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Abstract

Building systems such as OS kernels and embedded soft-
w are is diÆcult. An important source of this diÆculty is
the numerous rules they must obey: interrupts cannot
be disabled for \too long," global variables must be pro-
tected by locks, user pointers passed to OS code must
be checked for safet y before use, etc.A single violation
can crash the system, yet typically these invarian ts are
unchecked, existing only on paper or in the implemen-
tor's mind.

This paper is a case study in how system implemen-
tors can use a new programming methodology, meta-
level compilation (MC), to easily check such invarian ts.
It focuses on using MC to check for errors in the code
used to manage cache coherence on the FLASH shared
memory multiprocessor. The only real practical method
kno wn for verifying such code is testing and simulation.
We show that simple, system-speci�c checkers can dra-
matically improve this situation by statically pinpoint-
ing errors in the program source. These checkers can be
written by implementors themselves and, by exploiting
the system-speci�c information this allows, can detect
errors unreac hablewith other methods. The checkers
in this paper found 34 bugs in FLASH code despite the
care used in building it and the years of testing it has
undergone. Many of these errors fall in the worst cate-
gory of systems bugs: those that show up sporadically
only after days of continuous use. The case study is in-
teresting because it shows that the MC approach �nds
serious errors in well-tested, non-toy systems code. Fur-
ther, the code to �nd such bugs is usually 10-100 lines
long, written in a few hours, and exactly locates errors
that, if disco vered during testing, would require several
da ys of in vestigation by an experienced implementor.

The paper presents 8 checkers we wrote, their appli-
cation to �ve di�erent protocol implementations, and a
discussion of the errors that we found.

1 Introduction

Systems softw are { system calls, kernel code, systems
libraries { must obey a rich set of rules for correctness
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and performance. Currently, these rules reside mainly
in the implementor's mind, or occasionally, in documen-
tation. As a result, implementors must �nd violations
and opportunities for optimization manually . The �rst
situation leads to uncaught errors, the second to lost
opportunities.

This paper is a case study in how system implemen-
tors can use a new programming methodology, meta-
level compilation (MC), to easily check such invariants.
We use MC to �nd errors in the code used to manage
cache coherence on the FLASH shared memory m ul-
tiprocessor. This code must obey numerous \systems
type" rules such as: (1) do not perform oating point
operations; (2) incoming data bu�ers m ustbe freed
along all outgoing paths; (3) bu�ers must be allocated
before sending; (4) some operations must precede oth-
ers (a send precedes a wait for a reply); and (5) stack
references are not allow ed in some cases. These restric-
tions, and those encountered in other systems, have the
propert y that they can be described in a few words, but
can cause many errors, since obeying them can require
maintaining simultaneous, accurate, aw areness of many
hundred (or thousand) line code paths. As our results
show, such manual aw areness is erratic.

We show that easily written, user-supplie dcompiler
extensions are able to statically pinpoint such errors in
the program source. Many of these errors fall in the
w orst category of systems bugs: those that only show
up sporadically after the system has been running con-
tinuously for days. Our most important results are that:

1. Many system invarian ts can be checked with sim-
ple, user-supplied compiler extensions. All of our
checkers but one were less than 100 lines of code;
some of the most e�ective are less than 20.

2. Such checkers are easily written. Ours were imple-
mented by non-FLASH developers, who did not
ha ve a deep understanding of the system.

3. Such checkers arepow erful. Ours found 34 bugs
in well-tested FLASH protocol code.

In FLASH, a typical protocol implementation is 10-20K
lines of code and several protocols have been in active
use for many years. Some of the bugs that we found
w ere diÆcult to diagnose for even experienced FLASH
protocol implementors.

This paper is laid out as follows. Section 2 giv es
an overview of the FLASH system and Section 3 an
overview of MC and the compiler we use to implement
it. We then discuss our four most pro�table checks.
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Section 4 presents a checker that ensures FLASH code
correctly waits for data bu�ers to �ll before using them.
Section 5 describes a checker that enforces consistency
between a message's length �eld and the actual data
sent (this check found the most bugs in FLASH code).
Section 6 presents a checker that �nds when handlers
disobey FLASH bu�er management rules. Section 7
describes how we ensure FLASH code correctly follows
network send deadlock avoidance rules. Section 8 de-
scribes how we enforce execution restrictions placed on
FLASH code (e.g., that it cannot use oating point
operations). Section 9 discusses our remaining three
checks. Section 10 describes related work; Section 11
discusses our results; and Section 12 concludes.

2 Flash Overview

The Stanford FLASH multiprocessor [20] is a scalable
cache-coherent DSM machine that implements its com-
munication protocols in software that runs on an em-
bedded processor in its programmable node controller,
MAGIC. As shown in Figure 1, the MAGIC chip is the
heart of the FLASH node, and is responsible for di-
recting data to and from the processor, I/O, memory,
and network interfaces under the control of the com-
munication protocol running on its embedded protocol
processor . A programmable protocol processor allows
great exibility in the type of communication protocols
that can be run on the machine, and permits debug-
ging, tuning, and even developing new protocols after
the machine is built.

A programmable node controller, however, places a
serious burden on the programmer to write both high-
performance and correct protocol code. For every com-
bination of incoming message type and incoming hard-
ware interface there is a di�erent software handler that
is run on the protocol processor to handle the message.
The collection of these handlers comprise a FLASH cache
coherence protocol. Unlike code running on the main
microprocessor, a tiny bug in one of the handlers can
deadlock or livelock the entire machine. Because of
these severe performance and correctness constraints,
the FLASH protocols are subjected to rigorous simula-
tion in the FlashLite simulator before they are run on
the FLASH hardware [15].

Even though the detailed FlashLite simulation envi-
ronment has been operational for several years and has
found many bugs in the protocols in simulation, no pro-
tocol has booted perfectly on the hardware on the �rst
try. This leaves the protocol designer with the daunting
task of debugging the protocol on the real machine with
primitive debugging tools and imperfect visibility into
what is going on in the memory system. The bugs that
are found in the handlers are almost always in rare cor-
ner cases in the protocol|cases that either never show
up in simulation because of a lack of cycles or because
the simulator itself omits certain behavior. For exam-
ple, many architectural simulators do not simulate the
I/O system, so the portion of the protocol dealing with
cache-coherent I/O is never exercised. The structured
nature of protocol code makes it a perfect case study
to show the feasibility of using meta-level compilation
to aid the FLASH protocol designer in both optimizing

the code and �nding latent, subtle bugs.

2.1 FLASH Protocols

Many di�erent scalable cache coherence protocols exist,
di�ering in both the data structures used to keep the
sharing information (the directory entry) and the num-
ber and type of messages they send. The performance
and scalability of several well-known protocols (bitvec-
tor/coarsevector, COMA, dynamic pointer allocation,
RAC, and SCI) have been studied using FLASH [14,
16, 27]. The details of each protocol are beyond the
scope of this paper, but many aspects of the protocols
are the same from the perspective of the protocol de-
signer. Namely, there are three main types of protocol
handlers that can be distilled down from the 65-90 han-
dlers that comprise a cache coherence protocol: pass-
thru handlers, directory-consulting handlers, and inter-
vention handlers. The implementation of the pass-thru
handlers are short (1-3 instructions) and there is lit-
tle for MC techniques to improve or correct. However,
the latter two handler types involve a common set of
functionality across all the FLASH protocols, and we
describe their basic operation below.

Directory-consulting handlers: These are handlers
that access memory on behalf of the main processor and
also access the directory. The most common example is
the handler for a local cache miss from the main pro-
cessor. These handlers must access the directory entry,
update directory state, write back the entry, send data
to the proper destination, and free the data bu�er asso-
ciated with the message when it is done. In addition to
properly managing bu�er allocation and de-allocation,
these handlers must ensure that any messages they send
have a length �eld in the message header corresponding
to the opcode of the message being sent.

Intervention handlers: These are handlers that are
asking for the most recent copy of the data from either
the processor or I/O subsystem. These handlers must
send an intervention request to either the processor or
I/O system, wait for a reply from that hardware inter-
face, and send the appropriate response message based
on the status of the intervention reply. Failure to have
a one-to-one correspondence between these sends and
waits can potentially deadlock the hardware or lead to
undetected data corruption in the system.

Table 1 gives the size of the protocols in terms of
the number of lines in all source �les (excluding header
�les), the number of paths through every function, and
the average and max length of the paths in an entire pro-
tocol. The number of paths counts the set of unique exit
paths from the beginning of the function to all returns.
As the �gure shows, protocols are tens of thousands of
lines long, with typical path lengths over a hundred lines
long.

3 Meta-level Compilation Overview

This section gives an overview of meta-level compila-
tion (MC) and the compiler system we have built to
implement it.
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Figure 1: A FLASH node, depicting the central location of the MAGIC node controller.

Protocol LOC # of paths ave/max
path length

bitvector 10386 486 87/563
dyn ptr 18438 2322 135/399
sci 11473 1051 73/330
coma 17031 1131 135/244
rac 14396 1364 133/516
common code 8783 1165 183/461

Table 1: Protocol size as measured by lines of code
(LOC), the number of unique paths from the begin-
ning of a handler to all exit points, the average length
of all paths (as LOC), and the maximum length of any
path. Protocols share some common �les | to avoid
double-counting of these, we charged them to a special
category called common code.

3.1 MC motivation and methodology

The goal of meta-level compilation (MC) is to make
programming signi�cantly more powerful. It does so by
raising compilation from the low-level of programming
languages to the higher-level of the systems, interfaces
and components they are used to implement. While MC
can be used to check, transform, and optimize system-
level operations, this paper focuses on checking. One
intuitive way to see when MC applies in this domain is
to consider the types of sentences compilers are able to
enforce. Restrictions that �t these templates are good
candidates for MC. Some example sentence templates,
and their manifestation in this paper are:

1. \Never/Always do X": \FLASH handlers should
never use oating point operations"; \handlers can-
not take parameters or return results"; \the �rst
and second statement of handler code must be
calls to the special macros HANDLER DEFS and
HANDLER PROLOGUE."

2. \Always do X before/after Y": \Before using a
data bu�er you must check that the hardware has
�nished �lling it with data"; \if you allocate a
bu�er, you must check that allocation succeeded."

3. \If you do X, then you must/cannot do Y": \If
you do a synchronous send, then you must wait
for its reply"; \if you allocate a bu�er you must
free it"; \if you free a data bu�er, you cannot use
it."

Enforcing the �rst two types of restrictions is espe-
cially easy because they are typically value-independent
requiring either no information at all, or possibly a small
amount of context information, such as whether a rou-
tine is a handler or called by a handler. As we show
in this paper, our system can check many instances of
all three restrictions using easily expressible state ma-
chines.

3.2 xg++ and metal

Our MC framework is composed of two pieces, xg++[9],
an extensible compiler built on top of GNU g++, and
metal[5], a language for writing MC extensions. Metal
programs express program analysis passes as high-level
state machines (SMs). They are dynamically linked into
xg++ and applied down every path in each function
xg++ consumes in the input source.

Metal programs de�ne states, transitions between
states, patterns that trigger transitions, and actions to
be performed when a transition is triggered. The state
machine part of the language is straightforward and can
be viewed as syntactically similar to a \yacc" speci�ca-
tion. Users can create arbitrary states, transition be-
tween them, and perform actions that are escapes into
the base language. Patterns are written in an extended
version of the base language (C++), and can match
almost arbitrary language constructs such as declara-
tions, expressions, and statements. Expressing patterns
in the base language makes them powerful yet easy to
use, since they closely mirror the source constructs they
are searching for. Typically, SMs use patterns to search
for interesting features, which then cause transitions be-
tween states on matches. The next two sections present
checkers written in metal (see Figures 2 and 3).

Inter-procedural checking: the current xg++ sys-
tem does not integrate global analysis with the SM frame-



work. Instead, it provides a library of routines to emit
client-annotated ow graphs to a �le, which are then
read back in and traversed. Section 7 describes a checker
that uses this framework. The checkers in this paper use
a simple scheme of listing functions that must obey a
given restriction (e.g., free or not free a bu�er). Check-
ing that a condition holds across a procedure call bound-
ary can then be done in two parts: the checker veri�es
that each caller preserves any necessary preconditions
and that the procedure itself preserves the restriction.

4 Bu�er Fill Race Conditions

When a node receives a message, the handler for the
message begins processing the message header while the
hardware interface �lls the data bu�er with the message
body. If the handler needs to read from the data bu�er,
then it must explicitly call a macro that waits until the
hardware has �nished �lling the bu�er in order to avoid
a race condition.

In the FLASH code, data bu�ers are read explicitly
using the macro MISCBUS READ DB. All reads must be
preceded by a call to the macro WAIT FOR DB FULL to
synchronize the bu�er contents. To increase parallelism,
WAIT FOR DB FULL is only called along paths that require
access to the bu�er contents, and it is called as late as
possible along these paths. Figure 2 shows a checker
written in metal that examines all possible execution
paths of a function for violations of this rule. (The
checker used to derive the results is identical except that
it also takes into account older style macros equivalent
to MISCBUS READ DB.)

The checker begins by including the header �le needed
to de�ne the FLASH macros and data types. The decl
declaration speci�es that addr and buf are wildcard
variables that will pattern match any C integer expres-
sion (\scalar"). The remainder of the checker de�nes
a simple state machine with a single state, start. SMs
start execution in the �rst state they de�ne (in this case
start). From its start state, the SM uses two patterns
to search for all uses of the macros WAIT FOR DB FULL
and MISCBUS READ DB. When either matches, the scalar
expression passed as their arguments will be placed in
addr and, for MISCBUS READ DB, buf. The matching
rule will then cause the SM to transition to the (op-
tional) state (the token after the ==> operator) and
then execute the (optional) action. If a rule's state
is omitted, the SM remains in the current state. The
start state has two rules. If the �rst rule's pattern for
WAIT FOR DB FULL matches, then the handler has cor-
rectly waited for its data bu�er to �ll, and any subse-
quent read on this execution path will be valid. Thus,
the checker transitions to the stop state, which causes it
to stop running on the current path. If the second rule's
pattern matches, then the execution path being checked
did not wait for its bu�er to �ll and it had a bu�er race
condition error. This rule's associated action will then
print out an error message. Since the rule does not give
a transition state, the checker will remain in the start
state to catch further violations along the path.

Results: Table 2 summarizes the results of the bu�er
race condition checker when applied to the �ve FLASH

{ #include "flash-includes.h" }
sm wait_for_db {
/* Declare two variables 'addr' and 'buf' that can
* match any integer expression. */
decl { scalar } addr, buf;
/* Checker begins in the first state (here 'start').
* This state searches for two patterns conjoined
* with the '|' operator. */
start:
/* The handler is allowed to read the data buffer
* after calling 'WAIT_FOR_DB_FULL' --- once the
* pattern below matches, we transition to the
* 'stop' state, which stops checking on this
* path. */

{ WAIT_FOR_DB_FULL(addr); } ==> stop
/* If we hit a read of the data buffer in this
* state, the handler did not do a WAIT_FOR_DB_FULL
* first so emit an error and continue checking. */
| { MISCBUS_READ_DB(addr, buf); } ==>

{ err("Buffer not synchronized"); }
;

}

Figure 2: A simpli�ed metal checker to �nd viola-
tions of the rule \WAIT FOR DB FULL must come be-
fore MISCBUS READ DB." It searches FLASH code look-
ing for any data bu�er read (using MISCBUS READ DB)
not preceded by a synchronizing wait call (using
WAIT FOR DB FULL).

Protocol Errors False Pos Applied

bitvector 4 0 14
dyn ptr 0 0 16
sci 0 0 2
coma 0 0 0
rac 0 0 10
common code 0 1 17
total 4 1 59

Table 2: The results of the bu�er race condition checker.
Errors gives the number of errors, and False Pos the
number of false positives. The Applied column is the
number of reads performed, to give a rough sense of the
number of times the checker was applied.

protocols and common code. The checker found 4 vio-
lations in bitvector in rare corner cases. For example,
in a couple of cases only the �rst byte of the bu�er was
read without explicit synchronization, but after an anal-
ysis of the MAGIC chip implementation we determined
that they were indeed possible race conditions. The
checker also produced 1 false positive in common code
that intentionally violated the invariant for debugging
purposes.

5 Consistency of Decoupled Message Length State

Each time a handler sends a message, it must pass a pa-
rameter specifying if the message contains data. There
is also a length �eld in the message header that is used
by a di�erent part of the hardware interface to deter-
mine how much message data to send. If there is no data



Protocol Errors False Pos Applied

bitv 3 0 205
dyn ptr 7 0 316
sci 0 0 308
coma 0 2 302
rac 8 0 346
common code 0 0 73
total 18 2 1550

Table 3: The results of applying the message length
checker to �ve FLASH protocols. We recorded the num-
ber of errors found (18 in total), the number of false
positives (two), and and the number of times each check
was applied in each protocol.

{ #include "flash-includes.h" }
sm msglen_check {
/* Named patterns specifying message length
* assignments' zero and non-zero values. */

pat zero_assign =
{ HANDLER_GLOBALS(header.nh.len) = LEN_NODATA }

;
pat nonzero_assign =

{ HANDLER_GLOBALS(header.nh.len) = LEN_WORD }
| { HANDLER_GLOBALS(header.nh.len) = LEN_CACHELINE }
;

/* Named patterns specifying sends that transmit data
* (these need a non-zero length field). */

decl { unsigned } keep, swap, wait, dec, null, type;
pat send_data =

{ PI_SEND(F_DATA, keep, swap, wait, dec, null) }
| { IO_SEND(F_DATA, keep, swap, wait, dec, null) }
| { NI_SEND(type, F_DATA, keep, wait, dec, null) }
;

/* Named patterns for sends without data
* (these need a zero length field). */

pat send_nodata =
{ PI_SEND(F_NODATA, keep, swap, wait, dec, null) }

| { IO_SEND(F_NODATA, keep, swap, wait, dec, null) }
| { NI_SEND(type, F_NODATA, keep, wait, dec, null) }
;

/* Start state. Note, rules in the special 'all'
* state are always run no matter what state the
* SM is in. We assume sends in this state are
* ok and ignore them. */

all: zero_assign ==> zero_len
| nonzero_assign ==> nonzero_len
;

/* If we have a zero-length, cannot send data */
zero_len: send_data ==>

{ err("data send, zero len"); }
;

/* If we have a non-zero length, must send data */
nonzero_len: send_nodata ==>

{ err("nodata send, nonzero len"); }
;

}

Figure 3: Checker written in metal to catch inconsis-
tencies between message send has data parameter and
message length: data sends must have non-zero length
�elds, no-data sends must have zero length �elds.

to send, the length must be set to LEN NODATA; if there
is data, then the length must be set to either LEN WORD
or LEN CACHELINE.

Message lengths and the has data parameter of a
message send are decoupled because it simpli�es the
hardware design. Unfortunately, the programmer can
easily assume the wrong value of the length �eld. This
happens frequently for several reasons:

1. The protocol handlers are written in a monolithic
way to improve performance at the cost of large
handler functions and complex control ow. It
is very tedious and error-prone to manually check
the length assignments on all of the possible paths
that lead to each send. It is not unusual for a
length assignment to be hundreds of lines away
from the message send that uses it.

2. Programmers writing FLASH protocol handlers
often assume that the length need not be set if
the has data parameter says that there is no data
for the message.

3. Each handler starts life by receiving a particular
type of message. The incoming message may have
the same length �eld value as the message being
sent out in response, in which case setting the
length again is redundant. If the handler assumes
the wrong value for the length, it may send data
with an inconsistent has data parameter.

The message length �eld is always assigned to a constant
in the FLASH code, so checking consistency with the
has data parameter requires knowing only the starting
value of the length �eld and the last assignment before
each send.

Figure 3 shows a checker for message length/data
parameter consistency written in metal. Most of the
checker consists of patterns that specify what consti-
tutes a zero length assignment, a nonzero length as-
signment, a message send with no data, and a message
send with data. The decl variables are wildcards; they
match anything of the speci�ed type and in this checker
they simply allow the patterns to match message sends
without regard to the values of those parameters.

The transitions speci�ed at the bottom of the checker
keep track of the last length assignment before each
send. For simplicity, the checker shown does not consult
a table or perform global analysis for the initial message
length value for each handler; instead, it starts in the
special state all that does not warn about any message
sends. The only special feature of the all state is that
its transitions are implicitly applied to other states. For
example, the transitions on the patterns zero assign
and nonzero assign also apply in the states zero len
and nonzero len.

Table 3 shows the results of running this check on
�ve FLASH protocols. In dyn ptr and rac, the checker
found 1 error in an \eager mode" handler, which is only
used in simulation, and 6 errors in handlers for uncached
reads. Uncached reads are a rare case in the protocol,
so these handlers are not heavily tested. In order to
trigger the bug in these handlers, the data would have
to be dirty in another node's cache concurrent with a



particular queue being full on the local node. This sort
of bug might never occur in practice, but if it ever did
it would be diÆcult to reproduce and diagnose. The
checker also found a similar bug that exists only in rac.

In bitvector the checker found one bug in a handler
for uncached reads, similar to the ones found in dyn ptr
and rac. Another bug was found in an \eager mode"
handler. This bug was diÆcult for the author of the
handler to diagnose completely, even knowing its exact
location. The last bug found in bitvector was a clear
violation of the length/data consistency rule but posed
no problem during execution because of a hardware im-
plementation detail. However, we counted the violation
as a bug because it would cause problems during simu-
lation.

Two false positives were found in the coma proto-
col in the same function. These occurred because the
handler used a variable to determine the correct send
parameter at run time. The variable usage was simple
enough that the checker could have statically pruned
the impossible execution paths with a more elaborate
analysis, but the e�ort seemed unjusti�ed in this case.

6 Checking Bu�er Management

Every FLASH node has a set of data bu�ers. These
are managed using manual reference counting. When a
message arrives, the hardware allocates a data bu�er,
increments the bu�er's reference count, and jumps to
the appropriate message handler. This handler is re-
sponsible for decrementing the bu�er's reference count
when it �nishes using it. Deallocation is complicated by
the twin facts that (1) message handlers can be many
thousands of lines long and (2) the same bu�er is used
to send outgoing messages and can be implicitly held
onto for use by another handler. This management ap-
proach is vulnerable to the usual problems of manual
reference counting. They manifest in protocol code as
follows:

1. Not decrementing a bu�er's reference count. This
happens when a handler either completes without
an explicit deallocation, or overwrites the \current
bu�er pointer" with a newly allocated bu�er be-
fore freeing the �rst. Once all data bu�ers have
been lost, a node cannot bu�er incoming messages,
and the system typically deadlocks or crashes.

2. Using a bu�er after freeing it or using a bu�er
that has never been allocated. Bu�er contents
can change non-deterministically if another mes-
sage arrives and allocates the same bu�er.

3. Double freeing the same bu�er. This error is the
most common that we found and has the same
e�ect as above.

Bu�er management bugs are a constant source of prob-
lems in FLASH protocols. They are also diÆcult to
track down since they tend to come up on obscure, in-
frequently executed paths that cause the system to have
a low-grade bu�er leak that only deadlocks the system
after several days. Diagnosing a bu�er leak is diÆcult

since all bu�er allocation bugs lead to the same set of
e�ects (deadlocks or crashes). Determining the set of
code paths out of thousands that led to the problem is
non-trivial.

Despite the complexity of the code that implements
manual bu�er management, it is surprisingly simple to
check with a compiler. A conservative approach veri�es
that handlers obey the following four rules:

1. Hardware handlers begin execution with a data
bu�er that they must free.

2. Software handlers begin execution without a data
bu�er and must allocate a bu�er before sending
messages.

3. After a bu�er is freed, no send can occur until
another bu�er is allocated.

4. Once a bu�er is allocated, it must be freed before
another bu�er can be allocated.

Handlers that obey these rules on all paths cannot leak
bu�ers. We wrote a metal extension that is a straight-
forward transliteration of them. Not counting the code
to determine if a routine is a handler or not, the exten-
sion is less than 100 lines. The extension is called on
every routine de�nition. If the routine being checked
is a hardware handler, the SM begins in a \has bu�er"
state, otherwise it begins in the \has no bu�er" state.
A free causes a transition from the \has bu�er" state to
the \has no bu�er" state, whereas an allocation goes in
the opposite direction. For the \has bu�er" state, al-
locations or returns are signalled as errors, whereas the
\has no bu�er" state gives errors for frees and bu�er
uses. Frees can either be explicit or caused by calls to
routines that expect bu�ers and free them. The exten-
sion keeps a table of routines in the latter category so
that it can check them for consistency. Bu�ers can be
used by explicit sends or by calls to routines that expect
them. The SM checks for these routines using a another
table, which also lets it check for consistency.

6.1 Results

Table 4 shows the results of applying the bu�er manage-
ment checker to the �ve protocols. It lists the number
of errors we caught; cases which were technically er-
rors or violations but were either minor or happened on
unreachable code paths; and the number of useful and
useless annotations (discussed below).

Errors: Our checker found 9 errors. We found two
double free bugs in rac, two in bitvector, and two very
rare ones in dyn ptr. We found 3 minor errors in sci,
two double frees and one leak. The errors are in code
that is not yet part of the production protocol. Except
for one case, all bu�er allocation problems were double
frees.

The code used by these protocols shares a common
legacy. As a result, an error in the parent source gets
propagated faithfully to all of the others: dyn ptr, rac
and bitvector all share a similar bug because of their
common heritage. The interesting thing about this bug



is that it was �xed in the original source, but the main-
tainer did not know to update the other protocols.

Violations: Violations correspond to abstraction er-
rors, bugs in unreachable handlers, and harmless viola-
tions. sci has 2 of these, dyn ptr has 2, and there is
1 in the common code. The bitvector protocol has a
violation that could be a bug in legacy code, but this
code was written by someone who left the project and
the violation cannot be diagnosed by the current imple-
mentors. The protocol also had a very sloppy coding
practice (not counted in violations) that guaranteed an
invariant held in an obscure manner. When this was
detected, it caused a day of searching for a non-existent
error.

Annotations: Dealing with false positives. Many
compiler problems are undecidable. In practice this
means that an aggressive static checker will produce
false positives. Sifting through spurious warnings is te-
dious and can be dangerous, since they can hide real
errors. Thus, a checker must provide users with a way
to turn o� warnings. An easy way to do so is to supply
a set of reserved functions that the user calls to assert
a condition is true. Our checker de�nes two such func-
tions: has buffer and no free needed. When called in
FLASH code, the �rst tells the checker there actually
is a bu�er, and the second that a message bu�er does
not need to be freed on this path. The checker can then
use xg++'s interfaces to delete this call from the source.
For the checkers we describe in this paper, the typical
number of these annotations needed is roughly one per
thousand lines of source.

In our results, we counted an annotation as useful if
it suppressed a warning that the protocol implementor
had diÆculty evaluating. These serve as useful check-
able comments in that the extension can warn when
they are wrong (e.g., not needed on any path). There
were 10 such annotations for sci, 3 for the common
code and dyn ptr and two for rac. These annotations
occurred in special purpose paths in handlers that ex-
plicitly did not deallocate bu�ers so that a subsequent
handler could use it.

Most useless annotations arose because we do not
prune simple impossible paths. The most common case
was protocol code that had an \if-else" branch on a
condition, �nished the branch, and then did another
\if-else" branch on the same condition (or its negation).
There are only two possible paths through this code
rather than the four our system thinks exist. The rest of
the cases were data-dependent actions that determined
if a bu�er was freed or not. We could have hard-wired
in support for these but it was easier to just suppress
them.

We eliminated over twenty useless annotations by
adding twelve lines to the SM to make it sensitive to
the value of four routines that, when called, returned a
0 or 1 depending on whether or not they freed a bu�er.
Without this addition, the more naive extension marked
the bu�er as freed (or not freed) on both paths, giving
a small cascade of errors.

Protocol Errors Minor Useful Useless

dyn ptr 2(rare) 2 3 3
bitvector 2 1 0 1
sci 3 2 10 10
coma 0 0 0 0
rac 2 0 2 4
common 0 1 3 7
total 9 6 18 25

Table 4: Bu�er management checker results. Errors
gives the number of actual errors found. The three er-
rors in sci were in code that was only partially imple-
mented. Minor a count of: abstraction errors, bugs in
unreachable handlers, and harmless violations. Useful
gives the number of good annotations (that document
comments), Useless the number of false positives.

7 Deadlock Restrictions on Message Sends

FLASH nodes avoid message loss by only sending mes-
sages when space is available in the designated network
output queue. Unfortunately a message send cannot
simply block or wait for output queue space to become
available because this in itself may deadlock the ma-
chine if a cycle of senders is waiting for this node to
unblock to make progress. FLASH avoids this situa-
tion by ensuring that handlers only run when they have
enough queue space to complete. Mechanically, FLASH
divides the physical network into four virtual message
slots (\lanes"). Each handler has a �xed set of lanes
assigned to it when a protocol is designed. The hard-
ware will not run a given handler until these slots are
available. Before the handler can send more than its
allowance on a given lane, it must explicitly check that
there is enough space and suspend itself if there is not.
This rule is a good example of a simple-to-state global
restriction that, because it applies to the entire system,
is depressingly diÆcult to manually enforce or check. It
is also a good example of how MC can be applied to
enforce a context-sensitive relation of the form \in situ-
ation X (after n sends on a lane) you must do Y (check
for free bu�ers) before Z (sending)."

At a high level, the extension checks a protocol-
writer supplied list of each handler's lane allowances
against the maximum number of sends per lane the
handler could do on any path. Since paths can span
procedures, this extension uses xg++'s global analysis
framework to compute these results in two passes. The
�rst local pass walks over every handler annotating each
send with the lane it uses. After processing each han-
dler, the extension calls xg++ support routines to emit
the procedure's ow graph to a �le. The ow graph
contains (1) all of the routine's annotations (if any) and
(2) all procedures the routine calls. The second, global
pass, uses xg++ routines to link together all of the �les
emitted by the local pass into a global call graph for
the entire protocol. It then uses xg++ routines to do a
depth �rst traversal over this call graph, computing the
maximum number of sends per lane the path can do.
Any send that exceeds the handler's lane allowance is
agged. The check is roughly 220 lines of code. Much of
this code deals with printing out precise textual \back



traces" for the inter-procedural path that caused the
problem | path length and branching complexity make
this feature crucial for diagnosing errors.

For straight-line code without function pointers, this
extension is conservative and sound: while there exist
correct handlers it would reject, any handler that satis-
�es it cannot exceed its bu�er quota. Most handlers �t
this model, and are accepted. However, there are a few
handlers that use loops or recursion. Cycles create prob-
lems for static analysis since, in general, it is impossible
to determine how many iterations a cycle can cause.
Fortunately, FLASH handlers have a useful, common
special case: cycles that do not send. Such cycles rep-
resent a \�xed point" of behavior in that executing this
cycle cannot increase the sends the function executes.
Therefore, the extension can safely ignore them. The
extension detects function-level �xed points by record-
ing the set of lanes that are active when it encounters a
function. If it sees this function again on a given path,
it compares the current set of available bu�ers to this
saved copy. If they are the same, then the cycle is a
�xed point and the handler stops checking that path. If
there were sends, then it warns of a possible error. This
simple modi�cation completely eliminates all recursion
based false-positives. (A similar use of �xed point can
be used for any extension that checks side-e�ects.)

Results The extension found two serious bugs: one
in dyn ptr and one in bitvector. The �rst case was
caused when an implementor who had not written the
protocol inserted code to workaround a hardware bug.
This seems to be due both to the lack of clear docu-
mentation and to the fact that handlers are large, and
their context opaque. The second bug appears to be
a typo and seems due to probability: if something has
to be done correctly many times, it will be done wrong
eventually. Both bugs could cause sporadic deadlocks.
There were no false positives.

8 Handler Execution Restrictions

Like many OS kernels and embedded systems, FLASH's
execution environment is more restrictive than the lan-
guage in which the code is written. Without compiler
support, programmers can stray into illegal territory
without warning. With compiler support, such wan-
derings are prevented. Restricting a base language to
a subset is especially easy since no analysis or transfor-
mation is required: the extension need only check that
certain constructs are not used by programmers.

Our extension checks the three most common FLASH
restrictions. First, handlers take no parameters and re-
turn no results. We check that the return type of every
function de�nition is void and that it has an empty
parameter list. Additionally, several macros are depre-
cated, and we warn if they are used.

Second, FLASH code cannot perform oating point
operations. The checker registers a function with xg++
that is invoked on every tree node and checks that no
tree node has a oating point type.

Third, handlers can assert that they do not need
the stack. We check that they do not cause stack ac-
cesses by verifying that non-stack handlers do not take

the address of any of their local variables, that they do
not allocate \too many" local variables, and that they
do not declare arrays or structures larger than 64 bits
(smaller structures safely reside in registers). Addition-
ally, we enforce the documented requirement that there
is exactly one \no stack" annotation at the beginning
of the handler.

While they are disallowed from using the stack, such
handlers can call other handlers as long as they invoke
the SET STACKPTR macro immediately before the call so
the callee can build a stack frame. The checker veri�es
that: (1) there are no spurious SET STACKPTR uses (i.e.,
every one is followed by a call) and (2) every call is
preceded by a SET STACKPTR invocation.

Finally, protocol code must run both on the hard-
ware and on a simulator. The simulator requires that
programmers manually insert hooks into their source
that call back into the simulator on \interesting" events.
The most common hooks are macros inserted at the be-
ginning of every function to declare simulation variables
and to inform the simulator whether the current func-
tion is a normal procedure, a handler, or a software han-
dler. Without compiler support, diagnosing the omis-
sion of hooks is diÆcult because only simulation results
are a�ected and no overt error is reported.

Our checker detects such omissions in two parts.
First, it automatically constructs a list of all hardware
handlers and software handlers by extracting the former
from the protocol speci�cation and the latter from the
protocol code. During simulation, the �rst statement in
each of these functions must be a call to the simulator
informing it that a handler is about to run. All other
routines must have a similar call to tell the simulator
that a normal subroutine is about to run. The checker
veri�es that the �rst and second statements in a proce-
dure are calls to the appropriate simulation hooks using
the previously constructed table of handlers.

Table 5 presents the results of applying the execution
restriction checker to the �ve FLASH protocols. The
only errors found were omissions of appropriate simula-
tor hooks. These occurred four times in dyn ptr, two
times in bitvector, three times in coma, and twice in
rac. There were three violations in sci, but we did not
count them since they occurred in unimplemented rou-
tines which caused a fatal error if called. There were
no violations in the common code. None of our error
counts include the instances when hooks were omitted
from inline functions, even though they were, strictly
speaking, violations. We give a rough feel for how ap-
plicable the check is by tracking the number of routines
and variables it checked.

9 Other Checks

Three of our checks found very few errors in FLASH
code. The three checks were for: handling failure of
bu�er allocation, manual directory entry updates, and
correctly waiting on synchronous sends. While �nding
bugs is good, so is giving assurance that code does not
contain a given type of bug. Table 6 crudely quanti�es
the importance of each check by counting the number
of times it was applied in each protocol.



Protocol Violations Handlers Vars

dyn ptr 4 227 768
bitvector 2 168 489
sci 0 214 794
coma 3 193 648
rac 2 200 668
common code 0 62 398
total 11 1064 3765

Table 5: Results from applying the execution restriction
checker to the �ve FLASH protocols. Columns indicate
the number of violations caught, and the number of rou-
tines and variables checked.

An important di�erence between these checks and
the preceding ones is that the actions they couple tend
to be located closer to each other. For FLASH code, the
chance of error appears to increase in proportion to the
edit distance between points. We describe the checks
and their applicability in more detail below.

Data bu�er allocation: After a handler has freed its
bu�er, it must explicitly allocate another before it can
send a message with data. A bu�er allocation can fail
if none are available, so every allocation must check the
returned bu�er for an error ag before writing to it. We
implemented a check to ensure that all allocations are
checked for success before being used.

Manual directory entry updates: Each FLASH node
has a directory that contains the state of all cache lines
it is managing. If a handler modi�es the state of a
line, it must update the corresponding directory entry.
Unfortunately, unlike normal variables, which are trans-
parently moved from memory and back by the compiler,
handlers must explicitly load directory state into mem-
ory, modify it there, and then explicitly write it back.
Forgetting to write back modi�ed data will leave a cache
line's directory entry in a stale state. The checker is or-
ganized as a small SM that checks two conditions: (1) a
directory entry is loaded before it is read or written; (2)
if an entry is modi�ed, it is subsequently written back.
The latter condition is frequently violated by specula-
tive handlers that modify the entry in anticipation of the
common case and, if that does not occur, intentionally
lose their modi�cations. The checker eliminates most of
these false positives by using the fact that such specula-
tive handlers will typically send a negative acknowledge-
ment (NAK) reply which can be seen through the use of
special constants when modifying the message header.

Send-wait errors: Handlers can send messages asyn-
chronously or explicitly indicate that they will later wait
for a reply. If a handler indicates it will wait, but does
not, or waits on the wrong message interface, the ma-
chine will deadlock. Our extension detects this error by
checking that (1) every send with the \wait" bit set is
followed by a wait for the proper interface and (2) the
handler does not issue another send before it has waited
for the �rst one.

9.1 Results

The allocation failure check raised 2 false positives be-
cause of debugging code that printed the value of the
bu�er before checking for errors. The send-wait check
found 8 places where the code broke an abstraction bar-
rier, and performed \waits" without calling the inter-
face supplied macros. While these were not errors, they
would make simulation problematic, since hooks could
not be inserted at the simulation spot.

While directory entry management did �nd one bug,
it also accounted for the most false positives. This is
partially because there are subroutines that handlers
can call which assume that the handler calling them
will write back the directory entry. We count these as
false positives because the current checker requires the
user to manually annotate these subroutines in order to
eliminate warnings. However, these annotations can be
seen as a bene�t because they make it possible to ensure
that handlers that call these subroutines write back the
entry correctly. They also make it possible to check the
subroutine itself for spurious write backs. Subroutines
account for 14 of the false positives: 1 in bitvector, 4
in dyn ptr, 5 in coma, and 4 in rac.

The remaining annotations were bene�cial in that
they provide checkable documentation of unusual con-
ditions that were before only discussed in comments.
These include situations where a speculative path in-
tentionally avoids writing back the directory entry. This
accounts for 3 false positives: 1 in dyn ptr and 2 in rac.
Additionally, some handlers back out of a speculatively
modi�ed directory entry without sending a NAK reply.
This condition occurs in special circumstances that do
not follow a particular pattern, so we chose to not to
detect it. The remaining annotations arise from \ab-
straction errors" where the directory entry address is
computed explicitly instead of by calling a speci�c ad-
dress calculation macro. The proper �x for these loca-
tions is to use the standard macros.

10 Related Work

We proposed MC in [10, 11] and provided a simple sys-
tem, magik, based on the lcc ANSI C compiler [13].
While the original papers laid out an initial intellectual
framework, they provided little evaluation of the idea's
e�ectiveness on real code. We have concurrently applied
MC to check other systems rules in Linux, OpenBSD
and the Xok exokernel OS [9], where we found hun-
dreds of errors. These results, and those in this paper
lead us to believe MC is a generally e�ective technique
for checking software.

Several projects have speci�cally targeted cache co-
herence protocol veri�cation [3, 25]. This work is largely
orthogonal to ours. It veri�es an abstract description of
the protocol, whereas our work checks the protocol code
itself. Below, we compare our work to high-level com-
pilation, other veri�cation approaches, and extensible
compilers.

Higher-level compilation. Many projects have
hard-wired speci�c application-level information in com-
pilers. These projects include: the ERASER dynamic



Protocol Bu�er alloc Directory(*) Send-wait
False Pos Applied False Pos Applied False Pos Applied

bitvector 0 17 3 214 2 32
dyn ptr 2 19 13 382 2 38
sci 0 5 1 88 0 11
coma 0 32 5 659 0 7
rac 0 20 9 424 2 35
common code 0 4 0 1 2 2
total 2 97 31 1768 8 125

Table 6: Applicability of the three less e�ective checks: each column gives the number of false positives and the
approximate number of times the check was applied. The directory entry check found 1 bug in bitvector.

race detection checker [26]; compiler-directed prefetch-
ing and management of I/O [23]; the use of static analy-
sis to check for security errors in privileged programs [1];
ParaSoft's Insure++ [19], which can check for Unix
system call errors; and the GNU compilers' -Wall op-
tion, which warns about dangerous functions and ques-
tionable programming practices Locally, this paper ad-
dresses a di�erent problem domain. More globally, these
past projects look at speci�c problems that compilation
can help, whereas MC provides a framework for apply-
ing compilation to all aspects of programming. Its ex-
tensibility lets implementors check restrictions not pos-
sible with these other approaches. The success of this
prior work can be viewed as giving credence to their
generalization in MC.

Systems for �nding software errors. The prob-
lem of �nding software errors is an old one. Most ap-
proaches center around either formal veri�cation or type
checking. We discuss each below.

Formal veri�cation uses theorem provers/checkers [2,
12, 24] or model checkers [22, 29] to check that a speci�-
cation is internally consistent. When applicable, it �nds
errors diÆcult to reach by other means. However, spec-
i�cations are diÆcult and costly to construct. While re-
cent work has begun attacking these problems [6, 17], it
is extremely rare for software to be veri�ed. In contrast,
while our checkers use weaker analysis, they are dramat-
ically easier to build and use. Further, they appear more
e�ective: most veri�cation papers �nd a small number
of errors (0-2) whereas we found 34. Finally, speci�ca-
tions do not necessarily mirror the code they construct
and, in reality, su�er from over-simpli�cations and miss-
ing features. Because MC extensions work directly with
program source rather than an abstraction of it, they
largely avoid such mapping problems.

Two recent strong-typing systems are the extended
static type checking (ESC) project [8] and Intrinsa's
PRE�x [18]. While both of these systems use stronger
analysis than our approach, they are limited to checking
much lower-level errors: bu�er overrun errors, NULL
pointer dereferences, and (for ESC with special support)
race conditions. Further, they are not extensible, and
so cannot be tailored to system-speci�c restrictions.

Extensible compilation. Macro systems are the
most venerable user-level code transformers. An advan-
tage of such systems (e.g., Lisp) is their tight integra-
tion with the source language. However, macro systems
are restricted to fairly localized code transformations,

Checker LOC Err False Pos

Bu�er management 94 9 25
Message length 29 18 2
Lanes 220 2 0
Bu�er race 12 4 1
Bu�er allocation 16 0 2
Directory management 51 1 31
Send-wait 40 0 8
Execution-restriction 84 0 0
No-oat 7 0 0
Total 553 34 69

Table 7: The results of the SM-based FLASH check-
ers summarized over all �ve protocols and the common
code. LOC is the number of lines of metal code for the
extension, Err is the number of errors found, and False
Pos is the number of false positives.

whereas metal extensions can do more powerful global
analysis and transformations.

There have been a number of \open compiler" sys-
tems that allow programmers to add analysis routines,
usually modeled as extensions that traverse abstract
syntax trees. These include Chiba's Open C++ [4]; Crew's
Prolog-based ASTLOG [7] for walking over C abstract
syntax trees; and Lord's scheme-based ctool [21] also
used for traversing C. These extensions are limited to
tree walking and do not have data ow information. As
a result, they seem both less powerful than metal exten-
sions and more diÆcult to use. Our current language-
based approach is a dramatic improvement over our
previous tree-based systems: extensions are 2-4 times
smaller, have less bugs, and handle more cases. To the
best of our knowledge, these systems provide no exper-
imental results, making it diÆcult to evaluate their ef-
fectiveness.

At a lower-level, the ATOM object code modi�cation
system [28] gives users the ability to modify object code
in a clean, simple manner. By focusing on machine
code, ATOM can be used in situations xg++ cannot
be, since we require source. However, it appears that
xg++'s framework makes static analysis of systems rules
signi�cantly easier than they would be in ATOM.



11 Experience

The good: As Table 7 suggests, the checkers described
in this paper are short and relatively easy to build,
yet they catch errors in code that has been thoroughly
tested over a period of years. Typically it takes longer
to examine the output and determine the cause of bugs
than it does to write the check. In addition, the FLASH
protocol handlers were not written with this kind of ver-
i�cation in mind, but the technique still applies well.

A subtle robustness of this technique is that these
checkers were built by implementors largely ignorant of
how FLASH works. This was possible because each in-
variant could be described in a few sentences and, given
our framework, the implementation of these sentences
was usually not diÆcult. In a sense, it is not surpris-
ing that writing the code to check FLASH invariants
is much simpler than constructing FLASH code. It is
the same di�erence that makes proof checkers easier to
construct than theorem provers.

We initially used a technique based on searching the
ow graph generated by xg++ for our checks. A com-
mon situation was ensuring that a condition held along
all paths, such as checking that bu�ers were deallocated
on all paths. After building several checks this way
we realized that many were describable as simple �nite
state machines. When we converted the checks to SMs,
the code became easier to understand and, in several
cases, shrank by a factor of two.

The subsequent development of metal further sim-
pli�ed code and typically shrank it by another factor of
two (or more). Metal's main contribution was allowing
us to express code events in terms of patterns, which
saved us most of the e�ort needed to manually write
routines to traverse abstract syntax trees. Patterns also
made it easy to recognize special cases, thereby taking
into account infrequent but valid constructs that would
otherwise turn into false positives.

The bad: While xg++ was good at �nding bugs in
FLASH, FLASH was also good at �nding bugs in xg++.
The size and complexity of the FLASH protocols found
bugs beyond the capabilities of our simple test cases.
Fortunately, after an initial urry of bug �xes, xg++
has been quite stable.

Some modi�cations to the FLASH code base were
necessary to check the protocol code. We changed some
FLASH macros that used inline assembly for the MIPS
architecture because xg++ is hosted on x86, and g++
has bugs associated with handling foreign assembly lan-
guage. Constant folding was another problem because
it made it diÆcult to detect uses of constants within
constant expressions; they are folded by g++ into a sin-
gle constant before xg++ has access to the AST. We
�nessed this issue by rede�ning the relevant macro con-
stants as variables. Virtually all of the modi�cations we
made were to macros in header �les, not the protocol
code proper.

As a third problem, bitter experience showed that a
tool that is almost always trustworthy can make its be-
trayal that much more dangerous. If your tool detects
a certain class of errors, you develop a certain class of
blindness. In our case, this happened when protocol

code appeared to be doing a double free of a bu�er. An
experienced implementor did the obvious �x of remov-
ing the deallocation but, after that, the machine would
not boot. After a day of investigation it turned out that
a few lines above the diagnosed error, the bu�er's refer-
ence count had been manually double-incremented (for
no apparent reason) using a function that was \never"
used. (This was the one call in all 80K lines of FLASH
protocol code.) Since our check never looked for such
calls, it was of course blind to their e�ects. By trusting
the tool, implementors became blind to them as well.
After this incident, we added a check in the extension
that aggressively objects to occurrences of this call.

12 Conclusion

This paper shows meta-level compilation can be an ef-
fective method for automatically �nding violations of
many \systems type" rules. Using simple checkers we
discovered 34 bugs in the FLASH protocol code; in some
cases this code had been tested for years. Furthermore,
the checkers presented in this paper were written by
non-FLASH developers who did not possess deep knowl-
edge of the system, yet they found subtle bugs that
were diÆcult for even experienced implementors to rea-
son about. The restrictions on FLASH protocol code
are typical of embedded systems and OS kernels. Our
initial experiences lead us to believe that MC can be
applied to this class of code and to software in general.
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