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ABSTRACT

Compiler-directed Computation Reuse (CCR) enhances pro-
gram execution speed and efficiency by eliminating dynamic
computation redundancy. In this approach, the compiler
designates large program regions for potential reuse. Dur-
ing run time, the execution results of these reusable regions
are recorded into hardware buffers for future reuse. Previous
work shows that CCR can result in significant performance
enhancements in general applications. A major limitation
of the work is that the compiler relies on value profiling
to identify reusable regions, making it difficult to deploy the
scheme in many software production environments. This pa-
per presents a new hardware model that alleviates the need
for value profiling at compile time. The compiler is allowed
to designate reusable regions that may prove to be inap-
propriate. The hardware mechanism monitors the dynamic
behavior of compiler-designated regions and selectively acti-
vates the profitable ones at run time. Experimental results
show that the proposed design makes more effective utiliza-
tion of hardware buffer resources, achieves rapid employ-
ment of computation regions, and improves reuse accuracy,
all of which promote more flexible compiler methods of iden-
tifying reusable computation regions.

1. INTRODUCTION

In the Compiler-directed Computation Reuse (CCR) ap-
proach [7], the compiler identifies code regions whose compu-
tation can be reused during execution to eliminate dynamic
redundancy [12, 15, 16]. The instruction set architecture
provides an interface for the compiler to communicate the
scope of each region to the hardware. During run time, the
microarchitecture of the approach records the execution re-
sults of the reuse regions. Results show that the approach
can eliminate a large number of dynamic instructions, re-
sulting in much higher execution speed and efficiency.
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The compiler-directed approach uses a hardware caching
structure called the Computation Reuse Buffer (CRB) that
interacts with CCR instruction extensions to achieve reuse
at run time. The CRB structure consists of computation en-
tries that support the reuse for a particular region by main-
taining an array of dynamic computation information for dif-
ferent execution instances of the region. Each computation
instance is defined as the set of input register operands and
their respective values, the set of output register operands
and their respective result values, and the validation of mem-
ory state used by the computation. A computation region
is reusable when a computation instance within the region’s
designated computation entry matches the input register
values with a previous recorded execution of the region and
the input memory state has not been invalidated.

In the base CCR approach, code segments called Reusable
Computation Regions (RCRs) are selected at compile time
using profile information that estimates the expected amount
of reuse that will occur during execution. Because the hard-
ware structure of the base CCR approach always attempts
to reuse previous computation results for all annotated re-
gions, the regions contend for the same computation reuse
resources regardless of each region’s importance to program
execution. Thus, the compiler must select only those regions
whose reuse at run time will result in the most benefit.

Figure 1 shows the performance achieved for a six-issue pro-
cessor using two CRB models. The first model is a 32-entry
CRB with 16 computation instances per entry, and the sec-
ond model is a CRB with infinite resources that maintains all
execution results for every region selected at compile time.
Since the infinitely resourced CRB does not have resource
contention, the compiler designates more computation re-
gions by lowering the reuse behavior requirements. The
performance results are relative to a base processor without
reuse support. On average, the 32-entry CRB design cap-
tures 40% of the potential speedup of the infinite CRB. The
performance difference occurs because the compiler faces
an undesirable tradeoff between missing reuse opportunities
and exhausting CRB resources. The potential performance
benefit achieved by eliminating resource contention provides
motivation to enhance the CCR approach to allow the com-
piler to perform more aggressive region identification and to
enable dynamic computation reuse activation.
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Figure 1: Performance for processor with base CRB
and a CRB with infinite capacity.

Although the base CCR approach can eliminate many signif-
icant instances of redundant execution, there are additional
opportunities that require run-time examination of region
behavior to completely eliminate dynamic computation re-
dundancy. For instance, virtually all programs go through
a series of execution stages characterized by changes in the
properties for code, the data, or both. Similarly, programs
such as compilers, interpreters, and graphics engines exhibit
phase behavior, having different modes of operation for dif-
ferent inputs [11]. In analyzing run-time computation reuse,
experimental observations indicate that reuse behavior often
occurs in distinct phases. The use of profile information by
compiler-directed mechanisms can hide reuse opportunities
because profile-guided decisions may not be representative
of all workloads. More importantly, the use of profile infor-
mation in many systems is not feasible due to constraints
in software development. For these reasons, it is imperative
that a system adapt to variations in program behavior.

Periods of region executions with successful reuse are called
reuse intervals. An enhanced dynamically-activated CCR
scheme can take advantage of reuse intervals by favoring
the utilization of the computation buffer resources for those
regions. Ideally, only computation regions demonstrating
reuse success would be deployed at run time. Reuse interval
behavior can be seen for 008.espresso running the bca train-
ing input from the SPEC92 benchmark suite. Figure 2 shows
the reuse execution for three computation regions collected
over two million executions. Each point indicates whether
the region had a computation miss (no cached computation
results), a computation hit (valid computation result from
a previous execution), or no attempt (the region was not
executed). All three regions have initial periods with large
numbers of reuse misses. During this time, computation
instances are being stored for future execution.

The behavior of the first region indicates two medium-sized
reuse hit intervals with intervening periods of reuse misses.
The second and third regions have longer reuse intervals,
which occur after the initial cold start period. However, the
third region experiences a long period of time without any
execution. The identification of reuse intervals can be made
over different lengths of program execution time. Hardware-

based activation techniques can most accurately detect and
deploy regions based on reuse intervals where the time steps
are measured in region executions rather than instruction
executions. The data in Figure 2 motivates dynamic man-
agement of computation reuse because they show that re-
gions execute with periods of reuse and multiple regions
compete for the same computation reuse resources.
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Figure 2: Computation region behavior for

008.espresso. Data points indicate either a compu-
tation reuse miss, reuse hit, or no attempt.

The third motivation for enhancing the CCR approach is
the general observation that the number of computation in-
stances that a region requires over an interval of execution
varies with the region type. Regions exhibiting regular vari-
ation typically require a constant number of computation
instances over the lifetime of the program. Such regions can
be assigned to computation entries with a specific computa-
tion capacity, thereby reducing the hardware costs of provid-
ing a large number of instances per CRB entry. Conversely,
experimental results indicate that 70% of regions have irreg-
ular variation behaviors that warrant different computation
instance capacities at different times. To effectively utilize
computation resources, the CRB needs to adapt the alloca-
tion of computation instances to run-time requirements.

The final motivation for CCR improvement is that the base
approach relies on profile-guided heuristics to identify re-
gions that are potentially reusable during the execution of
the program. Specifically, value profiling techniques [3] de-
termine the regions that instruct the hardware to effectively
reuse the computation defined within these regions. Since
the reliance on value profiling can hamper the use of the
CCR approach in software production environments, it is
desirable to eliminate the need for profiling at compile time.

1.1 Overview

Several proposed architecture techniques can realize signif-
icant performance benefits by adapting to run-time behav-
ior. Branch prediction and cache management have been
the primary areas where run-time information has been ap-
plied. However, trends in dynamic optimization [1] and run-
time hotspot detection [13] indicate other exciting avenues
to exploit run-time behavior. In these cases, run-time in-
formation allows for a more effective use of processor re-



sources. Likewise, giving the compiler-directed computation
reuse approach access to run-time information would allow
it to adapt to program trends. First, the reuse of a com-
putation region can be activated at run time rather than
at compile time. Second, the run-time information can be
consulted to effectively assign resources to those regions gen-
erating substantial performance improvements. Third, the
run-time variation statistics would allow effective allocation
of reuse buffer resources in the presence of hardware with
varying recording capacities. Finally, dynamic management
techniques allow the compiler to introduce computation re-
gions that are not guided by profile information.

The limitations of the original CCR approach are addressed
by a new hardware-based system that activates reusable
computations within program execution at run time. The
system uses three integrated structures. The first hardware
structure, the Reuse Sentry, detects regions with significant
execution frequency and controls the deployment of active
computation regions. The Ewvaluation Buffer evaluates can-
didate computation regions for potential reuse. This struc-
ture monitors selected regions to determine if the regions
should be placed in the reuse buffer. Finally, the third
component, the Reuse Monitoring System, examines the be-
havior of computation regions assigned to the computation
buffer and makes adjustments to its allocation. The system
introduces architectural support for eliminating the inherent
dynamic redundancy occurring in programs due to aspects
of programming languages and application workloads.

2. DYNAMIC MANAGEMENT SYSTEM

The proposed hardware support for dynamic computation
reuse management uses three stages to activate a computa-
tion region. The stages perform detection, evaluation, and
examination of beneficial computation reuse. First, the re-
gion must meet a minimal execution requirement to warrant
consideration for CRB resources. Second, the region must be
evaluated to determine the likely benefit of the reuse mech-
anism. Finally, the variation of the computation region is
examined to determine the most effective way to allocate the
CRB resources. These stages act as a run-time confidence
mechanism to accurately select regions for the computation
buffer resources, and result in improved CRB utilization and
reuse accuracy. The stages are collectively constructed in
the Dynamic Computation Management System (DCMS)
which consists of three hardware components:

Reuse Sentry (RS) collects execution counts for compu-
tation regions and identifies candidate regions. The
sentry uses a Candidate Execution Counter to deter-
mine the activity of observed regions and a Reuse De-
ployment Buffer to deploy region execution.

Evaluation Buffer (EB) evaluates candidate computation
regions for potential reuse. The structure monitors
candidate regions by recording execution behavior in
specialized hardware buffers.

Reuse Monitoring System (RMS) examines the behav-
ior of regions in the computation buffer and assesses
allocation of CRB resources. The system removes com-
putation regions from the CRB and directs alternate
computation regions to utilize the CRB resources.

Figure 3(a) shows the base CRB model and Figure 3(b)
illustrates the proposed dynamic computation management
system. In Figure 3(a), computation regions always attempt
reuse and subsequently contend for entries in the CRB. In
the enhanced design of Figure 3(b), the CRB resources are
selectively assigned to regions with persistent reuse.
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Figure 3: The Computation Reuse Buffer (a) and
the Dynamic Management System (b).

The Reuse Sentry and Evaluation Buffer can be located off
the critical path of the processor pipeline because their re-
sources do not directly affect the use of previously cached
results. However, the Reuse Monitoring System and the op-
eration of the CRB require close interaction with the proces-
sor datapath. These systems cannot tolerate a large access
or update latency because the access latency of the com-
putation entries and their respective computation instances
is inversely proportional to the performance benefit of the
CCR approach [7]. The following sections describe the com-
ponents of the dynamic management system.

2.1 ReuseSentry

The first step in effective management of the computation
reuse resources is detection of frequently executed computa-
tion regions. Such regions can be easily identified in hard-
ware by detecting a high execution frequency over a partic-
ular time interval. By examining all region executions over
the same interval, computation resources can be accurately
allocated to regions with different requirements.

The Reuse Sentry (RS) structure collects the execution his-
tory and efficiently deploys reuse. This hardware is named
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Figure 4: Reuse Sentry hardware.
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for its function as a sentry, or guard, that prevents the pas-
sage of unauthorized regions. As depicted in Figure 4, the
RS structure is indexed by the reuse instruction address and
contains several fields: address tag, execution count, state
information, predicted address, and computation entry in-
dex. The RS structure also includes a global Observation
Reset Counter used to evaluate all region executions. The
activities of the RS structure are divided between the Candi-
date Execution Counter and the Reuse Deployment Buffer.

2.1.1 CandidateExecutionCounter

The Candidate Execution Counter (CEC) primarily detects
regions with frequent execution. Regions that execute often
are given higher priority for resources than regions with low
frequencies. A secondary function of the CEC is to record
the position of each region in the DCMS. The position fol-
lows the transitions of Figure 5, which shows four states:
observed, candidate, active, and inactive.
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Figure 5: Region states and transitions.

When the processor executes a reuse instruction, an entry is
created in the RS, and the instruction address is designated
as the index. The initial creation of an entry classifies the
region as an observed region. In this state, the region is mon-
itored to determine if it frequently executes. Regions that
execute frequently over a short time interval are excellent

candidates for reuse resources. If executed frequently during
the observation state, a region may be passed to the Eval-
uation Buffer, and is then referred to as a candidate region.
In order to detect candidate regions, the execution counter
of a region’s RS entry is incremented on each execution of
the region. The execution counter can exceed two prede-
fined levels, the major and minor candidate thresholds, each
of which is associated with a bit in the execution counter.
When the counter bit corresponding to a threshold is set for
the first time, a candidate flag is set in the state field for the
duration of the observation time. The major threshold indi-
cates regions with a dominant number of executions, while
the minor threshold indicates a lower execution frequency.
The distinction between major and minor thresholds aids
determination of the best candidate regions observed in a
particular interval.

To ensure that only frequently executing regions are marked
as candidates, the RS is periodically flushed. The Obser-
vation Reset Counter is used to establish a time interval,
called the observation interval, for periodically refreshing
the entries of the RS that have not surpassed any candidate
threshold or been classified as inactive. The Observation Re-
set Counter is incremented each time an inactive or observed
region is executed. The inactive classification is assigned by
the evaluation and examination stages of the DCMS, and is
used to designate regions that previously occupied the CRB,
but had poor reuse behavior.

When the major candidate threshold is surpassed, hardware
logic attempts to create a region entry in the Evaluation
Buffer (EB) and change the region state from observed to
candidate. If the EB does not have sufficient entries to han-
dle the request, another attempt is made at the end of the
observation interval. In this case, the RS is scanned for
all entries meeting the major candidate threshold. This
means that relative to the observation interval, entries in
the evaluation buffer are made both asynchronously and syn-
chronously. If the EB has capacity remaining after obtaining
major candidate regions at the end of the interval, then the
RS is searched for entries meeting the minor threshold.

2.1.2 ReuséeploymenBufer

The second function of the Reuse Sentry is to provide ef-
ficient deployment of compiler-directed computation reuse.
The basis of the CCR approach is placement of a reuse in-
struction at the entrance to a large region of code that ex-
hibits computation redundancy. The reuse instruction is
formulated as a branch instruction with two potential loca-
tions for the next instruction to be executed: the fall thru
or the taken location. The control resolution is based on
whether valid computation results are stored for the region.

In the dynamically-managed approach, regions classified as
inactive, observed, or candidate, have not been assigned com-
putation reuse resources and execute using processor re-
sources. Otherwise, a region is active with CRB resources
assigned to it and there is a good chance that region ex-
ecution can be bypassed by reusing previous computation
results. In order to improve deployment of computation
reuse, the Reuse Deployment Buffer (RDB) is constructed
similar to a Branch Target Buffer (BTB) and predicts reuse
outcome. For active regions, the target address field in the
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Figure 6: Evaluation Buffer hardware.

RS entry of a region is used to predict the target of the reuse
instruction as the next instruction following the entire com-
putation region. Otherwise, the RS predicts not-taken, and
the execution continues with the next sequential instruction.
The RS prediction reduces the delay in determining whether
the computation region has been assigned resources.

2.2 Evaluation Buffer

After the Reuse Sentry identifies candidate regions, the re-
gions are evaluated to determine their reuse behavior and
whether they warrant computation reuse resources. A candi-
date region must satisfy two criteria to be transitioned from
the EB (candidate state) into the CRB (active state). First,
the candidate must exhibit a high percentage of reuses, called
an active reuse interval, occurring over a minimum execution
time, called the active evaluation interval. The minimum
percentage of successful reuse over the time interval is called
the active reuse threshold, while the actual reuse percentage
over the interval is the active reuse percentage. The num-
ber of failed reuse attempts is tracked to determine whether
an active interval exists. Second, the candidate region must
have a minimum number of active intervals during the eval-
uation interval, a number of all candidate region executions
tracked by incrementing the Evaluation Reset Counter for
each candidate execution. The evaluation interval resets the
buffer entries, allowing new regions to be evaluated. The
number of active intervals exhibited by a region during the
evaluation interval is called its active interval count.

The Evaluation Buffer structure is shown in Figure 6 with
entries that contain the following fields: active interval count,
execution count, miss count, activity vector, and a computa-
tion instance array. The active interval count maintains the
number of active intervals experienced during the evaluation
interval and is used in assigning activation priority. The ex-
ecution counter tracks the number of executions in the cur-
rently evaluated active reuse interval. Miss count represents
the number of reuse misses for the current active interval.
The execution counter is implemented as a roll-over counter
that is initialized to the minimum value. The counter in-
crements for each execution candidate region execution and
an active interval is counted if the number of failed oppor-

tunities for reuse does not exceed the failed threshold. The
result of evaluating an active interval (active/failed) during
every active evaluation interval is used to maintain an active
difference in a special shift register called the activity vector,
shown in Figure 7. This register is shifted in the active di-
rection for every active interval achieved and shifted in the
opposite direction for failed intervals. The vector maintains
the difference in the number of active and failed intervals
and supports the evaluation of EB entries.
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Figure 7: Activity vector.

At the end of the evaluation interval, EB entries are removed
under two conditions. First, the entry is removed if there
is not an active interval count and a positive active differ-
ence in the activity vector. This allows regions with only
marginally reuse to removed. Upon reaching the mazimum
activation threshold, attempts are made by the EB system
to place the respective regions in the CRB. Similarly, at the
end of the evaluation interval, region entries meeting a min-
imum activation threshold are compared with entries in the
CRB for opportunities to revise CRB resource allocation. If
no favorable opportunities exist, the EB entry is reset, but
the region remains under evaluation (continuation). Sec-
ond, the entry is immediately removed if the activity vector
reaches the mazimum failed threshold. Entries with an activ-
ity vector indicating a minimum failed threshold are possibly
replaced depending on the requests of the RS. At the end of
the evaluation interval, entries with activity vectors indicat-
ing activity below the minimum active and minimum failed
thresholds are also removed. Any of the above entry failures
results in the region state being changed to inactive, while
admittance to the CRB results in active state assignment.
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The computation instance array of the EB entry differs in
two ways from the traditional computation instance array.
First, the input set only consists of input register operands
and their respective values, and the validation of memory
state used by the computation. In order to minimize the
dynamic management support hardware, the set of output
register operands and their respective result values are not
stored. Second, the array contains a single bit, called an
instance indicator, for each computation instance activated
during the evaluation process. The instance indicators serve
to make an assessment of the number of computation in-
stances necessary for the region. The EB migrates compu-
tation regions from the candidate to active state based upon
availability of computation reuse buffer resources. The best
candidate region entry is the one with the largest differ-
ence between its number of active and failed intervals. The
number of set instance indicators is used to make the initial
assignment to computation reuse entries. The computation
reuse resources have a variable number of computation in-
stances per computation entry, and the RMS informs the
EB of available entries with their respective capacities. The
EB decision is based first on matching the available capacity
with the potential required capacity of entries and then on
reuse evaluation which is decided by activation difference).

2.3 ReuseMonitoring System

The Reuse Monitoring System (RMS) determines if the com-
putation resources designated for each active region are ap-
propriate and revises the assignment of resources based on
the observed run-time requirements. The computation reuse
entries are divided into segments, each containing a differ-
ent computation instance array capacity. Generally, the seg-
mentation includes entries with differing numbers of compu-
tation instances per computation entry and allows the RMS
to match the hardware capacity with a region’s requirements
(adapting to irregular variation). The RMS performs four
entry revisions: demotion, promotion, eviction, and admit-
tance. The process of demotion transplants a region to an
entry with lower computation instance capacity, while pro-
motion gives a region higher computation instance capacity.
The RMS is responsible for evicting regions from the compu-
tation reuse buffer if they do not result in successful reuse.
Finally, a region be admitted from the EB if its reuse behav-
ior is more favorable than existing CRB entries.

Figure 8 illustrates the proposed Reuse Monitoring System.
Each computation entry in the CRB has a respective en-
try in the RMS governs the replacement policy of the entry

and the replacement policy of the computation instances.
The policies are able to share the same hardware compo-
nents within the entries since both operations are related
to the run-time utilization and accuracy of the computation
instances. To support appropriate revisions, reuse behavior
information is collected in the same manner as the EB en-
tries. Figure 8 illustrates the additional fields for collecting
activity information: activity history and computation in-
stance activity. A monitoring interval is computed using the
RMS Counter, which is incremented for every active region
execution. The monitoring interval periodically revises the
CRB entries and imports new region entries from the EB.

Computation Entry Revision. For the RMS to deter-
mine region requirements, the hardware must be aware of
the reuse accuracy of the computation placed in each com-
putation entry. In addition, each entry maintains an activity
history field that contains an b-bit shift register for recording
the history of achieving the minimum activation percentage
during each of the last b monitoring intervals. Bit posi-
tion historyo represents the current monitoring interval and
position history,_1 represents the activity level from b — 1
monitoring intervals ago. In addition, the CIA counter in-
formation is used to estimate the needs of the computation
region during revision of resource assignment.

Computation Instance Replacement. The RMS hard-
ware provides reuse accuracy by tracking the activity of the
computation instances within each computation entry. A
traditional replacement policy for the instances is least re-
cently used (LRU), however, some instances, called Dom-
inant Instances, of computation occur frequently over the
lifetime of a region. The accuracy of region reuse can be
greatly enhanced by allowing the dominant instances to re-
main in the CRB. To do this, Computation Instance Activity
(CIA) saturating counters are incremented for each success-
ful reuse of an instance. When the counter saturates, the
Dominant field is set and remains set for the entire monitor-
ing interval. On a computation instance miss, non-dominant
regions are selected using a LRU policy.

Revisions are performed at the end of the monitoring inter-
val and upon detection of an activity vector with excessive
failures. The proposed implementation steps (followed in or-
der of appearance) are summarized in Table 1. The timing
column refers to revisions taking place on the reset of either
the evaluation or monitoring intervals. The segment_level
(SL) refers to the partitioned segment of the CRB, a higher



Revision Timing Condition

Eviction Asynchronous MaxFailure Vector && !Segment_Entry_Available[SL+1—MAX]
Synchronous MinFailure Vector && DC && DC Vector > RMS Vector

Demotion Synchronous MinActive Vector && Dominant Instances < NumlInstances[SL]/2

Promotion Asynchronous MaxFailure Vector && Segment_Entry_Available[SL+1—MAX]
Synchronous MinFailure Vector && Segment_Entry_Available[SL+1—MAX]

Admittance | Synchronous DC MaxActive Vector && Segment _Entry_Available[Dominate Instance Level = MAX]
Asynchronous DC MinActive Vector && Segment _Entry_Available[Dominate Instance Level - MAX]
Synchronous | DC MaxActive Vector && DC Vector > RMS Vector && Population(RMS History) < 1/2 History Size

&& Population (recent RMS History) < 1/2 Population (RMS History)

Table 1: RMS region revision conditions.

segment level indicate segments with greater computation
instances capacity. A Desirable Candidate (DC) refers to a
region in the EB with a promising activation vector. When
admitting regions from the evaluation buffer, the instance
indicators are used to determine the base segment of the
CRB to detect RMS entries. Admittance of a candidate
region may preempt a region with a poor activity history.

3. COMPILER SUPPORT

To take full advantage of the dynamically-managed CRB
hardware, a compiler should select all computation regions
that could compute recurrent values during execution. This
requires the identification of the different reuse behaviors
that can occur for different input sets and modes of op-
eration. In this section, profile-guided and static compiler
algorithms that facilitate traditional software development
and the CCR dynamic management system are presented.

3.1 Profile-guidedRegionFormation

By profiling an application on a set of sample inputs, repre-
sentative run-time information can be conveyed to the com-
piler. This enables an optimizing compiler to increase ap-
plication performance by transforming its code to achieve
better execution efficiency for those sections of the program
with the highest execution frequency. Optimization of appli-
cations based on run-time value invariance [1, 3] offer great
potential in exploiting run-time behavior. Other dynamic
techniques have focused on discovering invariant relation-
ships between variables from execution traces [8]. Invari-
ant value profiling was also used to prove the effectiveness
of compiler-directed computation reuse [7]. In the original
computation reuse approach, it was important to select only
statistically beneficial regions because the reuse mechanism
could not be selectively used at run time. However, when
using the DCMS which can selectively enable computation
regions, it is imperative that all regions with potential reuse
behavior be annotated. Since many programs have different
modes of operation for different inputs, collecting profiling
information on a wide variety of inputs is an essential part
of evaluating the effectiveness of the DCMS design.

To establish the effectiveness of the proposed DCMS scheme,
value-invariance profiles were collected for benchmarks from
SPECINT92, SPECINT95, UNIX utilities, and media ap-
plications [10] using a training input and a reference input.
Region formation steps were applied to programs annotated
with value-invariance information from the separate inputs.
Table 2 shows the resulting region statistics. Columns 2 and
3 indicate the number of regions formed based on the train-
ing and reference inputs respectively. Using the number of
regions formed based solely upon the training input set as

a base, three fractions are calculated. The first fraction,
overlap, indicates the regions identified using both selection
methods. The average overlap percentage indicates that up-
wards of 92% of regions have invariant value behavior de-
tected when region formation is guided by either input set.
The second fraction, unique, designates the regions found
only with the second input set. The final fraction, maz, de-
scribes the maximum number of regions found when using
both input sets. The average max result indicates that 12%
of regions could be lost if only a single input input is used
to identify computation regions.

Regions | Regions
Benchmark (Train) (Ref.) Overlap | Unique | Max
008.espresso 148 155 0.85 0.20 1.20
072.sc 70 71 0.95 0.06 1.07
099.go 440 484 0.80 0.30 1.30
124.m88ksim 128 128 0.99 0.01 1.01
129.compress 36 36 0.98 0.02 1.04
130.1i 57 60 0.95 0.10 1.12
132.ijpeg 60 58 0.92 0.05 1.05
147.vortex 192 199 0.97 0.07 1.07
126.gcc 1764 1905 0.86 0.22 1.22
lex 51 53 0.99 0.05 1.06
yacc 69 73 0.96 0.10 1.10
mpeg?2 83 80 0.95 0.01 1.02
PgP 51 54 0.82 0.24 1.24
average - - 0.922 0.11 1.12

Table 2: Profile-guided region formation statistics.

An important aspect of utilizing run-time value invariance
within the region identification process is the assignment of
compile-time thresholds. Instruction-level profiling informa-
tion is used to find individual repeating instructions and to
construct large regions of potential reuse in a bottom-up
fashion. An instruction is reusable if a percentage of execu-
tion is dominated by recurring source operands or access to
infrequently changed memory locations, respectively called
the instruction reuse (R;) and memory reuse (Rm) thresh-
olds. These thresholds indicate the general repetition of in-
structions using a 16-element history to record the most re-
cent unique computations. Empirical evaluation found that
setting R; and R,, to .65 produces good instances of reusable
computation for the base CCR approach.

Code regions may have execution periods in which reuse
dominates execution but does not largely account the over-
all region behavior. Since the DCMS can selectively acti-
vate regions to extract performance from such regions by
monitoring run-time behavior, the setting of the favorable
thresholds changes. Region layering is used to grow regions
by incrementally lowering the reuse threshold. First, regions
with a higher threshold are exposed and then the formation



process gathers more regions by steadily relaxing the in-
struction inclusion threshold. Figure 9 shows the variation
in percentage of total dynamic program execution captured
in regions by layering with four reuse thresholds: 65%, 60%,
55%, and 50%. Layering establishes regions having good
reuse potential (high thresholds) and regions more likely to
have periods of reuse (lower thresholds) rather than sus-
tained reuse. The results of indicate that 15% more program
execution can identified by lowering the reuse threshold.
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Figure 9: Reuse potential based on region layering.

3.2 Static Computation RegionFormation
Although the benefits of profile-directed optimization have
been widely accepted, there are several fundamental draw-
backs to profiling. First, profiling can be time consuming.
Second, profiling may not be feasible in some environments,
such as real-time or embedded applications. Third, profiling
assumes that program behavior remains relatively constant
for all possible inputs. If the program’s behavior varies, poor
performance after compilation may occur for some inputs.
Finally, it is generally infeasible to generate all of the inputs
to accurately model all program behavior.

An alternative to using value-invariant profile information
is to use static program analysis to find traces of code with
invariant behavior. Two methods, inferred and structured
computation region identification are proposed. Both tech-
niques are based on branch execution profiling, a gener-
ally accepted technique used in most modern optimizing
compilers. Traditionally, to expose sufficient instruction-
level parallelism (ILP), basic blocks are coalesced to form
superblocks [9], which reflect the most frequently executed
paths through the code. Superblocks have a single entrance
and represent paths with high potential of reuse behavior.
Since branches are controlled by program data, the nature
of the flow of control through a frequently executed path
directly relates to the value locality being exercised by the
code’s decision components. Hardware concepts proposed
to reorder code blocks and store them into a special cache
called the trace cache [14] are possibly identifying value-
invariant behavior manifesting as frequently executed paths.
Such paths, found statically or dynamically, also represent
fundamental opportunities for reuse since the each path is
generally a long sequence of instructions.

The static region techniques assign superblocks as computa-
tion regions for the CCR approach. Candidate superblocks
are determined by examining two features: instruction char-
acteristics and region input/output requirements. First, su-
perblocks are selected and partitioned based on the instruc-
tion characteristics in the main path of basic blocks. Basic
blocks with procedure calls and un-resolvable memory ac-
cesses are not included. Candidate regions only include load
instructions which have been analyzed as determinable, in-
dicating that all potential store instructions to a load can
be determined at compile time. The second requirement of
candidate superblocks relates to the design of CRB entries.
The base model of the CRB supports region entries with an
input and output eight-entry register array, storing a com-
putation with mapping between eight input registers and
eight output registers. Experiments revealed that 90% of su-
perblocks matched these requirements. Figure 10 illustrates
the percentage of program execution for the training input
attributed to superblock and candidate superblock traces.
These results indicate that a significant percentage of pro-
gram execution is attributed to candidate regions and can
be exposed without value profile information.
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Figure 10: Distribution of dynamic execution in can-
didate superblocks and all superblocks.

3.2.1 InferredComputatiorRegions

The inferred region identification technique uses interpro-
cedural propagation of information to identify regions that
possess some invariant behavior. The technique uses a coarse-
grain dataflow analysis technique to infer value invariance
for candidate regions. Inferring invariance in candidate su-
perblocks is based on detecting constructive and destructive
inferring instructions. Constructive inference indicates that
a confined set or range of values may occur for an instruction
or an instruction operand during some mode of execution of
a program. Essentially the technique attempts to locate any
value information that may occur at run-time execution. By
detecting a set of values or an invariant behavior for a par-
ticular variable, the technique can discover a potential re-
gion that may have reuse behavior during some input set or
program mode. The DCMS enables the activation of such
regions when reuse behavior occurs and otherwise prevents
the region from attempting reuse.

Memory inferences are made with the support of context-
sensitive, flow-insensitive interprocedural alias analysis [6].



Read-only load instructions are candidates for computation
reuse since the accessed data is guaranteed to be identical to
that of previous references. In addition, write-once data is
a common inference related to run-time invariant variables
and can be determined by analyzing the callgraph of pro-
cedures. To identify write-infrequent inferences of program
phases, a related technique for automatically identifying in-
variant variables, Glacial Variable Analysis (GVA) [2], is ex-
tended to conservatively analyze recursive programs. Write-
infrequent data is detected when a load is defined at a sig-
nificantly higher stage (level) in the program’s loop-nested
annotated callgraph than the respective referencing store in-
structions. Inference of register operands is based upon in-
terprocedural propagation of value relations throughout the
program. The value relation information of expressions is
propagated in forward dataflow manner, interprocedurally
on the program callgraph and intraprocedurally on each
program function. Conversely, the inference system only
attempts to determine which value relations are available
to an instruction operand during execution. To do this,
the inference system modifies existing techniques [4, 17] to
propagate value relations until a fixed point is reached.

Destructive program inferences reduce the probability of ob-
serving a frequent, but small, number of input varieties.
The primary source of destructive inference are sequenced
operands, such as loop increment variables. Increment vari-
ables used at a nesting level deeper than their definition are
constructive inference since their invariance is based on the
iteration space of the inner loops. Table 3 illustrates the
result of inference analysis on candidate superblocks. The
inferred percentage is the percentage of instructions with
constructive inferences relative to the total number of in-
structions in the superblock. The data indicates the amount
of program execution in superblock regions with the respec-
tive inferred percentage. Selection of candidate superblocks
is generally best when a high percentage of constructively
inferred instructions are located in regions. The results of
Table 3 indicate that the inferred percentage of 40-60% en-
ables the majority of candidate superblock execution.

Inferred Percentage
Benchmark 0% 20% 40% 60% 30% 100%
008.espresso 42 4 7 25 11 11
072.sc 40 9 9 21 10 10
099.go 20 36 12 19 7 5
124.m88ksim 13 17 4 50 5 11
126.gcc 21 17 21 20 9 10
129.compress 32 18 18 16 8 8
130.1i 30 14 12 19 10 16
132.ijpeg 33 26 4 20 8 8
147.vortex 35 6 14 19 13 13
lex 48 3 0 24 12 12
yacc 48 3 1 24 12 12
mpeg2 37 2 24 18 9 9
Pgp 35 13 14 20 9 9
average 33.4% | 12.9% | 10.8% | 22.7% | 9.5% | 10.3%

Table 3: Inferred reuse in superblock execution.

3.2.2 StructuedComputatiorRegions

Some code regions represent fundamental algorithmic com-
putation in which data is manipulated from input sources
without any inferred relations. To form regions structurally,
two features of each superblock are examined: size and de-
pendence height. Large size is the primary superblock selec-
tion constraint, since reusing the results of large superblocks

could provide significant performance improvement. Like-
wise, a large reduction in latency may be achieved if su-
perblocks with a considerable dependence height are reused.
In selecting superblocks, these features are referred to as
the structure size and structure height parameters. In ad-
dition to superblocks, the structured technique also selects
inner loops as candidate regions. Such loops often represent
linked-list traversals and array scans that result in signifi-
cant amounts of redundant execution.
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Figure 11: Structured region identification, MPEG2
IDCT dependence graph (a) and computation (b).

Figure 11 illustrates a structured region formed from the row
transform of an MPEG?2 Inverse Discrete Cosine Transform
(IDCT). Figure 11(a) depicts the dependence graph from the
Chen IDCT algorithm [5], which requires 36 multiplications
and 26 additions and has a dependence height of seven. Fig-
ure 11(b) shows the instructions of the dependence graph.
These instructions constitute a significant opportunity to
eliminate redundant execution due to the inherent nature of
the program. Typically, DCT blocks of MPEG-compressed
video sequences have only five to six nonzero coefficients,
mainly located in the low spatial frequency positions [18].
This property has been used to streamline the design of
custom low-power IDCT systems which indicates that the
locality is quite persistent. In fact, significant reuse locality
(80%) occurs with 16 computation instances.

3.3 Computation RegionSummary

Table 4 presents the region count numbers comparing the
characteristics of inferred regions and structured regions to
profile-guided regions (using a 65% reuse threshold). Over-
lap occurs when greater than 90% of the instructions of the
static regions are found within a profile-guided region. The
results of Table 4 show that while the inferred method (us-
ing an inferred threshold of 256%) identifies only 49% of the
profile-guided regions, using a region height of four and re-
gion count of six identifies 68% in the structured approach.
Other experiments indicate that together, both static ap-
proaches can identify an average of 50% more execution time
in regions compared to profile-guided regions.

4. EXPERIMENTAL EVALUATION

The IMPACT compiler and simulator were enhanced to sup-
port the proposed architecture framework and the region



Region Count System Component Setting
Inferred Structured Reuse Number entries 256
Benchmark Over. | Unique | Max | Over. | Unique | Max Sentry (RS) Associativity 2-way
008.espresso 0.70 0.99 1.99 0.72 1.46 2.46 Exec counter size 5 bits
072.sc 0.66 1.05 2.05 0.96 0.17 1.17 Minor Candidate threshold 16
099.go 0.53 2.92 3.92 0.88 0.78 1.78 Major Candidate threshold 32
124.m88ksim 0.79 0.35 1.35 0.86 0.26 1.26 Observation reset interval 512 executions
126.gcc 0.85 3.24 3.34 | 0.54 12.50 | 12.60 Evaluation Number entries 8
129.compress 0.21 0.37 1.37 0.71 0.16 1.16 Buffer (EB) Associativity Fully associative
130.11 0.32 2.04 3.04 0.42 2.33 3.33 Exe.c ar}d miss counter size 5 bits
132.0jpeg 037 | 068 | 168 | 046 | 074 | 1.74 Active interval counter 4 bits
T47 vortex 025 | 060 | 160 | 0.28 | 064 | 1.64 Activity vector size 15 bits
Tox 0.53 575 375 0.67 5.45 3.45 MmAct:_ve vector pos1.t1.0n 4th act}ve pos3t}0n
yace 0.48 5.03 3.03 0.52 594 394 M?‘xAc'tlve vector pOS%t%On 8th acvtlve pOS'lt}On
MinFailure vector position 4th failed position
mpeg?2 0.28 1.37 2.37 0.96 0.08 1.08 M . — - —
axFailure vector position 6th failed position
pgp 0.45 3.06 4.06 0.95 0.29 1.29 Evaluati Tint I 1024 o
valuation reset interva executions
average 0.49 1.65 2.58 0.68 1.85 2.78 Reuse Number entries Size of CRD
Monitoring Associativity Fully associative

Table 4: Static region identification summary.

formation techniques. The processor modeled can issue in-
order six operations up to the limit of the available func-
tional units: four integer ALUs, two memory ports, two
floating point ALUs, and one branch unit. The integer oper-
ations have 1-cycle latency, and load operations have 2-cycle
latency. The parameters for the processor include separate
32K direct-mapped instruction and data caches with 32-byte
cache lines, and a miss penalty of 12 cycles; 4K entry BTB
with two-level GAs prediction (12-bit history, 16 tables),
and a branch misprediction penalty of eight cycles.

The DCMS was configured to the hardware assignments and
parameters listed in Table 5. Because the design space is
complex, evaluating the individual effect of each hardware
parameter was infeasible. Initial parameters were selected
and optimal settings were selected based on hardware cost
and performance constraints. The RS structure is configured
to allow regions with an execution percentage ranging from
6% (32 executions/reset interval) to 3% (16 executions/512
branches) to become candidates. The EB hardware is con-
figured to activate regions with more than 66% (2:1) active
intervals and determine an active interval by reusing results
greater than half (active threshold percentage) the execu-
tions of an interval of its 32 region executions. The RMS
parameters are established identically to components in the
EB except given slightly more cautious failed activity vec-
tors to readily adapt to changes in reuse requirements. CRB
revisions required 12 cycles, representing the migration of a
large computation entry to a smaller entry.

Performance and Accuracy. The overall cycle-time
speedups for evaluating the reference input set in the CRB
and DCMS approaches are presented in Figure 12. The
training input set is used in guiding computation region for-
mation. The CRB design is evaluated with a direct-mapped
and 2-way set associative mappings. The DCMS models are
evaluated with a 32-entry CRB with four equal segments
of computation instances respectively holding 2, 4, 8, and
16 computations instances. The two DCMS models are ex-
ecuted with different profile-guided reuse thresholds: 65%
and 55%. Performance is reported as speedup relative to
the base architecture without CCR support.

Figure 12 is able to illustrate the value of the DCMS ap-
proach for two reasons. First, the DCMS approach achieves
higher performance due to better computation management

System (RMS)

Monitoring reset interval

2048 executions

Exec and miss counter size 5 bits
Active interval counter 4 bits
Activity vector size 13 bits

MinActive vector position

4th active position

MaxActive vector position

8th active position

MinFailure vector position

2th failed position

MaxFailure vector position

4th failed position

Active history 8 bits

Dominant Instance Counter 5 bits
Computation Number entries 32
Reuse Number segments 4

Buffer (CRB) Segment types 2,4,8,16 instances

Table 5: DCMS hardware configuration.
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Figure 12: Performance for CRB and DCMS.

properties than the set-associative CRB approach. Essen-
tially the components distributed in the RS, EB, and RMS
are collecting run-time information that can improve the
ability to manage the CRB better than simply providing
more available resources to the CRB. And second, on av-
erage, a processor implemented for CCR with DCMS has
enhanced speedups due to enabling the reuse in regions
not selected for the base CRB modes. The DCMS model
with the additional regions selected by lowering reuse iden-
tification to 55% is able to provide the DCMS with more
opportunities to exploit dynamic computation redundancy.
Other experimental results show that on average the per-
formance speedup degrades to 15% if the regions formed

average




with reuse threshold 55% are executed on the set-associative
CRB. Generally, the performance benefits of the DCMS ap-
proach are enabled by reducing the percentage of failed reuse
attempts and increasing the percentage of successful reuse
attempts. Figure 13 presents the distribution of reuse at-
tempts for the DCMS relative to the base CRB approach for
the lower reuse identification threshold. On average there is
both a reduction in reuse failures (22%) and an improve-
ment in successful reuse attempts (21%). The RS and EB
stages of the DCMS are working in a coordinated fashion to
make only confident reuse attempts.
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Figure 13: Comparison of failed and successful reuse

attempts for the CRB and DCMS models.

Region Formation Evaluation. Figure 14 illustrates
the performance speedup achieved using the inferred and

structured approaches relative to the profile-guided approach.

A third experimental method combines the maximum num-
ber of regions found using both static approaches. The re-
sults indicate promising potential in eliminating use of value-
invariant profile information in the DCMS. On average, the
individual static approaches are able to achieve around 40-
43% of the speedup of the profile-guided methods. The
structured approach has substantially better performance
for benchmarks 129.compress, mpeg2, and pgp. These pro-
grams exploit value-invariant behavior directly related to
data input and their computation regions were more readily
found using the structure technique. Conversely, the in-
ferred approach is able to better identify regions in bench-
marks 124.m88ksim and 126.gcc which have abundant in-
ference information. The combined approach significantly
improves the percentage of profile-guided speedup achieved
to nearly 55%, indicating that the best region identification
must coordinate multiple methods.

Another important aspect of the DCMS approach inves-
tigated was the evaluation of the region formation tech-
niques on an untrained input. Figure 15 illustrates three
methods of region identification: combined profile-guided of
the training and reference inputs, combined of the struc-
tured and inferred static approaches, and a combined of the
profile-guided and static approaches. All methods gener-
ate the maximum number of regions corresponding to the
multiple inputs or analysis techniques. The results indicate
the continued success of both the profile-guided and static
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Figure 14: Static region identification performance.

region identification approaches, each respectively averag-
ing 28% and almost 20%. The combined method that em-
ploys regions identified using both profile and static methods
achieves nearly 5-6% greater performance improvement than
the profile-guided method. This result concludes that the
profile-guided inputs are not indicating all of the potential
program reuse behavior. Thus, only by using static region
formation techniques and the DCMS, can the full potential
of the CCR approach be achieved.
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Figure 15: Performance for combining profile-
guided and static region identification methods.

Hardware Implementation Costs. Overall, the mod-
erate performance speedups reinforce the strategy of using
dynamic management support since the hardware require-
ments are significantly less than the costs of the base CRB
model. Most of reductions comes from having a smaller, but
more utilized, CRB. Table 6 represents a hardware cost esti-
mate of the CRB and DCMS models evaluated. This table
accounts for bytes of hardware memory, but does not in-
clude wiring or logic gate costs. Using this examination, the
DCMS requires nearly half the hardware of the base CRB,
yet provides improved region management functionality.



Scheme | Component | Cost Expression (in bytes) Cost
CRB - Num_Entries * (CI_entry_cost(Num_Instances)) 42624
DCMS CRB Num_Entries_Segment[0] * (CI_entry_cost(Num_Instances_Segment[0])) + ..... + 19980
Num_Entries_Segment[Segments — 1] * (CI_entry_cost(Num_Instances_Segment[Segments — 1]))
RS Num_Entries * (Tag + Execentr + State + Targety,qar + CRB_index) 2240
EB Num_Entries * (Intervalentr + Execentr + MisScntr
+Activityyector + Instance_Indicators(Num_Instances)) 5276
RMS Num_Entries * (Intervalentr + Execentr + MiSScntr + Activityvecton
+Activitynistory + Dominant_Instancecnir * Num_Instances_in_.CRB_entry) 316
(total) = 27812
Table 6: Hardware cost expressions and cost for models evaluated.
5. SUMMARY invariants to support program evolution. In

Innovations in high-performance system design and the avail-
ability of silicon resources have allowed modern processors
to analyze run-time program behavior to effectively man-
age resources. The DCMS enhances compiler-directed com-
putation reuse by examining reuse execution behavior and
dynamically allocate reuse buffer resources. The system se-
lectively deploys code regions for optimal elimination of dy-
namic computation redundancy. Results show that with
little additional hardware, the combination of new region
identification techniques and a dynamic management sys-
tem achieve performance improvement over the traditional
computation reuse framework. There is a significant amount
of future work to investigate. Further developments in sys-
tem design include exploring allocation concepts to achieve
the optimal tradeoff between power consumption and per-
formance for active computation regions.
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