only appled to a trace that
is found b be dready in the trace cache and ha been
acessed x number of times. We foundx = 5 to be a good
choice. Also, a trace is only optimized if it contains more
than one conditiond branch, since we assume the compiler
already performs this optimization within a basic block.
The input to the optmization is a stream of instructions
from the result of trace condruction and the ouput is a
stream of optimizedi nstructions that are writtento the
trace buffer. For every in put instruction, two op erations
have to be performed. First, it must be determined if this
instruction is a candidate for the optimization and if so, its
type should bechanged to that of an explicit move Second,
oneor both of it s source operand specifiers (i. e. register
numbers) must be modified if that operand is degpendent on
anealier register move candidate in the trace.

The fi rst operation is essentially combinationad logic
and is performed by the Detect Stage shown in Figure7.
The DIL compiler produces a design of t his stage t hat
requires 10 virtua stripes.

The second operation is accomplished by keeping a set
of mappings labdled as the Mapping Stages in Figure 7.
Each sage goresfour values

* avalid flag

* a 5-bit value RD which represents a register that is
being mappal

* anothe 5-bit value RS which represents the register to
which RD gets mapped

* a dngle bit, cdled the used flag, which is set if this
stage has avalid mapping or ever had avalid mapping

At the beginning of each new trace, all of t he stages
are st toinvalid and unused. When aninstruction erters a
stage, if the stageis valid and if a source register of the
incoming ingruction (rs_in) matches RD, then that source
register will be renamed (rs_ou) to RS. If the incoming



instruction is a register move candidate and the stage is
unused, and if this instruction’s mapping has not yet been
stored, thenthe stage will be markedas used and valid.
The source and destination of t he instruction (rs_in and
rd_in) will be stored in RS and RD respectively. A one bit
flag will be sent to downsream stages indicating thd the
mapping for thi instruction has already been stored.

If an instruction reaches a stage in which the destina-
tion of the instruction (rd_in) matches either RD or RS, the
stage will be set to invalid. However, the dage will remain
markedasused, sinceit previously had avalid mapping in
it. This prevents future register move candidatesfrom stor-
ing their mappings ahead (in s tage order) of a n already
stored mapping and ensurest hat old er mappingsin the
trace always appear earlier in s tage order. T hisin tur n
ensures that whena new register move candidate doresits
mapping, it s source register wil | have already been cor-
rectly re named. Each instruction onl y ne eds to p ass
through the pipeline just once, thus enabling a throughput
of oneinstruction pe cycle.

For a simple example of how this design works (it can
also hardle all the complex cases), consider the following
exanple o a trace with just three instructions:

ADD r2<-r1+0 (1)
ADD rd<-r3+r2 (2
ADD r2 <-r10 +r11 (3)

Instruction 1 is eligible for the ogimization andwill
creae the mapping (RD = 2, RS = 1). Ingtruction 2 is not
eligible for the optimization but one of its source operands
matchesthe stored mapping (RD = 2, RS = 1) and so the
instruction is transformed to ADD r4 <- r3 +r1. Instruction
3 is dso not digible for the optimization and since its des-
tination matches the stored mapping (RD = 2, RS = 1), the
mapping is invdidated.

The DIL compiler produes a design thd requires 12
virtud stripes for each Map Stage. In our simulations we
found that having just one set of mapping (i.e. only one
explicit move is allowed in a trace) achieves most of the
performance gans of this trace optimization. This means
this trace optimization takes a total of 10 + 12 = 22 virtual
stripesin addition to the 11 vi rtud stripes for t race con-
struction.

3.2.3 Stride Prefetch Trace Optimization

The stride prefetching scheme we implement in the I-
COPis based closgly on the hardware scheme propased by
Chen and Baer [11]. The basic ideais to record the efec-
tive addresses of |oadcs as they are executed, compute the
latest stride by comparing tis addess to the last effective
address generated by the same static load, and updae a 2-
bit state machine. Depending on theresulting state of the

state machine, a prefetch request may be generated. All
this information is recorded in a teble cdled the Reference
Prediction Table (RPT) stored in the I-COP data memory.
Whenever aload is encountered during the condruction of
a trace, the 512-ertry RPT is consulted to determine if it
has a congstent dride If so, a prefetch instruction is
inserted in the trace before it is written to thetrace ceche.
The prefetch instruction is only inserted if there is an
enmpty slot in that particular trace cache line. This optimi-
zation is peformed after trace condrudion and kefore the
trace is written from the trace buffer to the trace cache. The
input to the optimization is a stream of instructions from
theresult of trace construction and theoutputis a stream of
the same i nstructionsplus possibly one or more prefetch
instructions. The DIL compiler produces a design that
requires 14 virtua stripes.

3.2.4 LDSPrefetch Trace Optimization

Linked daa structures (LDS) include linked lists, trees
and graphs etc., where i ndividual nodes are dynamically
allocated from the heap and linked together through paint-
ersto form the overall structure. The LDS prefetching we
implement is based on that propesed by Roth et d. [12]. In
this schene, the gaal isto correlate pairs of loadsli ke the
following, where the result of the first load is used as the
base address for the second load:

LOAD r2<- M[0(r1)]
LOAD r3<- M[8(r2)]

After the correlation is established, whenever the first
load is executed, a pefetch can be issued for the scond
load to hide the potential cache miss latency. Correlations
are established by actud values rather than by symbolic
means, with the hdp of two tables sored in the I-COP daa
memory: the 256-entry Potential Producer Window (FPW)
and the 512-entry Correlation Table (CT). Wherever a lcad
is encountered during theconstruction of atrace, it updades
thePPW and CT. It also searches the CT and if it is found
to beaproducer, a prefetch instruction is inserted as pat of
thetrace before the trace is written to the trace cache. The
DIL compiler produees a design tha requires 9 virtua

stripes.

3.25 Comparison With VLIW-based I-COP

Table 1 compares the number of virtud stripes
required by the PFipeRench I-COP prograns to the nunmber
of operationsand cycles needed by the VLIW -based I-COP
for the same programs. Forthe PipeRench [-COR, the num-
ber of cyclesrequired to execute the program dependson
the number of physicd stripes available and is governed by
the equationsin Section 2.2. In Section 4.2, we study the
performance i mpact of va rying the number of p hyscal

stripes.



I-COP Application \S/tlrrlt:i VCL)FI);N
Trace condruction 11 50 18
Register move trace optimization 22 423 106
Stride prefetch trace optimization 14 130 33
LDS pefetch race optmization 9 86 22

Table 1: Comparison between PipeRench and VLIW-
based |-COP implementations.

4  Experimental Results

4.1 Simulation Methodology

Our peformance simulator is built around Digital’s
ATOM tool [13] and uses the AlphalSA [14]. Although it
is trace-driven, it models the resource contention (but not
cache effects) dueto instructions on the mispredicted path.

The organization of the core proaessor is as follows
The trace cache contains 128KB d ingructions (2048 Ines
of 16 instructions) and is4-way set associative. Partial
matching is implemented. The branch predictor is as
described in [7]. It is an adaptation o the gshare predictor,
and makes 3 predictionsper cycle. We assume a perfect
return address stack which is used to predict subroutine
returns The L1 instruction cache is 16KB and direct-
mapped, with a 14 cycle miss latency. Because of the low
instruction cache miss rates, anL2 instruction cache is not
modeled.

Functional Units ‘ Units ‘ Latency
Simple Integer 8 1
Complex Irteger 4 4
LoadSore 4 21
Branch 4 1
Floating-Point AddMultiply 4 3
Floating-Point Divide 4 11(sp), 15(dp)

Table 2: Core processor execution resour ces.

The front -end pipeline of t he c ore pr ocessor, from
fetch to dispatch, isfour stages deep. Instructions are dis-
patched to a512 entry centralized instruction window and
are allowed to i ssue out-of-order. Perfect memory disam-
biguation is assumed. The f unctional unit mix and their
execution | atendes are shown in Table 2; all functiona
units are ful ly pipelined. The L1 data cache is 16KB and
direct-mapped and the miss latency to the L2 data cache
(assumed off chip)is 14 cycles The L2 datacacte is
256KB and 2-way set associative, with amiss latency to
main memory of 75 cycles. In our daa prefetching experi-
ments, prefetched data are brought into a 64 entry fully-
associative prefetch buffer. The PipeRench I-COP model is
integrated with the core processor’s simulator and is simu-

latedin detail at the machine cycle level.

Seven SPECint95 benchmarks [15] and three pointer-
intensve Olden benchmarks [16] are used. Their input sets
and dynanmic instruction countsare shown in Table 3. The
benchmarks are compiled using the default op timization
flags of the SPEC distribution and ae run to @mpletion.

Benchmark ‘ Input Set ‘ Inst Count ‘
compress 10000 e 2231 54M
ij peg tinyroee.ppm 89M
m8ksim dhry2tiny.lit 99M
go 59 78M
gcc -O genouput.i 106M
li queens6 56M
pel trainscrabhd 47M
hedth 5 levels, 500 iters 176M
perimeter 4K x 4K image 43M
treeald 102K nodes 98M

Table 3: Benchmark characteristics

4.2 PerformanceData

In this section, we show the paformance of the core
processor under different PipeRench 1-COP organizations
In particular, we vary the number of phydcal stripes per
PipeRench pipdine as well as the nunmber of FipeRench
pipdines. Since the reconfigurable fabric may haveto be
clocked & adower dock speed than the core processor, we
show two sets of resuts. Thefirst assunes the reconfig-
urable fabric is clocked at the same spedd as the care pro-
cessor while the second assumesiit is clocked at half the
speed.

While evaluaing the dif ferent design poaints of the
design gace, it is helpful to bear in mind that each physcal
stripe in a0.18 micron process occupies 1.03 sg mm of sil-
icon area (approximately 1/300th the area of a 300 5 mm
die used in current high-end mcroprocessors).

4.2.1 Trace Construction

Figure8 showsthe performance of the core processor
with its I-COPimplemented in different PipeRench omgani-
zationsfor t race condruction. In p articular, we vary the
number of PipeRench pipédines aswell asthe number of
physcal stripes per pipeline The uppe graph assumes that
the PipeRench I-COP runs at the same speed as the core
prooessor while the lower graph assumes that it runs at half
the speed. In both graphs the y axis shows the hamonic
mean of the IPCs of the seven SPECint95 benchmarks and
the x axis represents the total number of physcal stripes.
The sets of data points on each graph represent varying the
number of P ipeRench pipelines. The number of physcal
stripes per pipelinecan be derived by dividing thetotal
number of physical stripes by the number of pipélines. For
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Figure 8. Trace constr uction perfor mance.

example, the data point[2 pipdines (PL), 14 totl physcal
stripes] implies there are seven physical stripes per PipeR-
ench pipeline. For c omparison, the performance of the
VLIW-based I-C OP (| abeled VL IW) aswell as ahard-
wired trace cache fill unit (labeled HW) are also shown.

The throughputat which the I-COP congructs tracesis
directly proportiond to thetotal number of physcal stripes
available, w hileth ela tency o f tr ace constructioni s
inversely proporiond to it. When the throughpu of trace
construction i sre duced, m orei nstructions are dr opped
from the fill buffer snce the I-COP & not able to keep up
with the rate at which instructions are retired by the core
processor. However, because of the frequent reuse of previ-
oudy constructed traces, these dropped instructions do not
adversely affect overall performance. Mo reover, because
the I-COP is located at the back end of the core processor,
longer latencies in trace condruction dso do notserioudy
affect performance. Therefore, there is diminishing returns
in performance as the total number of physical stripes is
increased.

Given a fi xed total number of physical stripes (and
throughpu), performance varies slightly depending on the
exact PipeRench organization. This is due to several fac-
tors. First, the latency of traae condruction has a ceiling
fundion (see Section 22) that produces discontinuities. In
particular, 11 physcal stripes per pipeline results in partic-
ularly good performance because the average trace length
is approximately 11 instructions. Second, the number of

PipeRench pip elinesa ffects traces election because
instructions are dropped from the fill buffer at a different
timing. Whenth ere are more pipelines, there will bea
longer seriesof contiguoust races followed by a larger
number of dro pped instructions. When t hereare f ewer
pipdines, there will bea shorter series of contiguoustraces
foll owed by a smaller number of dropped instructions. The
former situation is more desirable thanthe latter, 0 in gen-
eral, for agiven nunber of total physical stripes, it is better
to have more pipdines and fewer phydcal stripes per pipe-
line.

For a particular performance level (i.e. fixed value on
y axis), the most desirable PipeRench I-COP organization
is the one wit h the least total number of physical stripes.
For exanple, if we want to match the performance of the
VLIW | -COPi mplementation, the design point [ 3 pi pe
lines, 15 total physica stripes] isthe best or ganization
when theclock speed of the PipeRench I-COP matches the
clock speed of the core processor. When the clock speed is
hdf that of the core processor, the design point [ 3 pipe
lines, 33total phydcal stripeg] is the best organization.

4.2.2 Register Move Trace Optimization

Figure9 s hows the performance of different PipeR-
ench organizationswhen the register move optimization is
applied in addition to baic trace construction.

The grgphsin Figure9 ae organized in a smilar fash-
ion to those in Fgure 8. Because the PipeRench I-COPis
efficient i ni mplementing t his optimization (22 v irtua
stripesin addition to 11 virtud stripes for basic trace con-
struction; in contrast, the VL IW requires 423 instructions
in addition o 50 instructions for basic trace construction),
fewer total phydcal sripesare needal to match the VLIW
implementation. When the PipeRench I-COP runs at the
same speal asthe cae procesor, the [4 pipelines, 12 total
physcal stripes] organization matches the performance of
the VLIW I-COR W hen it runsat half the speed, the [5
pipdines, 25 total physical stripes] organization accom-
plishes the same goal.

From the results, we also observe that when compared
to basic trace condruction, given the same PipeRench |-
COPor ganization, a pplying thi s optimization improves
performance. For example, the harmonic mean IPC of the
I-COP organization [3 pipdines, 15 total physcal stripes)]
(assuming I-COP and aore processor run a the same clock
speed) increases from 2.69 to 2.72. Althoughthese perfor-
mance improvements are modest, no alditional [-COP
hardware was required; only the I-COP wmde, i.e. the Pip-
eRerch eonfiguration bits, are changed.
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Figure 9. Register move optimization performance.

4.2.3 Stride Prefetch Trace Optimization

Figure 10 shows the peformance of different PipeR-
erch organizations whenthe stride data prefetch optimiza:
tion is applied in addition to basic trace condruction. This
optimization is applied to all traces. The results are clealy
supeior to those in Figure 8, demonstrating the advantage
of an I-COPin being able to improve core processor per-
formance by modifying I-COP code and without changing
the I-COP hardware. The PipeRench I-COP is efficient in
implementing this optimization, requiring ony a [3 pipe
lines, 9 total physica stripes] organization to match the
VLIW I-COP whenit is running at the same clock speal as
the core processor. When it i s running at half the speed, a
[5 pipelines, 15 ptal phydca dripes| organization is
required Note also that thesee I-COP organizations also
handily exceed the performance of the hardwired trace
cachefill unit performing trace construction with no trace
optmization (labeled HW (No Opt) in Figure 10).

4.2.4 LDS Prefetch Trace Optimization

Figure 11 shows the performance of a PipeRench I-
COP running atthe same clock speed asthe core processor
whenthe L DSdata prefetch optimization i sa pplied.
Because the IPC performance of the health benchmark is
an orde of m agnitudelower than those of t he other two
Olden benchmarks, we avoid using the harmonic mean of
their IPCs. Instead, the performance of eachbenchmark is
shown separately. T he I-COP organization shown is the
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Figure 10. Stride prefetch performance.

same onet hat matches the performance of the VL IW | -
COPfor the stride data prefetch optimization, i.e. 3 pipe-
lines, 9 tal physcal sripes. We observe tha a small Pip-
eRench | -COPis able to match the performane of the
VLIW | -COR The performance of this PipeRench I-COP
also exceeds that of the hardwired trace cache fill unit with
no trace optimizaton by a consderable margin.

Trace Construction + LDS Prefetch Optimization (1:1)
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Figure 11. L DS prefetch performance (1:1 clock speed).

Figure 12 issimilar to Hgure 11 except that theresults
shown ae for an I-COPthat runsat hdf the clock speed of
the core processor. The I-COP organization shown is the
same onet hat matches the performance of the VL IW | -
COPfor the stride data prefetch optimization, i.e. 5 pipe-
lines, 15 total physical stripes. Again, we observe that a
small PipeRench I-COP is able to match the performance
of the VLIW I-COP.
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Figure 12. LDS prefetch performance (1:2 clock speed).

425 Estimated Area of PipeRench |-COP

To match or exceed the VLIW |-COP performance for
trace construction and all thr ee trace optimizations, and
assuming that the PipeRench I-COP is only able to run at
half the speed of the core proaessor, the estimated die area
of the PipeRench I-COP (33 total physical stripes) fabri-
cated in 20.18 micron process is 33 x1.03 =34 sg mm. To
putthisin perspective, Table 4 shows the estimated die

Area
Process Area | scaled
Component 2
(u) |(mm? for
0.18u
IBM G6 [17] FPU | 71 022 | 153 | 102
Transmeta 3120 [18] FPU | 123 | 0.22 95 6.3
UltraSparc-2i [19] FPU | 120 | 0.29 | 180 | 6.9
AMD K6 [20] FPU | 143 | 035 | 231 | 61
NEC MP98 [21] 64KB| 80 0.15 91 | 131
cache
NEC Cahe SRAM 51K | 1000 | 0.25 | 1320 | 68.4
[22] cache

Table 4: Die areas of microarchitecture structures.
areas of other microarchitecture structures in the same pro-
cess. The PipeRench I-COPisroughly equivalent in area to
256KB d fast SRAM, or about 11% of the die area of a
current high-end microprocessor. If t he -COPisableto
run at the same speed as the core processor, the die area
required drops to approximately 15 x 1.03 =15 sq mm, or
roughy equivalent to 128KB of fast SRAM, or about 5%
of the de area

As noted in Section 2.2, these areaestimates are likely
to beconservative due to the conservative circuit design
and fabrication prooess assumed. Al so, the DIL compiler
achieves relatively low utilization of PipeRench resources
because of its fast and greedy approach to placement and
routing, as illustrated in Table 5. The peacentage resource
utilization numbers are obtained by dividing the total num-
ber of natiive PipeRench operationsin th e application by

thetotal numberof AL Us available in a design with the
resultant number of physica stripes. Significant perfor-
mance improvements can easily be obtained by optimizing
the PipeRench architecture, circuit design and compiler for
I-COP applications.

I-COP Application Resources Utilized

Per Stripe
Trace corstruction 54%
Regster movetrace ofimization 55%
Stride prefetch trace ogimization 70%
LDS prefetch trace optmization 56%

Table 5: Utilization of PipeRench fabric resour ces.

If oreis willingto trade off alittle paformance (2.6%
lower for trace condruction, 1.8% for the register move
trace optimization, 1.1% | ower for s tride prefetch trace
optimization), and assuming the PipeRench I-COP is only
able to run at half the geed of the core processor, one can
implement the [3 pipdines 9 total physcal sripeg I-COP
in 9 x1.03 = 9.27 sg mm, which is roughly equivalent in
area to 64KB of fast SRAM, or 3% of the de aeaof acur-
rent high-end microprocessor. In future fabrication pro
cesses (0.13 micron and beyond), the I-COP will occupy
aneven smaller fraction of the available de area.

5 Conclusionsand Future Work

In this paper, we have described an efficient means of
implementing an 1-COP by usng the PipeRench reconfig-
urable architecture. W ealso show how hardware c ode
modifications can be mapped to the PipeRench pipdined
computation modd. In our e xperimental evaudion, we
found that a PipeRench I-COP used to peform trace con-
struction and trace optimizations for a trace cache fill unit
not anly achieves good mrformance but can be imple-
mented in less than 11% of the aeaof a curent high-end
microprocessor. If one iswilling to tiade off only a little
performance, this figure can bereduced to 3% or lowe. We
believe that this demonstratesthat an [-COP can be imple-
mented in areasoneble amount of dip area

In addition to being area-efficient, the PipeRench I-
COP im plementation al so allows th e designer to easily
trade off the size of the reconfigurable fabric wi th other
parts of the microarchitecture to maximize overall perfor-
mance. As the PipeRench configuration bits do not need to
be modifi ed, this trade-off can be changed very late in the
design gycle. The PipeRench I-COPimplementation is also
highly scalable. As I-COP programs become more com-
plex or more I-COP programs need to be run concurrently,
the number of physical stripesin the recorfigurable fabric
can be increased with minimal design effort.



In conclusion, we believe that we have demondrated
the I-COP concept to beuseful and feasible. With the need
for increasingly sophisticated hardware code modification
techniques, we believe that an I-COP is a potentially pow-
erful tool in the microarchitect’s arsenal. We also believe
tha hardware code modification techniques enabled by the
I-COP @n besynergistically combined with software run-
time codeoptimization techniques to further improve the
performance of future high performance microprocessors.

Our aurrent research focuses on sudying other I-COP
applications like usng an I-COP to peform run-time trace
scheduling [23] and completion-time branch prediction in
the context of a trace cache [24]. We aso plan to study the
interface betweenth e I-COP and t he core processor i n
greater detail, and in particular how thecore processor can
selectively and adaptively i nvokethe appropriate I-COP
programs based on application behavior. Findly, we hope
tha the denondrated feagbility of the I-COP conoept will
serve to stimulate further research into advanced hardware
code modifi cation techniques.

Acknowledgment

PipeRench development was primarily sponored by
DARPA, under contract DABT 63-96-C-0083. This work
benefited from machines donaed by I ntel, and was also
suppored in pat by ONR (N00014-97#1-070L, NOOO14-
96-1-0928)and in part by Intel Corp.

References

[1] Linley Gwennap, “Intel's P6 Uses Decaupled Supescalar
Design,” in Microproces®r Repott, Val. 9, Isswe 2 February
19%.

[2] E. Rotenbeag, S.Bennett andJ. Smith, “TraceCache: a Low
Latency Approachto High Bandwidth Instruction Fething,”
in  Poc. of 29th Internatonal Symposum on
Microarchitecture, 19%.

[3] Y. Chou ad J. Shen, “Instuction Pah Copiocessors,” in
Prcc. of 27%h Internaonal Synposum on Conputer
Architedure, June 20@.

[4] S. Goldstein et al, “PipeRench: A Coprocessor for
Streaning Multimedia Acceleration,” in Proc. of 26th
Internaiond Symposium on Canputer Architecure, May
199.

[5] H. Schmit, “Incrementad Recmfiguraion for Pipdined
Applicatons,” in Proc. of Workshop onFPGAs for Custom
Computing Machines, April 1997.

[6] M. Budiu and SGoldstein, “Fast Conpilation for Pipdined
Rewonfigurable Fabrics,” in Proc. of 7th International
Synposium on Held Frogrammable Gate Arrays, February
199.

[7] S. Pad, D. Friendly ard Y. Pat, “Critical Issues Regading
the Trace Cache Fetth Mechanism,” Techical Report CSE-
TR-335-97, University of Michigan, May 1997.

[8] B. Bla, B. Rychlik andJ. Shen “The Bock-basal Trace

Cacle,” in Proc. of 26t Internaional Symposum on
Conmputer Architecure, May 1999

[9] D. Fiendy, S. Patel and Y. Patt, “Putting the Fill Unit to
Work: D ynamic Optimizationsf or T race Ca che
Microproces®rs’, in Proc. of 31st International Symposum
on Microarchitecture, 1998.

[10] Q. Jacdosan ard J. Smith, “Indruction Rre-Processing in
TraceProcessors’, in Proc. of 5th Internationd Symposum
on High Pefformance Conputer Architecure, 199.

[11] T. Chen ard J. Baer, “Effecive Hardware-Basd Deta
Prefetching for High-Performance Processors’, |EEE
Tranfcionson Camputers, Vol. 44, No. 5, 1995.

[12] A. Roth and G. Sohi “Effedive Jump-Pdnter Prefetching
for Linked Data Structures”, in Prac. of 26th Internatonal
Synposum on Computer Architecure, 1999

[13] A. Srivastava and A. Euwstace, “ATOM: A System for
Building Customized Rogram Analysis Tools,” in Proc. of
SIGPLAN Conference on Programming Language Design
andImplementtion, 1994.

[14] Alpha  Architecture Handbook Digita  Equipment
Corporation, 1992.

[15] http://www.specorg

[16] A. Rogers, M. Calide, J. Reppy and L. Hendren,
“Supporting Dynanic Data Stuctures on Distibuted
Memory Machines’, ACM Trarsadions on Pragramming
Languages ard Sysems, 17(2), March 195.

[17] K. Diefendaff, “Processas Pendrate Ggahertz Territory,”
Microproces®r Report, Vol. 14, Archive 2, February 200Q

[18] T. Hafhill, “Tranameta Breks X836 Low-Power Barrier,”
Microproces®r Report, Vol. 14, Archive 2, February 200Q

[19] “Low-Cog UltraSPARC-2 Appeas,” Microprocessr
Repat, Vol. 12 No. 1, Jawuay 26, 198.

[20] D. Draper etal., “Circuit Techniquesin a 6 MHz MM X-
endled Pocesor” IEEE Jound of Soid State Circuits,
Vol. 32,No. 11, November 1997.

[21] P. Glaskowsky, “NEC Decants Merlot,” Microprocessr
Repat, Vol. 14, Archive 3,March 2000.

[22] H. Nambu etal., “1.8-ns Access, 550-MHz, 45-Mb CMOS
SRAM,” Vol. 33, No. 11, IEEE Dbumal of Sdid Stae
Circuits, Vol. 33, No. 11,Novenber 198.

[23] R. Nair ard M. Hopkins, “Exploiting Instruction Level
Pasallelism in Praccesas by Cading Scheduled Goups;’ in
Prcc. of 24t Internatonal Symposum on Computer
Architedure, Jure 1997.

[24] R. Rakvic, B. Blak and J. Sten, “Completon Time
Multiple Brandh Predction for Enhancing Trace Cache
Peformance; in Prcc. of 27t Internatonal Symposum on
Conmputer Architedure, Jure 200Q

[25] M. Merton €. al, “A Hardware Mecharism for Dynamic
Extraction and Réayout of Pragram Hot Spots,” in Proc. of
27th Internatonal Symposum on Conputer Architecure,
Jure 2000

[26] P.Pilai, “The Ingruction Pah Coprocesa Implemented on
the PipeRenxch Fabric,” CMUART Tech Reoort, Canege
Méllon Univ., 2000.



