
Architecture and Design of AlphaServer GS320

Kourosh Gharachorlooy, Madhu Sharma, Simon Steely, and Stephen Van Doren

High Performance Servers Division yWestern Research Laboratory
Compaq Computer Corporation Compaq Computer Corporation

Marlborough, Massachusetts 01752 Palo Alto, California 94301

Abstract

This paper describes the architecture and implementation of the Al-
phaServer GS320, a cache-coherent non-uniform memory access
multiprocessor developed at Compaq. The AlphaServer GS320 ar-
chitecture is specifically targeted at medium-scale multiprocessing
with 32 to 64 processors. Each node in the design consists of
four Alpha 21264 processors, up to 32GB of coherent memory,
and an aggressive IO subsystem. The current implementation sup-
ports up to 8 such nodes for a total of 32 processors. While
snoopy-based designs have been stretched to medium-scale multi-
processors by some vendors, providing sufficient snoop bandwidth
remains a major challenge especially in systems with aggressive
processors. At the same time, directory protocols targeted at larger
scale designs lead to a number of inherent inefficiencies relative to
snoopy designs. A key goal of the AlphaServer GS320 architecture
has been to achieve the best-of-both-worlds, partly by exploiting
the bounded scale of the target systems.

This paper focuses on the unique design features used in the
AlphaServer GS320 to efficiently implement coherence and con-
sistency. The guiding principle for our directory-based protocol is
to address correctness issues related to rare protocol races without
burdening the common transaction flows. Our protocol exhibits
lower occupancy and lower message counts compared to previous
designs, and provides more efficient handling of 3-hop transactions.
Furthermore, our design naturally lends itself to elegant solutions
for deadlock, livelock, starvation, and fairness. The AlphaServer
GS320 architecture also incorporates a couple of innovative tech-
niques that extend previous approaches for efficiently implement-
ing memory consistency models. These techniques allow us to gen-
erate commit events (which are used for ordering purposes) well in
advance of formulating the reply to a transaction. Furthermore, the
separation of the commit event allows time-critical replies to by-
pass inbound requests without violating ordering properties. Even
though our design specifically targets medium-scale servers, many
of the same techniques can be applied to larger-scale directory-
based and smaller-scale snoopy-based designs. Finally, we eval-
uate the performance impact of some of the above optimizations
and present a few competitive benchmark results.

1 Introduction

Shared-memory multiprocessors have been a major focus of study
and development by both academia and industry, leading to sig-
nificant design improvements during the past decade. Snoopy-
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based multiprocessors, which depend on broadcasting coherence
transactions to all processors and memory, have moved well bey-
ond the initial designs based on a single bus. The Sun Enterprise
10000 [10, 34], for example, extends this approach to up to 64 pro-
cessors by using four-way interleaved address buses and a 16x16
data crossbar. Nevertheless, snoop bandwidth limitations, and the
need to act upon all transactions at every processor, make snoopy
designs extremely challenging especially in light of aggressive pro-
cessors with multiple outstanding requests.

Directory-based multiprocessors [9, 28], which depend on
maintaining the identity of sharers (at the directory) to avoid the
need for broadcast, are much better suited for larger designs. A
state-of-the-art example is the SGI Origin 2000 [27] which can
scale to several hundred processors. Furthermore, the typical
NUMA (non-uniform memory access) nature of directory-based
designs, considered to be a liability by some, can in fact lead to
major performance benefits over snoopy designs by exploiting the
lower latency and higher bandwidth local memory and alleviating
the need for more global bandwidth. Simple techniques, such as
replication of application and operating system code, can provide
major gains in commercial workloads with large instruction foot-
prints [4]. More sophisticated software techniques that transpar-
ently migrate and replicate pages have also been shown to be quite
effective [38]. Nevertheless, existing directory protocols exhibit
several inefficiencies relative to snoopy protocols, partly due to
their steadfast focus on large-scale systems. For example, the use of
various acknowledgement messages and multiple protocol invoca-
tions at the home node (e.g., for 3-hop transactions), which help
deal with races that arise due to the distributed nature of the proto-
cols and the underlying scalable networks, can lead to undesirably
high protocol resource occupancies.

Meanwhile, small and medium scale multiprocessors (i.e., 4 to
64 processors) account for virtually all the revenue in the server
market, with small servers (i.e., 4 to 8 processors) having by far
the largest volume. While it is feasible to build larger servers
with hundreds of processors, the market demand for such sys-
tems is extremely limited due to the lack of (i) scalable applica-
tions and operating systems, and (ii) a compelling solution that ad-
dresses reliability and fault-containment in larger shared-memory
systems [8, 19, 35]. Yet, there has been surprisingly little research
on scaling down directory protocols to provide a more efficient
alternative to snoopy protocols especially for medium-scale serv-
ers. One of the key goals of the AlphaServer GS320 architecture
is to achieve the best-of-both-worlds by tailoring a directory-based
protocol to eliminate inefficiencies associated with existing designs
and to exploit the limited scale of the target systems.

The AlphaServer GS320 architecture is specifically targeted at
medium-scale multiprocessing with 32 to 64 processors. Figure 1
shows a block diagram of the system. Each node consists of four
Alpha 21264 [23] processors, up to 32GB of coherent memory,
and an aggressive IO subsystem. The current implementation sup-
ports up to 8 such nodes connected through an external crossbar
switch for a total of 32 processors. This design began in early 1996.
The quad-processor node first booted in March 1999, followed by
the 16 and 32 processor systems booting in July and September



1999. The AlphaServer GS320 supports three different operating
systems: Tru64 Unix, VMS, and Linux (for small configurations).

This paper focuses on the novel design features used in the Al-
phaServer GS320 to efficiently implement coherence and consist-
ency. The hierarchical nature of our design and its limited scale
make it feasible to use simple interconnects such as a crossbar
switch to connect the handful of nodes. One of the guiding prin-
ciples for our directory-based protocol is to exploit the extra or-
dering properties of the switch. The other guiding principle is to
address correctness issues related to rare protocol races without
burdening the common transaction flows. We have developed a
protocol that deals with deadlock issues and various protocol races
without resorting to typical negative-acknowledgement and retry
mechanisms. This approach also naturally lends itself to simple and
elegant solutions for livelock, starvation, and fairness. Our protocol
exhibits lower occupancy and fewer message counts compared to
previous designs. We have especially optimized occupancy issues
related to 3-hop transactions, which have been shown to occur fre-
quently in commercial workloads [4]. While our directory pro-
tocol specifically targets small and medium-scale servers, several
of the same techniques can be applied to larger-scale designs. In
fact, the protocol design ideas explored in the AlphaServer GS320
have already influenced other more recent designs within Compaq,
including the Alpha 21364 [3] (next-generation Alpha processor
with glueless scalable multiprocessing support), Piranha [5] (re-
search prototype that explores scalable chip-multiprocessing), and
Shasta [29, 31] (a software DSM system). These systems do not
depend on any special network ordering, with Alpha 21364 and
Piranha not even depending on point-to-point order.

The AlphaServer GS320 architecture also incorporates a couple
of innovative techniques that extend previous approaches for effi-
ciently implementing memory consistency models. The first tech-
nique involves generating a commit event (used for memory order-
ing purposes) well in advance of formulating the reply to a trans-
action. Commit events have been used in a limited form in current
designs for early acknowledgement of invalidation messages ([13],
Section 5.4). This allows a processor to move past ordering points
(e.g., memory barrier in Alpha [33]) possibly before its invalid-
ations take place in the target caches. We extend the use of early
commits to all read and read-exclusive transactions, allowing a pro-
cessor to go beyond ordering points before its pending transactions
are serviced by the target caches or memory. It is intuitively sur-
prising that this optimization actually works since the commit event
is generated well before binding the value of the data reply. The
second technique is applicable to systems that exploit any form of
early commit events. Previous techniques for achieving correct-
ness in such systems lead to either extra delay on inbound data
(and acknowledgement) replies or extra delay at memory ordering
points [13]. We eliminate these undesirable delays by separating
out the commit event and allowing the time-critical reply com-
ponent to bypass other inbound messages. The above two tech-
niques are applicable to both larger-scale directory and smaller-
scale snoopy protocols, and are complementary to existing tech-
niques for efficiently implementing consistency models [14].

We also present results that characterize the latency and band-
width properties of the AlphaServer GS320 and evaluate the im-
pact of some of the above optimizations. The rest of the paper is
structured as follows. The next section provides an overview of
the AlphaServer GS320 architecture. Sections 3 and 4 present the
novel aspects of our coherence protocol and consistency model im-
plementation, and describe generalizations of these techniques to
other directory- and snoopy-baseddesigns. The current implement-
ation of this architecture is briefly described in Section 5. Section
6 presents some performance results. Finally, we discuss related
work and conclude.

2 AlphaServer GS320 Architecture Overview

As shown in Figure 1, the AlphaServer GS320 architecture is a
hierarchical shared-memory multiprocessor consisting of up to 8
nodes, referred to as quad-processor building blocks (QBB). Each
QBB consists of up to four processors, up to 32GB of memory, and
an IO interface all connected via a local switch. The QBBs are in
turn connected to an 8x8 global switch. A fully configured system
supports 32 Alpha 21264 processors, 256GB of memory, 64 PCI
buses (224 PCI adapters), with an aggregate memory bandwidth of
51.2GB/s, a global switch bi-section data bandwidth of 12.8GB/s,
and an aggregate IO bandwidth of 12.8 GB/s.

2.1 Quad-Processor Building Block (QBB)

Figure 1 depicts the logical organization of a quad-processor build-
ing block. The QBB is built around a 10-port local switch. Four
ports are occupied by processors, four by memory, and one each
by the IO interface and the global port. The switch has an aggreg-
ate data bandwidth of 6.4GB/s, with each port (except global port)
at 1.6GB/s (data transfer bandwidths, excluding address and error
code bits). The global port is used for connecting the QBB to other
nodes, and supports 1.6GB/s in each direction for a total port band-
width of 3.2GB/s. The local switch is not symmetric; for example,
no connections are possible between two memory ports.

The QBB supports up to four Alpha 21264 [23] processors, cur-
rently running at 731 MHz. The Alpha 21264 has separate 64KB
2-way-associative on-chip instruction and data caches (64-byte line
size), and a 4MB external cache. Each processor supports up to 8
outstanding memory requests and an additional 7 outstanding vic-
tims/writebacks. Each QBB also supports up to four memory mod-
ules, each with 1-8GB of SDRAM memory with up to 8-way in-
terleaving. The four modules provide a total capacity of 32GB and
an aggregate memory bandwidth of 6.4GB/s. The IO interface sup-
ports up to 8 PCI buses (64-bit, 33MHz), with support for 28 PCI
slots. This interface supports a small cache (64-entry, fully asso-
ciative) to exploit spatial locality for memory operations issued by
IO devices, and allows for up to 16 outstanding memory operations
and an additional 16 victims/writebacks. Furthermore, the inter-
face supports a prefetching mechanism [14] to allow simultaneous
memory accesses even though IO devices require strict ordering
among memory operations.

The QBB employs a duplicate tag store (DTAG) to keep track
of cached copies within the node. The DTAG is a logically cent-
ralized data structure that maintains an external copy of each of the
four processors' second-level cache tags, and serves as the primary
module for maintaining coherence within a QBB. Maintaining co-
herence across multiple QBBs requires two other modules: the dir-
ectory (DIR) and the transactions-in-transit table (TTT). The dir-
ectory maintains a 14-bit entry per 64-byte memory line (approx.
2.5% overhead). This includes a 6-bit field that identifies one of
41 possible owners (32 processors, 8 IO interfaces, and memory),
and an 8-bit field which is used as a full bit-vector to maintain the
identity of sharers at the granularity of a QBB. The identity of the
owner and sharers are maintained simultaneously because our pro-
tocol supports dirty-sharing. The sharing bit-vector at the directory
(at QBB granularity) along with the DTAG at the target nodes to-
gether identify the exact identity of the sharing processor caches.
Finally, the TTT is a 48-entry associative table which keeps track
of pending transactions from a node.

Two QBBs can be connected directly through their global ports
to form an 8 processor configuration. Larger configurations require
the use of the global switch.

2.2 Global Switch (GS)

The global switch (GS) has 8 ports, each supporting 3.2GB/s of
data bandwidth (1.6GB/s in each direction), with an overall data
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Figure 1: Block diagram of the AlphaServer GS320 architecture and the quad-processor building block.

bi-section bandwidth of 12.8GB/s. The GS is implemented as a
centrally-buffered switch, and supports multiple virtual lanes to al-
leviate coherence protocol deadlocks. All incoming packets are
logically enqueued into a central buffer, and dequeued independ-
ently by output port schedulers. This model allows us to efficiently
implement totally-ordered multicast for specific virtual lanes where
such ordering is desirable.

3 Optimized Cache Coherence Protocol

The design of the AlphaServer GS320 cache coherence protocol
has two goals. The first goal is to reduce inefficiencies in current
state-of-the-art directory-based protocols that arise from burdening
common transaction flows because of the solutions used to deal
with rare protocol races. The second goal is to exploit the limited
size of our system, and the extra ordering properties of our inter-
connect, to reduce the number of protocol messages and the cor-
responding protocol resource occupancies. As we will see, there
is synergy among the various mechanisms we use in our protocol,
leading to a simple and efficient implementation that minimizes
special case logical structures to deal with rare protocol races.

The cache coherence protocol in the AlphaServer GS320 is an
invalidation-based directory protocol with support for four request
types: read, read-exclusive, exclusive (requesting processor has a
shared copy), and exclusive-without-data1. The protocol supports
dirty sharing, which allows data to be shared without requiring
the home node to have an up-to-date copy. We also support reply
forwarding from remote owners and eager exclusive replies (own-
ership given before all invalidations are complete). As discussed
later, we eliminate the need for invalidation acknowledgements by
exploiting the ordering properties in the switch.

The intra-node protocol uses virtually the same mechanisms
and transaction flows as the inter-node protocol to maintain co-
herence within a node, with the local switch replacing the global
switch as the transport. For a single-node system, or at a home
node, the duplicate tag (DTAG) logically functions as a centralized
full-map directory by providing sharing information for the four
local processors. Remote memory accesses are sent directly to the
home node (similar to SGI Origin [27]), without incurring delays
to check whether they can be serviced by another local processor.

A key design decision in our protocol is to handle corner cases
without depending on negative-acknowledgements (NAKs)/retries
or blocking at the home directory. NAKs are typically used in scal-
able coherence protocols to: (i) resolve resource dependencies that
may result in deadlock (e.g., when outgoing network lanes back
up), and (ii) resolve races where a request fails to find the data at

1This supports the Alpha write-hint instruction (wh64) which indicates intent to
write the entire cache line, thus avoiding a fetch of the line's current contents.

the node or processor it is forwarded to (or, in some designs, when
the directory at home is in a “busy” state). Similarly, blocking at
the home directory is sometimes used to resolve such races.

Eliminating NAKs/retries and blocking at the home leads to
several important and desirable characteristics. First, by guaran-
teeing that an owner node (or processor) can always service a for-
warded request, all directory state changes can occur immediately
when the home node is first visited. Hence, all transactions com-
plete with at most a single message to the home (i.e., the original
request) and a single access to the directory (and DTAG). This leads
to fewer messages and less resource occupancy for all 3-hop read
and write transactions (involving a remote owner) compared to pro-
tocols that send extra confirmation messagesback to the home (e.g.,
“sharing writeback” or “ownership change” in DASH [28] and SGI
Origin [27]). Second, our directory controller can be implemented
as a simple pipelined state machine wherein transactions immedi-
ately update the directory, regardless of other ongoing transactions
to the same line. Hence, we avoid blockages and extra occupancy
at the directory, and instead resolve dependencies at the system
periphery. Third, our early commit optimization for implement-
ing memory consistency models (Section 4) also depends on the
guarantee that an owner can always service a request. Fourth, we
inherently eliminate livelock, starvation, and fairness problems that
arise due to the presence of NAKs. In contrast, the SGI Origin [27]
uses a number of complicated mechanisms such as reverting to a
strict request-reply protocol, while other protocols with NAKs ig-
nore this important problem [24, 28].

3.1 Avoiding Protocol Deadlock

Our protocol uses three virtual lanes (Q0, Q1, and Q2) to elim-
inate the possibility of protocol deadlocks without resorting to
NAKs/retries. The first lane (Q0) carries requests from a processor
to a home. Messages from the home directory/memory (replies or
forwarded messages to third-party nodes or processors) are always
carried on the second lane (Q1). Finally, the third lane (Q2) car-
ries replies from a third-party node or processor to the requester.
Our protocol requires an additional virtual lane (QIO, used to carry
requests to IO devices) to support a subtle PCI ordering rule (bey-
ond the scope of this paper). As we will see, our protocol depends
on a total ordering of Q1 messages (comes naturally in a crossbar
switch) and point-to-point ordering of QIO and Q0 (same address)
messages, with no ordering requirements on Q2 messages.

3.2 Dealing with Request Races

There are two possible races when a request is forwarded to an
owner node or processor. The late request race occurs if the request



arrives at the owner after the owner has already written back the
line. The early request race occurs if a request arrives at the owner
before the owner has received its copy of the data. Our solutions for
these races guarantee that the forwarded request is serviced without
any retrying or blocking at the directory.

Our solution for the late request race involves maintaining a
valid copy of the data at the owner until the home acknowledges
the writeback, allowing us to satisfy any forwarded requests in the
interim. Our protocol uses a two-level mechanism. First, when
the Alpha 21264 processor victimizes a line, it awaits a victim-
release signal before discarding the data from its victim buffer. The
victim-release signal is effectively delayed until all pending forwar-
ded requests from the DTAG to a given processor are satisfied. The
above approach alleviates the need for complex address matching
(used in snoopy designs) between incoming and outgoing queues.
For writebacks to remote homes, the responsibility of maintaining
the data is handed off to the transactions-in-transit table (TTT) in
order to relieve the pressure on the processor's victim buffers. This
copy is maintained until the home acknowledges the writeback.

Our solution for the early request race involves delaying the for-
warded request (on Q1) until the data (on Q2) arrives at the owner.
This functionality is supported within the Alpha 21264 processor
whereby the address at the head of the inbound probe queue (Q1)
is compared against addresses in the processor's miss-address-file
(tracks pending misses) and is delayed in case of a match. Buffer-
ing early requests on the side to completely eliminate the possibil-
ity of backing up the Q1 lane would require too large a buffer (256
entries in our design) due to the dirty-sharing property of our pro-
tocol. Stalling the head of the Q1 lane at target processors provides
an extremely simple resolution mechanism, and is relatively effi-
cient since such stalls are rare and the amount of buffering at target
nodes is sufficient to avoid impacting Q1 progress at the switch.
Nevertheless, naive use of this technique can potentially lead to
deadlock. All such deadlock scenarios are eliminated, however,
due the total ordering of Q1 messages in our design.2

Finally, the hierarchical nature of our design allows transactions
to be serviced within a node (e.g., at the home) without necessar-
ily involving the global switch. This optimization is critical for
achieving optimal system performance, yet it causes subtle interac-
tions with the total ordering requirement for Q1 messages. The fol-
lowing scheme is used for correctness. The transactions-in-transit
table (TTT) at the home node keeps track of Q1 messages that are
sent out on behalf of local processors but have not yet reached the
global switch due to buffering. In the rare case that (i) a subsequent
request to the same address arrives while such a Q1 message is in
transit, and (ii) the request can be serviced through a local Q1 for-
ward within the node, the latter Q1 forward is looped to the global
switch and back to ensure total ordering on Q1 messages.

3.3 Putting it All Together: An Efficient Low Oc-
cupancy Protocol

Figure 2 shows several basic transaction in our protocol. We use
the following notation: R is the requester, H the home, O the owner,
and S a sharer. The virtual lane (Q0, Q1, Q2) used by a message is
shown in parentheses. These protocol flows also apply to our intra-
node protocol, with the duplicate-tag (DTAG) behaving as home.

Figure 2(a) shows a basic 2-hop read case. Figure 2(b) shows
a write to a line with multiple sharers. The data reply is sent to the
requester at the same time invalidates are sent to the sharers. This
flow illustrates two interesting protocol properties. First, our pro-
tocol does not use invalidation-acknowledgement messages, which

2Consider P1 owning A and requesting B exclusively, while P2 owns B and re-
quests A exclusively. The home for A forwards a request R1/A to P1, and the home of
B forwards a request R2/B to P2. Since the directories are changed immediately, they
reflect P1 owning B and P2 owning A now. Assume P3 requests A causing request
R3/A to P2, and P4 requests B causing request R4/B to P1. Deadlock can occur if
R4/B arrives at P1 before R1/A and R3/A arrives at P2 before R2/B. However, the
total ordering on Q1 messages disallows such reorderings.
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Figure 2: Basic protocol transaction flows.

reduces message count and resource occupancy. Given the total or-
dering property on Q1, an invalidate appears to be “delivered” to its
target node when it is scheduled on the switch. Second, as an op-
timization, we use the multicast capability of our switch whenever
the home needs to send multiple Q1 messages to different nodes
as part of servicing a request. In this example, we inject a single
message into the switch that atomically schedules the appropriate
invalidate messages and the reply to the requester.

Figure 2(c) shows a 3-hop read transaction. The home forwards
the request to the owner and immediately alters the directory to re-
flect the requester as a sharer. As mentioned before, the immediate
change to the directory is possible because the owner is guaranteed
to service the forwarded request. The owner directly responds to
the requester, and the dirty-sharing property of our protocol avoids
the need for a sharing writeback message to home (typical in other
protocols). The message labeled “marker” sent from home to the
requester serves several purposes in our protocol. First, the marker
is used at the requester to disambiguate the order in which other
requests to the same line (that are forwarded it) were seen by the
directory. For example, the requester node filters out any invalidate
messages that arrive before the marker, while an invalidate mes-
sage that arrives after the marker is sent to the requesting processor.
Second, the marker serves as the commit event for the read which
is used for memory ordering purposes (discussed in Section 4.3).
Finally, Figure 2(d) shows a 3-hop write transaction. Given the
dirty-sharing nature of our protocol, it is possible for a line to have
an owner and multiple sharers as shown in this scenario. As in
the 3-hop read-case, the directory is changed immediately, and (in
contrast to other protocols) there are no further messages sent to
the home to complete this transaction. The marker serves the same
purpose as in the read case, and is also used to trigger invalidates
to other processors (sharing the line) on the requester's node.

Figure 3 shows an interesting consequence of changing direct-
ory state immediately and our early request race solution. The
scenario shown involves multiple nodes writing to the same line
(initially dirty at a processor at the home node; “marker” messages
not shown for simplicity). The writes are serialized at the directory,
each is forwarded to the “current” owner and immediately changes
the directory to reflect the new owner. The early request race mech-
anism delays forwarded requests (on Q1) that reach their targets
early. As each requester gets its reply (on Q2), the data ripples from
one owner to the next without involving any further action from the
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directory. In such pathological cases, our protocol is much more ef-
ficient than protocols (e.g., SGI Origin [27]) that resort to blocking
at the directory or NAKing/retrying to deal with races.

3.4 Applicability of Protocol Optimizations to
Other Designs

A number of the techniques used in the AlphaServer GS320 pro-
tocol design are applicable to larger-scale directory designs, while
a few of the techniques exploit interconnect ordering properties that
are more feasible in small-to-medium scale designs. The ideas ex-
plored in the AlphaServer GS320 have already influenced several
more recent designs within Compaq: the Alpha 21364 [3, 6] (next-
generation Alpha processor with glueless scalable multiprocessing
support), Piranha [5] (research prototype that explores scalable
chip-multiprocessing), and Shasta [29, 30, 31] (a software DSM
system). These three systems provide scalable designs with no spe-
cial constraints on network ordering; the Alpha 21364 and Piranha
designs do not even depend on point-to-point order.

Scalable directory designs can benefit from elimination of
NAKs/retries and blocking at the directory, and the use of more
than two virtual lanes to avoid protocol deadlocks (used in both Al-
pha 21364 and Piranha). First, all protocols can benefit from the
simple and elegant solution to livelock and starvation problems.
Second, our solution to the late request race is applicable to many
designs (used in Piranha). However, our early request race solu-
tion is more specific to our design choices. For protocols that do
not support dirty-sharing, it is feasible to buffer the early request
on the side (as done in Piranha) instead of stalling the request path.
Finally, efficient 3-hop write transactions (with a single visit to the
home) are possible in protocols where the mechanisms for dealing
with early and late races do not depend on revisiting the home node
in the common case (holds for Piranha). However, protocols that
do not support dirty-sharing (e.g., Piranha, Alpha 21364) can not
benefit from lower message count and occupancy for 3-hop reads
because of the presence of a “sharing-writeback” message to home.

Software shared-memory protocols such as Shasta are quite dif-
ferent from hardware protocols. Since software protocols can use
main memory for extensive buffering purposes, multiple network
lanes are not needed for avoiding resource deadlocks. Extensive
buffers also allow support for dirty-sharing, with early requests buf-
fered on the side. Finally, given that main memory (backed up by
virtual memory) on each node acts as a software-controlled cache,
late request races are not possible since there are no forced write-
backs or replacements. The Shasta protocol was heavily influenced
by the AlphaServer GS320 design, and is the only other protocol
we are aware of that supports efficient 3-hop transactions for both
reads and writes through altering the directory state immediately
and requiring at most a single visit to the home.

Our other optimizations, such as eliminating invalidation-
acknowledgements and exploiting the multicast feature of our
switch for efficiency, are clearly more applicable to small- and
medium-scale designs where the appropriate ordering properties

can be satisfied by the interconnect. These techniques can however
be employed in scalable design that are hierarchical. While a scal-
able interconnect may be used among nodes, it is possible to use
switches with more ordering guarantees within each node (thus en-
abling optimizations for intra-node coherence, as in Piranha).

4 Efficient Implementation of Consistency
Models

This section describes the innovative techniques used in the Al-
phaServer GS320 that extend previous approaches for efficiently
implementing memory consistency models. Section 4.1 reviews
the early invalidation acknowledgement technique which is already
used in many designs. This review makes it simpler to understand
the two new optimizations used in the AlphaServer GS320, which
are described in Sections 4.2 and 4.3. Finally, Section 4.4 discusses
the applicability of these optimizations to other designs.

4.1 Early Acknowledgement of Invalidation Re-
quests

To reduce the latency of invalidations, a common optimization is
to acknowledge an invalidation request as soon as the request is
placed in a target destination's (e.g., a cache hierarchy) incoming
queue before all stale copies are actually eliminated. However, na-
ive uses of this optimization can lead to incorrect behavior since the
acknowledgement no longer signifies the completion of the write
with respect to the target processor. The following is a brief sum-
mary of the material in Section 5.4 of Gharachorloo's thesis [13]
which describes a couple of implementation techniques that enable
the safe use of early acknowledgements.

Consider a write operation with multiple completion events
with respect to each processor in a system. For each write, we also
define a commit event with respect to each processor. The commit
event corresponds to the time when the invalidations caused by the
write are either explicitly or implicitly acknowledged, and precedes
the completion event with respect to a processor in cases involving
an early acknowledgement. In designs which exploit early acknow-
ledgements, the program order between a write W and a following
operation Y is enforced by only waiting for W to commit with re-
spect to every processor before issuing Y (there is no longer an
explicit message that signals the completion of the write).

Figure 4 shows an example to illustrate the issues related to
early acknowledgements. For simplicity, assume a sequentially
consistent (SC) [25] invalidation-based protocol. Consider the pro-
gram segment in Figure 4(a) with all locations initialized to zero.
The outcome (u,v)=(1,0) is disallowed under SC. Assume P1 ini-
tially caches both locations and P2 caches location A. Without early
acknowledgements, P1 issues the write to A, waits for it to com-
plete, and proceeds to issue the write to B. Therefore, the stale copy
of A at P2 is eliminated before P1 even issues its second write. As
long as P2 ensures its reads complete in program order, the outcome
(u,v)=(1,0) will indeed be disallowed.

Now consider the scenario with early invalidation acknow-
ledgements. P1's write to A sends an invalidation to P2. This inval-
idation is queued at P2 and an acknowledgement reply is generated.
At this point, the write of A is committed but has yet to complete
with respect to P2 (i.e., P2 can still read the old value of A). While
the invalidation remains queued, P1 can proceed to issue its write
to B, and P2 can issue its read to B. Figure 4(b) captures the state
of P2's incoming buffer at this point, with both the invalidation re-
quest for A and the read reply for B (return value of 1) queued. A
key issue is that allowing the read reply to bypass the invalidation
request in the buffer, which is desirable for performance reasons,
will violate SC because P2 can proceed to read the stale value for
A out of its cache after obtaining the new value for B.
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Figure 4: Example illustrating early invalidation acknowledge-
ments.

There are two known solutions to the above problem [13]. The
first solution imposes ordering constraints among incoming mes-
sages with respect to previously committed invalidations. Referring
back to the example, this solution would disallow the read reply
from bypassing the invalidation request, which forces the commit-
ted write to A to complete with respect to P2 before the read of
B completes. While FIFO ordering among all incoming messages
from the commit point will work, it is sufficient to only maintain
the queue order from an incoming reply (data or acknowledgement)
to any previous incoming invalidates (allows for a lot of reordering
on the inbound path for performance reasons) [13]. The second
solution does not impose any ordering constraints among incoming
messages. Instead, it requires previously committed invalidations
to be serviced any time program order is enforced. In the example,
this latter solution would allow the read reply to bypass the incom-
ing invalidation, but would force the invalidation request to be ser-
viced (e.g., by flushing the incoming queue) as part of enforcing
the program order from the read of B to the read of A. Thus, both
solutions correctly disallow the outcome (u,v)=(1,0).

The relative efficiency of the above two solutions heavily de-
pends on the underlying memory consistency model. The first
solution is better suited for strict models such as SC where en-
forcing program orders occurs much more frequently than cache
misses; the second solution is better suited for more relaxed models
where enforcing program orders occurs less frequently. Further-
more, for more relaxed models, the second solution may provide
faster servicing of incoming replies (data or acknowledgement) by
allowing them to bypass previous invalidate requests. However,
the second solution can become inefficient in designs with deep
inbound queues (e.g., due to a deep cache hierarchy); even though
flushing of the incoming queues may be infrequent, the overhead of
doing so can be quite high. The only known partial remedy to the
above trade-off is a hybrid design that employs the first solution
at the lower (farther) levels and the second solution at the higher
levels of the logical inbound queue (or cache hierarchy) [13].

4.2 Separation of Incoming Replies into Commit
and Data/Response Components

The AlphaServer GS320 supports the Alpha memory model which
requires the use of explicit memory barrier instructions to impose
memory ordering [33]. In addition, the commit point in our design
is at the arbitration point within a node for accesses satisfied loc-
ally or at the arbitration point for the global switch for accesses

inval A
inval B
commit

data/response

inbound reply

Figure 5: Separation of inbound reply to commit and data/response
components.

involving remote transactions. Both cases lead to long inbound
paths to the processor. The second solution described in the previ-
ous section is impractical due to the overhead of flushing the long
inbound path on every memory barrier. At the same time, using
the first solution can delay time-critical replies behind inbound in-
validate requests on the long inbound path to the processor. This
section describes a simple yet powerful technique that we devised
to alleviate the undesirable trade-off described above.

In most coherence protocols, processor requests are satisfied
through a single reply message. For example, a read or read-
exclusive request receives a data reply, while an exclusive request
(caused by a write to a clean copy) may receive a success or fail-
ure response. Our approach separates the reply message into its
two logical components when the message arrives at the inbound
path: (i) the data or response component that is needed to service
the request, and (ii) a commit component which is solely used for
ordering purposes.3 This separation is illustrated in Figure 5. We
allow the time-critical data/response component to bypass other in-
bound (Q1) messages on its path to the processor (e.g., by using
a separate lane such as Q2). To achieve correctness, the commit
component is used as an ordering marker by placing it on the same
path as other inbound messages and enforcing the required partial
ordering with respect to other messages. For example, given the
early invalidation acknowledgement optimization described in the
previous section, a commit component cannot bypass any previous
inbound invalidations. This approach is superior to either of the two
solutions described in the previous section; we allow time-critical
replies to bypass other inbound messages, and yet we do not require
an explicit flush of the inbound path at memory barriers.

For the above scheme to work correctly and efficiently, support
from the processor is needed to (i) expect two reply components
instead of a single one, and (ii) appropriately account for the com-
mit components. The Alpha 21264 maintains a count of pending
requests. This count is incremented on every request issued to the
system, and decremented each time a commit event is received. Re-
ceiving the data/response component does not affect the count, and
in fact there is no requirement for the data/response component to
arrive before the commit component for achieving correct ordering.
At a memory barrier, the processor waits for the count to reach zero
before proceeding with other memory requests. Our design piggy-
backs the commit components on other inbound Q1 messages with
an additional 1-bit field; a null message is inserted if no messages
are available for the piggyback. The next section describes our
second optimization which allows us to generate the commit com-
ponent for read and read-exclusive requests well before the actual
data component is formulated.

4.3 Early Commit for Read and Read-Exclusive
Requests

The AlphaServer GS320 architecture extends the idea of early com-
mits to encompass all types of processor requests instead of only
read-exclusive (or exclusive) requests to a clean line with sharers
(i.e., early invalidation commits described in Section 4.1). This op-

3Optimized coherence protocols (e.g., DASH [28] or our protocol) support eager
exclusive replies for writes to clean shared data. An eager reply is sent to the requester
early on, with a follow-on message that signals the committing of invalidations at all
sharers. These two messages cleanly map to the separation we require.



timization can reduce the delay whenever a processor must wait for
its pending requests to complete for ordering purposes (e.g., at a
memory barrier). As we will discuss in the next section, the impact
of this technique can be far-reaching since it is adds a fundamental
optimization to the bag-of-tricks designers can use to correctly and
efficiently implement memory consistency models.

In our design, early commits are generated for any read or
read-exclusive request that is forwarded to be serviced by another
cache's dirty or dirty-shared copy (includes forwards to a cache
copy within the same node). This approach can be easily general-
ized to requests serviced by memory as well. However, this is not
beneficial in our design because the commit can not be generated
much in advance of the data reply from memory. Similar to early
commits for invalidations, the early commit message is generated
when a forwarded read or read-exclusive request arrives at the com-
mit point (defined in the previous section). A separate data reply
message is sent back once the forwarded request is serviced by the
target cache. As with early invalidation commits, a processor is al-
lowed to go past an ordering point (e.g., memory barrier) as long as
all previous requests have received their commit replies, even if the
actual data replies have not yet been received. Theoretically, the
above optimization allows a processor to proceed beyond ordering
points before the actual return values for its pending requests are
bound. As would be expected, naive use of this optimization can
lead to incorrect behavior.

Figure 6 shows an example to illustrate the issues related to
early commits for read and read-exclusive requests. Consider the
program segment in Figure 6(a) with all locations initialized to zero
(“MB” is a memory barrier in Alpha). The outcome (u,v)=(1,0)
is disallowed under the Alpha memory model (and also under se-
quential consistency). Assume P1 initially caches both locations
(with dirty copy of B) and P2 caches location A. The figure shows
a given order of events in time represented by t1::t10. Assume
P2 issues read B, with the read request queued at P1. The com-
mit message for the read is generated once the request is queued at
P1, and is sent back to P2 (shown queued at P2 at time t3). Once
this commit event is received by P2, P2 can go past the ordering
point represented by the MB and read the value 0 for A (i.e., v=0).
Note that we are allowing P2 to complete the read of A before the
return value for the read of B (currently waiting to be serviced in
P1's incoming queue) is even bound! Now assume P1 issues its
write to A, which generates an invalidate to P2 and a correspond-
ing invalidate-acknowledgement (early commit for the invalidate)
to P1. Figure 6(b) shows the state of the incoming queues at this
point (with the commit for read B already consumed).

We can now illustrate the potential for incorrect behavior for
the scenario in Figure 6. Consider the commit event for the inval-
idation to A (commit/InvalA) bypassing the read request to B (read
B) on the inbound path to P1. This reordering is allowed under
the sufficient requirement for early invalidation acknowledgements
since the only order that is required to be maintained is from com-
mits to previous invalidation requests. Therefore, P1 can receive
this commit, go through its memory barrier, and issue the write of
B which would change its cache copy to have the value of 1. At this
point, when the read of B (still in the inbound path) gets serviced,
it will return the value of 1 (i.e., u=1). The scenario above violates
the Alpha memory model since we have allowed (u,v)=(1,0).4

As with early invalidation acknowledgements, there are two

4The Alpha 21264 processor does not actually proceed past a memory barrier until
both the commit and the data reply components for its previously pending requests are
back (i.e., it is more conservative than the design assumed above). Furthermore, the
21264 has a small internal probe queue for incoming requests, allows replies to bypass
this queue, and flushes the queue at memory barriers. Constructing the anomalous
behavior is more involved in this case. Referring to Figure 6, assume the exact same
order of events except that P2 (now a 21264) does not go past its memory barrier until
it receives both the commit and the data reply for read B (assume u=1 as before). The
anomalous behavior can still occur because the invalidate of A to P2 can be in the
inbound path external to the 21264 chip and neither the data reply for B (which is
allowed to bypass inbound messages) nor the commit (which is ahead of invalidate)
force the invalidate into the 21264's internal probe queue. Therefore, P2 can still
proceed past its MB to read the old value of A. The solutions described in the next
paragraph also eliminate the possibility of incorrect behaviors with the Alpha 21264.
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Figure 6: Example illustrating early commit for read requests.

solutions for guaranteeing correctness. The first solution involves
imposing further order among inbound messages: a commit mes-
sage cannot bypass any previous requests (read, read-exclusive or
invalidation). This solution disallows the commit/InvalA message
from bypassing the read B request in the scenario shown in Fig-
ure 6. Therefore, the read B request is guaranteed to be serviced
before P1 is allowed to change the value of B (P1 cannot go past
its MB before it receives commit/InvalA), hence ensuring that read
B returns the value 0 to P2 (i.e., u=0 leading to (u,v)=(0,0) which
is an allowed outcome). The dynamics of how correctness is en-
sured with the early commit optimization is quite interesting since
we effectively force the return value for read B to be bound be-
fore P1 is allowed to change the value for B. The second solution
(also reminiscent of the second solution in Section 4.1 but slightly
stricter) does not impose any ordering among inbound messages,
but requires any request messages in the inbound path (read, read-
exclusive, or invalidation) to be serviced any time a processor en-
forces program order (e.g., at a memory barrier). Again, before P1
is allowed to complete its MB, it is required to service the inbound
read B which will lead to the correct behavior. The AlphaServer
GS320 design uses the first solution above because it naturally
and synergistically merges with the optimization described in Sec-
tion 4.2: the commit comes earlier for ordering purposes, the time-
critical data reply which typically arrives later is allowed to bypass
other inbound messages, and there is no requirement to flush the
inbound path at memory barriers.

The early commit optimization described here depends on a
guarantee that the read or read-exclusive request will be serviced by
the target node or processor once a commit reply is generated for it.
Therefore, protocols that do not make such a guarantee (e.g., due to
NAKs/retries) cannot use this optimization. There are a few other
subtle issues that arise in the AlphaServer GS320 design (even for
simple early invalidation acknowledgements) due to the presence
of a commit point within a node (arbitration point for local switch)
and a commit point external to the node (arbitration point for global
switch), and the fact that some requests are satisfied solely by the
local commit point. For example, due to the fact that we sup-
port eager exclusive replies, it is possible for a request generated
at the home node to be locally satisfied while remote invalidations
caused by a previous operation have still not been committed at the
external switch. To avoid correctness issues, the transactions-in-
transit table (TTT) detects such cases and forces the commit event
for the latter operation to loop to the external switch and back in
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Figure 7: Early commits in a snoopy design.

order to inherit the previous operation's commit event and pull in
any requests on the inbound path.

4.4 Applicability of Consistency Model Tech-
niques to Other Designs

The two optimization techniques presented in Sections 4.2 and
4.3 can be used for implementing any memory consistency
model, ranging from sequential consistency to aggressive relaxed
memory models. The optimization of separating the commit
and data/response components (Section 4.2) is primarily useful
for implementation of more relaxed models where allowing the
data/response to reach the processor earlier (before a memory or-
dering point is encountered) is beneficial. Furthermore, the tech-
nique applies to any implementation that exploits early commits,
including early invalidation acknowledgements, and is superior
compared to previously known solutions for enforcing correctness.

The performance benefits of the second optimization (Sec-
tion 4.3) are higher for stricter memory models since a processor
can continue past the frequent memory ordering points to issue new
requests as soon as it receives the early commit for a previous re-
quest. However, the benefits can be significant in relaxed models
as well due to the reduction of delays at memory ordering points;
for example, memory barrier latencies in Alpha multiprocessors
constitute a significant fraction of the execution time for import-
ant critical section routines in database applications. With respect
to applicability to different implementations, the early commit op-
timization is better suited to designs where the separation in time
between generating the early commit and the actual reply is sig-
nificant enough to justify generating two messages. In addition to
less scalable designs with ordered networks (e.g., buses, crossbars,
rings), this approach can also be beneficial in more hierarchical
scalable designs where ordering is not maintained at the external
interconnect but can be enforced within a node (i.e., commit point
can be set at entry to node).

To illustrate the true potential of the early commit optimization,
Figure 7 shows an example snoopy design supporting sequential
consistency. In such a design, the commit point for a cache miss is
when it is scheduled on the bus, and a processor must only await
this commit event (i.e., does not need to wait for the actual reply)
before issuing its next reference in order to satisfy sequential con-
sistency; this of course assumes that the appropriate inbound mes-
sage order is maintained as specified in the previous section. Given
the example in the figure, P1 first issues the read of A (gets queued
at P2). Given this read is committed, P1 can safely continue to is-
sue the write to B on the bus. Once this write is scheduled on the
bus (and queued at P3), P1 safely completes the read to C which
is a cache hit. The value from this read is used to calculate the ad-
dress of the next read, which is also issued on the bus. Next, P1 can
safely complete its write to E which is a cache hit. Finally, P1 is-
sues the read to F, and cannot proceed to issue the last read (G[r4])
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Figure 8: Quad building block (QBB) motherboard (4-processor
system).

since its address is not yet known. Note that at this point, P1 has 4
outstanding memory operations (one of them a read-exclusive) that
are awaiting their data replies without violating sequential consist-
ency! Furthermore, P1 was allowed to consume the value of a read
(C) and complete a write (E) in the middle of its miss stream. Sim-
ilarly, the pending data replies can return and be consumed in any
order. And it is also perfectly safe for P1 to make its writes (e.g., to
E) visible to other processors even though it is awaiting data replies
for previous operations. Finally, unlike speculative techniques pro-
posed for implementing consistency models [14], the above ap-
proach does not depend on any form of rollback; once an operation
is committed, it is considered complete as far as ordering is con-
cerned. However, as we will discuss in Section 7, there is potential
synergy in combining the early commit technique with speculative
techniques that depend on rollback [14].

5 AlphaServer GS320 Implementation

The AlphaServer GS320 is designed and packaged for modularity
and easy upgradability from 4 to 32 processors. The basic build-
ing blocks are: single-CPU boards, memory boards, PCI-bus inter-
faces, and two types of backplanes. A 4-processor quad-building
block (QBB) occupies a single rack, as does a PCI IO subsystem.
Each QBB supports up to 2 IO subsystems. A cabinet supports up
to 4 QBBs or 16 processors. Thus, a 32-processor system consists
of two cabinets for processors and additional cabinets for IO.

Figure 8 shows the motherboard for a 4-processor QBB, with
the local switch, DTAG, and IO interface on the board. The global
port chips reside on the motherboard for 8-processor systems (two
4-processor systems connected back-to-back), but become part of
a plug-in module for larger systems. Other components are also
attached as plug-in modules to the motherboard. For systems lar-
ger than 8 processors, the QBB motherboard is mounted vertically,
with one 4-processor rack facing the front and the other facing the
rear. Figure 9(a) shows the placement of the plug-in modules on
the rear side. Figure 9(b) depicts the rear side of the two cabinets
used for a 32-processor system. Each quadrant is an 8-processor
rack. The global switch is mounted on a folding panel as shown.
Ribbon cables connect the global ports to the global switch.

The complete system consists of 16 unique ASIC designs with
a total of 7 million gates. There are 5 major address-path ASICs
which constitute the core functionality of the system, and 4 data-
path ASICs which are significantly simpler. The remaining ASICs
perform simple glue logic tasks. The technology is circa 1997-
98, with about 500K useable gates on the large ASICs. The design
and simulation environment included about 300 AlphaServer CPUs
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(about 40 clustered GS140 servers), equipped with a total of 500GB
of memory and 4.5TB of disk. Systems of 100-200 million gates
were simulated for a large number of cycles. Consequently, sys-
tems booted with first-pass ASICs; the various configurations (4P,
8P, 32P) booted VMS and Unix within 2 weeks of assembly.

The AlphaServer GS320 design supports a number of RAS (re-
liability, availability, serviceability) features. The system supports
up to 8 hardware partitions at the QBB granularity, with hardware
firewalls between partitions. Both Unix TruClusters and VMS
Galaxy operating systems support such partitioning, with Galaxy
aggressively exploiting dynamic software partitioning as well. The
system also supports online removal, repair, and upgrade of QBBs,
I/O subsystem, and individual CPUs. This approach permits hard-
ware test and burn-in prior to reinsertion into a running system.
Finally, the Tru64 Unix and VMS operating systems have been ex-
tended to deal with the NUMA nature of the AlphaServer GS320
for both scheduling and memory management purposes.

Table 1: Effective memory latencies for the AlphaServer GS320
with 731MHz 21264 processors.

Case Back-to-Back Pipelined
Dependent Reads Independent Reads

L2 Cache Hit 23ns 7ns
Local, Clean 327ns 61ns
Local, Dirty 564ns 75ns
2-hop, Clean 960ns 136ns
3-hop, Dirty 1324-1708ns 196-310ns

Table 2: Impact of system load on L2 cache hit latency on three
Alpha 21264-based systems.

525Mhz 500MHz 731MHz
GS140 ES40 GS320

L2 Hit Latency (P1-P3 idle) 35ns 41ns 23ns
L2 Hit Latency (P1-P3 active) 68ns 113ns 23ns

6 Performance Measurements on the Al-
phaServer GS320

This section presents results to characterize the basic latency and
bandwidth parameters of the AlphaServer GS320 and to evaluate
the impact of some of the optimizations described in Sections 3 and
4. In addition, we report results on a few industry-standard bench-
marks to illustrate the competitive performance of AlphaServer
GS320 on both technical and commercial workloads.

Table 1 presents measured latencies for servicing a read request
at various levels in the memory hierarchy. We report two sets of
latencies in each case: (i) latency for back-to-back dependent reads
(representative of pointer-chasing), and (ii) effective latency for
pipelined independent reads (representative of array accesses). The
“3-hop” case shows a range of latencies because it includes “2.5-
hop” cases where the owner or the reader processor are at the home
node. One of the main reasons for the relatively high back-to-back
latencies is the use of an older ASIC technology (circa 1997-98,
9.6ns cycle time) in our current implementation. The results in the
table show while some of the remote latencies are high, the Alpha
21264's out-of-order issue capability and its support for multiple
outstanding requests can substantially reduce the effective laten-
cies (by approximately 5-7 times) in the case of independent read
misses. These pipelined latencies can also be used to calculate sus-
tained bandwidths (e.g., 64-bytes per 61ns for 1.05GB/s bandwidth
to local memory).

We next compare the AlphaServer GS320 to two other 21264-
based AlphaServer designs. The GS140 is a previous-generation
bus-based snoopy design which supports up to 14 processors. The
ES40 is a switch-based snoopy design which supports up to 4 pro-
cessors. We use 4-processor configurations for all three systems
(processor frequencies are different). Table 2 shows the dependent
read latency for L2 cache hits as measured from one processor. We
consider two cases: (i) the other three processors are idle, and (ii)
the other three processors are actively issuing misses. As the table
shows, activity by the other three processors can lead to a major
degradation in the L2 hit latency (2-3 times longer) as observed by
the fourth processor in snoopy-based designs. The primary reason
for this is that all system transactions must be snooped by the L2
caches, causing the L2 to be busy more often (especially in the
ES40 which does not use duplicate tags). The AlphaServer GS320
does not suffer from this because it uses a directory-based protocol
which significantly reduces the number of requests that are forwar-
ded to each L2. Given the importance of L2 hit latencies in com-
mercial workloads such as transaction processing [4], the use of ef-
ficient directory-based protocols (instead of snooping) can provide
benefits even for systems with a small number of processors.

Table 3 presents effective latencies for write (read-exclusive)
operations while varying whether the home is local or remote and



Table 3: Effective latency for write operations.

Case Pipelined Writes Separated
Writes by Memory Barriers

Local Home, No Sharers 58ns 387ns
Local Home, Remote Sharers 66ns 851ns
Remote Home, No Sharers 135ns 1192ns
Remote Home, Remote Sharers 148ns 1257ns

Table 4: Serialization latency for conflicting writes to the same line.

Case Serialization Latency
1 QBB, 4 procs 138ns
8 QBBs, 1 proc/QBB 564ns

whether there are any sharers. We report two sets of latencies in
each case: (i) effective latency for pipelined writes, and (ii) latency
for writes ordered through memory barriers (includes memory bar-
rier latency: 24ns minimum). The pipelined latencies for the local
home and remote home are close to the pipelined local and 2-hop
read latencies in Table 1. The latency impact of sending invalida-
tions (due to presence of sharers) is small since our protocol does
not use invalidation acknowledgements. Furthermore, these laten-
cies are independent of the number of sharers since our protocol
uses multicast. The latencies for writes separated by memory bar-
riers are slightly larger than the local and 2-hop dependent read
latencies, partly due to the cost of the memory barrier being in-
cluded in this latency. Local home writes with remote sharers take
substantially longer than with no sharers because the memory bar-
rier must wait for the commit event to come back from the global
switch (Section 4). Finally, the sending of invalidates for remote
home writes leads to little increase in the latency (again due to the
lack of invalidation acknowledgements which would incur 3-hop
latencies).

We next consider the impact of our low occupancy protocol
design for handling conflicting writes to the same line. Figure 3 in
Section 3 illustrates the behavior of our protocol for write serializa-
tion. Table 4 shows the serialization latency for two scenarios. Our
experiments have each processor in a tight loop doing a write fol-
lowed by a memory barrier (latencies include memory barrier over-
head). In steady state, our protocol continuously forwards writes to
the current owner with no blocking/retrying at the directory and
the forwarded writes are delayed at their target caches until the
early request race is resolved. Therefore, we expect the serializ-
ation of the writes to be approximately equal to a 1-hop latency in
our system. The first scenario involves 4 processors on a single
quad node. In this case, 4 processors are insufficient to generate
sufficient throughput in the steady state to always steal the line
from the previous owner as soon as it receives it. Therefore, our
measured serialization latency includes some cache hits, making
it smaller than the 1-hop intra-node latency (approx. 180-200ns)
that we expected. The second scenario consists of 8 processors on
separate QBBs. The 8 processors lead to the expected steady state
behavior and the measured serialization latency of 564ns is indeed
approximately half of our 2-hop write latency (from Table 3). In
comparison, protocols that depend on the use of NAKs/retries to
resolve such races [24, 27, 28] would have a best case serialization
latency of 2-hops (with higher possible latencies based on the tim-
ing of retries), and lead to substantially more traffic and resource
occupancies due to the large number of in-flight NAK and retry
messages.

Finally, Table 5 presents some measurements to illustrate the
impact of separating the commit component and generating early
commits. The back-to-back dependent read latency measures the
time it takes for the data reply component to reach the processor,
while the latency with memory barriers measures the time for the
commit component. The intrinsic overhead of a memory barrier
is 25-50ns and is included in the latter measurement. The 2-hop
measurements clearly illustrate the benefit of separating the com-

Table 5: Impact of separating the commit component and generat-
ing early commits.

Case Back-to-Back Reads Separated
Dependent Reads by Memory Barriers

2-hop, Clean 960ns 1215ns
3-hop, Dirty 1478ns 1529ns

mit component from the data reply component. The difference in
the latency for the two components is 205-230ns (adjusted for the
memory barrier overhead), and keeping the data and commit com-
ponents together would cause this extra latency to be incurred by
all read misses. Furthermore, this extra latency could increase if
the inbound path for the commit is occupied by other forwarded
requests. The 3-hop measurements illustrate the benefit of generat-
ing early commits in our design (the 2-hop case does not generate
an early commit in our design). We see the difference in latency
for the data reply and commit components in the 3-hop case is ap-
proximately 0-25ns (adjusted for memory barrier overhead), which
is much smaller than the 205-230ns separation (of the 2-hop case)
we would likely observe without early commits. In fact, the early
commit is likely to arrive at the processor before the data reply
component in the 3-hop case, but the Alpha 21264 waits for both
components to arrive before proceeding past a memory barrier.

The AlphaServer GS320 system provides leadership perform-
ance on many technical workloads. The result on Linpack is 33.5
GFlops/s on a 32-CPU system. The McCalpin STREAM (COPY)
bandwidth is 18.4 GB/s with 32 CPUs. The AlphaServer GS320
also provides competitive performance on commercial workloads.
Our system supports 2720 users (1.9s response time) on the SAP
R4 two-tier client/server benchmark (audited result [21]). In com-
parison, the IBM RS/6000 S80 24-CPU system supports only 1708
users (1.98s response time). On the TPC-H benchmark (300GB
database), the AlphaServer GS320 reports audited results of 4952
QphH [22]. This compares to a 64-CPU IBM NUMA-Q system at
7334 QphH and a 32-CPU HP9000 V2500 system at 3714 QphH.
Our early audited result for TPC-C of 122K tpmC with 32 pro-
cessors [37] is in between the IBM RS/6000 S80 (24-CPU) result of
135K tpmC and the Sun Enterprise 10000 (64-CPU) result of 115K
tpmC [36]. However, this result has been withdrawn in anticipa-
tion of a better result after further tuning. Finally, the AlphaServer
GS320 achieves a user count of 11,200 on the single system Or-
acle Applications standard benchmark, compared to 14,000 users
for the IBM RS/6000 S80.

7 Discussion and Related Work

The AlphaServer GS320 architecture incorporates an interesting
mix of techniques for improving directory-based protocols and in-
corporates a couple of novel optimizations for efficiently imple-
menting consistency models. Even though cache coherence and
consistency have been extremely active areas of investigation for
the past decade, by far the majority of this work has focused on
large-scale designs. However, there is very little market demand
for such large systems, primarily due to the lack of scalable soft-
ware and fault-containment mechanisms. Virtually all the tech-
niques used in the AlphaServer GS320 were initially inspired by
targeting medium-scale designs and the desire to exploit their lim-
ited size. As it turns out however, several of these techniques are
directly applicable to larger-scale directory-based and smaller-scale
snoopy-based designs (see Sections 3 and 4). Much of the related
work has already been referenced in earlier sections. This section
presents a brief comparison with a couple of contemporary designs,
and discusses other previous work pertinent to coherence protocols
and consistency model implementations.

We briefly compare the AlphaServer GS320 to the Sun Enter-
prise 10000 [10, 34] and the SGI Origin 2000 [27], which rep-



resent the current state-of-the-art in snoopy-based and directory-
based designs respectively. Hristea and Lenoski [20] provide de-
tailed latency and bandwidth measurements on the Sun and SGI
systems. The sustained bandwidth per processor is 195MB/s for
Sun and 554MB/s for SGI, compared to over 1GB/s in our sys-
tem. The peak bisection bandwidths for 32-CPU configurations
are: about 6GB/s for Sun (10.6GB/s for 64-CPUs) [10], 6.2GB/s
(12.5GB/s with Xpress links or with 64-CPUs) [32], and 12.8GB/s
for our design. The local memory latencies (back-to-back depend-
ent reads) are 560ns and 472ns for Sun and SGI, compared to 327ns
in our design. Local dirty latencies are 742ns and 1036ns for Sun
and SGI, compared to 564ns in the AlphaServer GS320. Our 2-hop
and 3-hop read latencies are comparable to the SGI for a similar
size system (results provided in [20] are for 4-6 CPU SGI config-
urations). However, our design shines with respect to pipelined
independent reads.

As mentioned earlier, there has been little work on efficient pro-
tocol designs for medium-scale systems. Bilir et al. [7] propose
the idea of selectively using multicast snooping within a directory-
based protocol as a possible mechanism for reducing 3-hop transac-
tion latencies. However, the combination of snooping within a dir-
ectory scheme can lead to a complex protocol with higher message
counts and resource occupancies. Hagersten and Koster [17] de-
scribe the implementation of the Sun Wildfire prototype which con-
nects up to four large snoopy-based SMP nodes using a directory-
based protocol. Given the limit of four nodes, the designers opt for
simplifying the protocol at the cost of efficiency and performance.
Their protocol uses extra messages, along with blocking at the dir-
ectory, to eliminate the possibility of all races: (i) writebacks use
a three-phase protocol to first get permission from the home node
before sending the data (eliminates late request race), and (ii) three-
hop transactions are augmented with extra messages to inform the
home when the requester receives its reply (eliminates early request
race). The above design choice leads to higher occupancy and mes-
sage counts compared to typical directory protocols. Finally, the
prototype incurs high memory latencies: 1762ns for a 2-hop clean
read and 2150ns for a 3-hop read.

While some of the techniques used in our protocol are not novel
and have been previously used in other protocols, we believe that
our protocol embodies a unique combination of these techniques
that leads to an efficient low-occupancy design. For example, the
Scalable Coherent Interface (SCI) protocol [16] also does not re-
sort to NAKs and retries. However, its uses a strict request-reply
protocol which incurs an extra hop for dirty remote misses. Further-
more, its linked list directory structure leads to substantial design
complexity and can also result in long invalidation latencies. In
contrast, our protocol uses a centralized directory, and exploits an
extra network lane (i.e., total of 3 lanes) to avoid using a strict
request-reply scheme.

There has been much work on more efficient implementation
of consistency models. The technique of hardware prefetching
from the instruction window [14] issues non-binding prefetches
for memory operations whose addresses are known, and yet are
blocked due to consistency constraints. Speculative load execu-
tion [14] increases the benefits of prefetching by allowing the re-
turn value of the load to be consumed early. The latter technique
requires hardware support for detecting violations of ordering re-
quirements due to early consumption of values and for recovering
from such violations. Violations are detected by monitoring coher-
ence requests (and cache replacements) for the lines accessed by
outstanding speculative loads. The recovery mechanism is similar
to that used for branch mispredictions and exceptions. Both of the
above techniques are implemented in a number of commercial mi-
croprocessors (e.g., MIPS R10000, and various implementations of
HP PA-RISC and Intel Pentium processors). More recently, Gniady
et al. [15] have proposed to extend the speculative load technique
to apply to stores as well. However, this idea leads to a number
of complexities arising from the need to perform speculative stores
in the cache hierarchy without making them visible to other pro-
cessors and to roll back such stores in case a violation is detected.

The early commit technique implemented in the AlphaServer
GS320 applies to both loads and stores, does not depend on any
mechanisms for detecting violations and rolling back, and is com-
plementary to the above speculative techniques. In fact, there is po-
tential for synergy from combining these techniques. For example,
the size of speculative resources (e.g., the speculative load buf-
fer [14]) may be reduced since an operation can be considered non-
speculative as soon as the early commits for previous memory op-
erations are received (i.e., instead of waiting for the longer latency
data replies).

The early acknowledgement of invalidations (Section 4.1) is re-
lated to to Afek et al.'s lazy caching [1, 2], Dubois et al.'s delayed
consistency [11], and Landin et al.'s race-free network [26] ideas.
However, these ideas had various limitations with respect to applic-
ability to a wide range of designs, efficiency of implementation,
and (in some cases) correctness. Gharachorloo's thesis (Sections
5.4-5.5) [13] provides a generalization of this technique that allevi-
ates the above limitations.

Finally, it would be interesting to further isolate the perform-
ance effects of the various coherence and consistency optimizations
used in the AlphaServer GS320. Unfortunately, using the hardware
implementation for this purpose is extremely difficult since we do
not have the ability to selectively turn on and off various optimiza-
tions.

8 Concluding Remarks

While much of the shared-memory multiprocessor research in the
past decade has focused on large-scale systems, the high-end server
market is primarily characterized by systems with at most 32 to 64
processors. Even though building systems with more processors is
quite feasible from a hardware standpoint, the market demand for
such systems is extremely limited due to the lack of scalable ap-
plications and operating systems and compelling fault-containment
solutions.

This paper described the architecture of the AlphaServer GS320
which is targeted at medium-scale multiprocessing with 32 to 64
processors. Our design incorporates a number of innovative tech-
niques for improving directory-based protocols and efficiently im-
plementing consistency models. Our coherence protocol exhibits
lower occupancy and lower message counts compared to previous
designs, and naturally lends itself to elegant solutions for deadlock,
livelock, starvation, and fairness. Our design also includes a couple
of novel techniques for efficiently supporting memory ordering.
These techniques allow a memory operation to be considered com-
plete from an ordering perspective well before its data reply is
formulated, and also allow for quicker delivery of the data reply
on the inbound path to the requesting processor. The above tech-
niques were all initially inspired by eliminating the requirement for
scalability in our design, allowing us to consider solutions which
may have otherwise been overlooked [12]. As it turns out however,
several of these techniques are directly applicable to larger-scale
directory-based and smaller-scale snoopy-based designs.

Technology has changed quite dramatically in the past four
years since we began the design of the AlphaServer GS320. The
next-generation AlphaServer is based on the Alpha 21364 which
integrates a 1GHz 21264 core, two levels of caches, memory con-
trollers, coherence hardware, and network routers all on a single
die [3, 6]. Aggressive chip-level integration is also being employed
in designs based on single chip multiprocessors (CMP) [5, 18].
The protocol design ideas explored in the AlphaServer GS320
have already influenced our more recent designs within Compaq,
including the Alpha 21364 [3] and Piranha [5]. Furthermore,
the memory consistency implementation techniques developed for
the AlphaServer GS320 are especially well-suited for future CMP
designs given the tight-coupling among on-chip processors and the
hierarchical nature of systems built from CMP nodes.
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