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Abstract
In order to execute a program on a remote computer, it must first

be transferred over a network. This transmission incurs the over-
head of network latency before execution can begin. This latency
can vary greatly depending upon the size of the program, where it
is located (e.g., on a local network or across the Internet), and the
bandwidth available to retrieve the program. Existing technologies,
like Java, require that a file be fully transferred before it can start
executing. For large files and low bandwidth lines, this delay can
be significant.

In this paper we propose and evaluate a non-strict form of mo-
bile program execution. A mobile program is any program that is
transferred to a different machine and executed. The goal of non-
strict execution is to overlap execution with transfer, allowing the
program to start executing as soon as possible. Non-strict execu-
tion allows a procedure in the program to start executing as soon as
its code and data have transferred. To enable this technology, we
examine several techniques for rearranging procedures and reor-
ganizing the data inside Java class files. Our results show that non-
strict execution decreases the initial transfer delay between 31%
and 56% on average, with an average reduction in overall execu-
tion time between 25% and 40%.
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The computational paradigm of the Internet is such that applica-
tions are retrieved from remote sites and processed locally or are
transfered for remote execution. These applications are referred to
as mobile programs. The performance a mobile program achieves
is determined by processor speeds and the rate at which the appli-
cation can transfer to the remote site. As the gap between processor
and network speeds continues to widen, mechanisms to compen-
sate for network latency are required to maintain acceptable perfor-
mance of mobile programs.

Performance is most commonly measured by overall program
execution time. Additionally, in a mobile environment, performance
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is measured by invocation latency. Invocation latency is the time
from application invocation to when execution of the program ac-
tually begins. Research has shown that invocation latency is crucial
in how users view the performance of an application. Early work
investigated the effect of time-sharing systems on productivity (e.g.,
see [6]), and concluded, among other things, that increased system
response time disrupted user thought processes. More recent work
focuses on the effect of transmitting video over the Web, and con-
trasts the negative impact of unpredictable Web latency with earlier
systems in which latency was more predictable [15].

Network transfer delays can result in significant invocation la-
tency and the communication delay can dominate execution time of
mobile applications. To amortize the cost of network transfer to the
execution site, code execution should occur concurrently with (i.e.,
overlap) code and data transfer. However, existing mobile execu-
tion facilities such as those provided by the Java programming en-
vironment [11] typically enforce strict execution semantics as part
of their runtime systems. Strict execution requires a program and
all of its potentially accessible data to fully transfer before execu-
tion can begin. The advantage of this execution paradigm is that it
enables secure interpretation and straightforward linking and verifi-
cation. Unfortunately, strictness prevents overlap of execution with
network transfer, and little can be done to reduce the cost of transfer
latency.

In this paper we investigate the efficacy of non-strict execution:
Procedures execute at the remote site without the restriction that the
files the procedures are contained in transfer prior to execution. To
examine the potential of non-strict execution, we use Java as our
execution environment because of its widespread use for Internet
computing. We show substantial performance benefits (in terms of
reduced invocation latency and decreased program execution time
when the transfer time is included). We also identify file restruc-
turing techniques that take advantage of non-strict execution. In
doing so, we propose compiler-based and profile-based approaches
for partitioning and restructuring programs so that strictness is en-
forced at the method level only. In addition, we investigate non-
strict execution in the presence of two transfer methodologies: par-
allel file transfer, a technique that schedules the simultaneous trans-
fer of multiple class files, and interleaved file transfer, in which the
transfer of data and methods are interleaved among the different
class files in a program.

We first summarize related work in Section 2. Section 3 de-
scribes our approach to non-strict execution. Section 4 describes
the procedure reordering algorithms we considered for non-strict
execution. Section 5 describes the two transfer methodologies we
examine for using non-strict execution. In Section 6 we describe the
methodology used to perform our studies, and in Section 7 we show
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the benefits of non-strict execution with program restructuring. We
summarize our contributions in Section 8.

� ����� � ����	� ��	�

While widespread computing with mobile programs is a relatively
new phenomenon, there are three areas of research that are closely
related to our work: code compression, program restructuring, and
continuous compilation. In this section, we discuss each area in
turn, and compare existing work with our own.

�� ��� � ���� ����� 	������
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For non-strict execution, we advocate maximizing the overlap be-
tween execution and network transfer as a way to reduce the over-
head introduced by network delay (i.e., latency tolerance). An alter-
native and complementary approach is to reduce the quantity of data
transferred through compression (i.e., latency avoidance). Several
approaches to compression have been proposed to reduce network
delay in mobile execution environments, and we discuss those here.

Ernst et al. [7] describe an executable representation called BRISC
that is comparable in size to gzipped x86 executables and can be
interpreted without decompression. The group describes a second
format, which they call the wire-format, that compresses the size
of executables by almost a factor of five (gzip typically reduces the
code size by a factor of two to three). Both of these approaches are
directed at reducing the size of the actual code, and do not attempt
to compress the associated data.

Franz describes a format called slim binaries in which programs
are represented in a high-level tree-structured intermediate format,
and compressed for transmission across a wire [8]. The compres-
sion factor with slim binaries is comparable to that reported by
Ernst et al., however Franz’ reports results for compression of en-
tire executables and not just code segments. Additional work on
code compression includes [9, 18, 27].

Our work is distinct from, and complementary to, code com-
pression techniques as the approaches mentioned do not attempt to
reorganize the code and data that is being compressed. Our meth-
ods will benefit from compression, just as the positive effects of
these compression techniques can be enhanced by reorganization,
restructuring, and non-strict execution.
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Classical program restructuring work attempts to improve program
performance by increasing program locality. Historically, because
virtual memory misses have always incurred a very high cost, pro-
grams are reorganized to increase the temporal locality of their
code. For example, if procedures are referenced at approximately
the same time, then they are placed on the same page. Attempts
to understand and exploit reference patterns of code and data have
resulted in such algorithms as least recently used page replacement
(e.g., see [2, 13]) and Denning’s working set model [5].

More recently, as memory sizes have increased, interest has
shifted to improving both temporal and spatial locality for all lev-
els of memory. Many software techniques have been developed for
improving instruction cache performance. Techniques such as ba-
sic block re-ordering [14, 22], function grouping [10, 12, 14, 22],
reordering based on control structure [20], and reordering of system
code [25] have all been shown to significantly improve instruction
cache performance. The increasing latency of second-level caches
means that expensive cache usage patterns, such as ping-ponging
between code laid out on the same cache line, can have dramatic
effects on program performance.

Most of the prior work in code reordering has focussed on im-
proving overall program locality, since the physical memory or cache
was a limited resource with a constrained size. As a result, replace-
ment policies and the cost of replacement play a significant role in
the algorithms. Our problem, that of reorganizing mobile programs
for wire transfer, is substantially different, in that we are only con-
cerned with the first use of an object and are (at least in the current
work) not concerned with subsequent uses.

���� � ��� ��� ��� �����!� ����� � � � ��� ���
The final area of related research is that of continuous compila-
tion [23]. Continuous compilation is a method for improving the
performance of Just–In–Time compilers. Just–In–Time compila-
tion produces executable code just prior to when it is executed.
Continuous compilation combines interpretation of code with com-
pilation in order to reduce the overall execution time of the pro-
gram as well as to compile the program for future execution: over-
lapping interpretation with compilation. Our project is similar in
that our techniques can also provide a mechanism for improved re-
mote Just–In–Time compilation performance; but we overlap trans-
fer with execution.

� " ���$#�% �
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To study the benefits of non-strict execution we require a platform
for mobile programs. Our methods can potentially be applied to
any mobile program system (e.g., Omniware [1] or ActiveX [4]),
but we choose to use Java because of its widespread use and built-in
support for mobile programs. In this section we describe non-strict
execution and its implications for Java.

Java is an object-oriented language that enables remote execu-
tion by providing a platform independent executable representa-
tion and object-oriented modularity through an abstraction called a
class file. The class file contains information about the Java classes
represented in an architecture–independent form, called bytecodes,
which may either be compiled for a particular architecture or inter-
preted. The class file information enables various run time verifi-
cation and security techniques to be implemented by an interpreter,
describes global data structures, and provides access information
through a set of access flags. The only requirement for execution of
Java class files is the presence of the Java Virtual Machine (JVM)
bytecode interpreter or Just-In-Time compiler. These are necessary
since the bytecodes must be translated into architecture specific ma-
chine instructions for execution.

In existing implementations of the Java interpreter and the JVM,
each Java class is in a separate file. Figure 1 provides a visual of the
class files from an arbitrary application. There are two classes, A
and B, containing three and two methods, respectively. The classes
also contain global data (pictured) and local data (contained within
the methods). The order of the methods in the class file is equivalent
to that in the Java source file. We will use this example throughout
the paper to clarify selected points.

The Java interpreter is invoked by providing the file name of
the class to be executed. All classes required by the program are
commonly loaded when the interpreter is invoked. In addition, in a
mobile program context, all classes loaded are verified as part of the
linking process. The JVM allows dynamic loading of classes but the
entire class file must be loaded in order for any method within the
class to execute. Such strict execution of classes imposes a major
performance limitation. With existing network transfer delays, the
invocation latency can be significant, and the communication delay
can dominate the execution time of a Java application.
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Figure 1: Example Java Application: Class A contains global data
and three procedures, Foo A, Bar A, and Main; Class B contains
global data and two procedures, Foo B, and Bar B.

When a program is executed remotely, the first class file to ex-
ecute (the class containing the main routine: Class A in Figure 1)
is transferred to the remote site. In some implementations, other
non-local class files are not requested to transfer until the program
executes code that uses those classes. In other cases, all of the class
files in the package or application may be transferred concurrently
in a non-specified order. The two restrictions to the JVM model of
execution are that (1) each class cannot start to execute until the full
class file has been transferred, and (2) the class file must transfer to
completion once it has started to transfer.

To decrease the invocation latency and to allow idle cycles to
be used by overlapping execution with transfer, we propose using a
non-strict transfer and execution model at the procedure (method)
level. In this model, a class file is partitioned into two parts: global
data needed to begin execution of any method within the class, and
code (with local data) needed to begin execution of each procedure.
Transferring the global data first allows the JVM to incrementally
perform the linking process (described below) when overlapping
the execution with the transfer. In our non-strict version of Java,
inside each class file a method delimiter is placed after each proce-
dure and its data. The method delimiter is used to indicate that the
data and procedure have transferred, so that the procedure can begin
execution. During the execution of a Java program, if a procedure is
called but it or its data have not completed transferring, the program
is stalled until the procedure’s delimiter has transferred.

�� � " ����#�%��
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The goal of this paper is to examine the performance improvement
achievable from non-strict execution. For this approach to be vi-
able, we need to address the effect of non-strict execution on linking
of class files for Java. In this subsection, we describe at a high level
the JVM changes that are necessary to support non-strict execution.

To allow non-strict execution to work using Java, the JVM link-
ing of class files is performed incrementally. The linking of a Java
program is the process of taking a Java binary (expressed as byte-
codes) and putting it into the runtime state of the JVM by perform-
ing (1) verification, (2) preparation, and (3) resolution on the byte-
code stream. Verification is the process of verifying the structure of
a Java class file to know it is safe to execute. Preparation involves
allocation of static storage and any internal JVM data structures.

For initialization, Java executes any class variable initializers (class
constructors) in textual order. Resolution is the process of check-
ing a symbolic reference before it is used. Symbolic references are
usually replaced with direct references during this phase. While
verification and preparation can be performed once the global data
is transferred, resolution can be performed lazily as procedures are
invoked.
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The JVM has five steps in verifying a class file as described in [19].
The first two verify the structure of the class file and the global data.
Since the global data is the first to transfer, this verification can pro-
ceed as soon as the global data is transferred. Step 3 is performed as
each procedure is transferred, and Step 4 is performed as each pro-
cedure is executed. Dependence analysis is performed at each step
to determine whether each class can be trusted for interpretation.
When classes are dynamically loaded, cross class dependences are
resolved during linking of these classes.

In a non-strict execution environment, incremental cross class
dependency resolution is extended to the procedure level. Within
procedures, dependence analysis remains as it is. Interprocedural
dependence analysis is performed as methods are loaded and veri-
fied.

The other responsibility of the verification process is to provide
security for the underlying system in which the linked program is
executed. The whole verification process can be avoided by provid-
ing a means of trust between the compiler that produced the Java
class file and the JVM interpreter. For example, with security mech-
anisms for digital signatures [3] or software fault isolation [26], the
verification step can be skipped completely.

� 	 � 	 ����
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To capitalize on the benefit achieved from non-strict execution, it
is necessary to predict the execution order of the procedures in the
program, and then to place them in the class file in this predicted
order. This order is different from prior code reordering research.
We need to predict a First Use ordering, that is, the order in which
the methods are first executed. We examine the performance of
two reordering techniques. The first approach uses static program
estimation to predict the order of invocation for procedures, and the
second approach uses first-use profiling to create a profile indicating
the order of invocation.

In this study, we model non-strict execution of procedures be-
cause of the modularity that procedures provide. Non-strict execu-
tion can be performed at the basic block level; however, preliminary
experiments show that checking for a delimiter at the conclusion of
each basic block incurs additional overhead with little added ben-
efit. Code reuse in object-oriented languages, like Java, results in
small method sizes. The applications we use for our simulations
support this claim. With method level support for non-strict exe-
cution, large procedures can still benefit by using the compiler to
break the procedure up into smaller procedures. In this paper, we
do not perform any procedure splitting since the procedures in our
test programs are of reasonable size.

� � � % ��� ��� � 	 � 	�� ��
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The first technique we examine for first-use order prediction uses
a static call graph. To obtain this ordering, we construct a basic
block control flow graph for each procedure with inter-procedural
edges between the basic blocks at call and return sites. The pre-
dicted static invocation ordering is derived from a modified depth
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first search (DFS) of this control flow graph, using a few simple
heuristics to guide the search.

A flow graph is created to keep track of the number of loops and
static instructions for each path of the graph. When generating the
first-use ordering, we give priority to paths with loops on them, pre-
dicting that the program will execute them first. When processing a
forward non-loop branch, first-use prediction follows the path that
contains the greatest number of static loops. In addition, looping
implies code reuse, and thus increases the opportunity for overlap
of execution with transfer. The order in which procedures are first
encountered during static traversal of the flow graph determines the
first-use transfer order for the procedures. When processing con-
ditional branches inside of a loop, the first-use traversal traverses
all the basic blocks inside the loop searching for procedure calls,
before continuing on to the loop-exit basic blocks.

To process all the basic blocks inside of a loop before continu-
ing on, first-use prediction uses a stack data structure and pushes a
pair, (x,y), onto the stack when processing a loop-exit or back edge
from a conditional branch. The pair consists of the unique basic
block ID and the ID of the loop-header basic block. These pairs are
place holders, which allow us to continue traversing the loop-exit
edges once all the basic blocks within the loop have been processed.
When all the inner-basic blocks have been traversed, and control
has returned to the loop-header basic block, the algorithm continues
the psuedo DFS on the loop-exit edges by popping the pairs off the
top of the stack. Upon termination of the modified DFS algorithm,
the static traversal of the procedures determines their first-use or-
der, and the methods are reordered within each class file to match
this ordering.

� ��� � 	�� � � ��� � � ��� 	 � 	�� � 
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The second method we include for code reordering uses profile in-
formation to determine the first-use ordering of procedures. A first-
use profile is generated by keeping track of the order in which pro-
cedures are invoked during a program’s execution using a particular
input. All procedures that are not executed are given a first-use or-
dering during placement using the static approach described above.

Since a program’s execution path may be input dependent, we
attempt to choose adequate sets of inputs in order to provide an ex-
ecution path that is similar to most of the possible inputs. In our
results section we include the efficacy of using the training (initial)
input set to determine the profile for the first use ordering for ex-
ecutions on both the training input set (perfect prediction) and an
arbitrary, more robust test input set.

We now use our example application to clarify static and profile
driven first use estimation. In the simple application, there are no
control flow constructs except for the procedure calls and thus, the
static and profile driven method in this case produce the same first
use call graph, pictured in Figure 2. We then restructure the class
files using this first use information and reorder the class files as
pictured in Figure 3. In the next section, we use this new order-
ing to determine when we transfer the classes over the network for
execution.

� � � � � � �� ��+�� 	������ + ��	
In this section we discuss transfer techniques. The techniques we
present are not the only techniques that can be used with non-strict
execution to transfer files; they are two possible examples of trans-
fer methodologies that can take advantage of non-strict execution
and program restructuring.

� Parallel File Transfer - multiple class files transfer indepen-
dently and in parallel sharing fixed bandwidth.

Figure 2: First Use Call Graph: The first use call graph is generated
using the static first use estimation or the profile. It is then used to
determine the order in which the files transfer for remote execution.

� Interleaved File Transfer - all methods in the application are
interleaved and transferred as a single virtual class using all
of the available bandwidth.

The transfer techniques we examine mask transfer latency by
overlapping execution with transfer. More specifically, they are a
form a prefetching; the techniques predict the order in which pro-
cedures execute, in attempt to transfer the code and data prior to
the cycle in which execution of each initiates. The techniques do
not reduce the time required to transfer the files to the destination,
except for cases in which a program using non-strict execution fin-
ishes executing before transfer completes. For the results in this
paper, if an application completes execution before all the methods
have transferred, we terminate the remaining transfer.

� � � � � 	���� � ��� 	 ��� ��� 	�������+ � 	
Current Internet HTTP transfer technology allows multiple files to
be transferred in parallel. The latest release of the HTTP 1.1 spec-
ification uses a single TCP connection. This allows up to four out-
standing requests can be made (pipelining) [21]. In this vain, we
model the transfer of multiple classes at once to assure that methods
arrive as near to the predicted start of their execution as possible.
The transferring files split the fixed amount of bandwidth available
equally. In addition, classes are not preempted by the transfer of
other classes; i.e., they transfer to completion once started.

Since bandwidth is shared, we require a schedule that indicates
when class files should be transferred to obtain efficient overlap of
the execution with transfer. A Transfer Schedule is created using the
first-use procedure order determined by the reordering techniques.
There are many factors that must be taken into account when devel-
oping a transfer schedule.

First, information about the size of each procedure and class file
is required. The size of global and local data is also needed. For
our experiments, we assume that all of the global data in a class file
is transfered first. Each procedure is then transfered: local data and
then code. Transfer completes once the entire class file transfers in
this manner. With the size information, the scheduler can make an
informed prediction of the time it will take to transfer the various
parts of each file.
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Figure 3: Reordered Class Files: The example application is re-
structured according to the static first use estimation or the pro-
file. Restructuring reorders the procedures so that they appear in
the class files in the order each is executed the first time.

Another key factor necessary for creating a schedule is deter-
mining the relative point in time that execution transfers for the
first time from one procedure to another. Figure 4 is an exam-
ple of a parallel file transfer schedule for the application introduced
previously. Since the method main in class A calls method Bar B
of class B, Bar B must have completed transfer when procedure
main executes the call to procedure Bar B in order for execution to
continue uninterrupted. The schedule determines that class B must
begin transfer prior to when class A begins in order to ensure that
method Bar B has completed transfer when it is called. It is appar-
ent with this small example that a transfer schedule construction is
complicated. The transfer order in the figure implies that method
Bar B will execute enough unique bytes to allow for method Bar A
of class A to complete transfer. In addition, the transfer schedule
guarantees that all such first use dependency requirements are met.

We examined several algorithms for creating a transfer schedule
and settled on a greedy algorithm that creates a schedule processing
the class files in terms of their first usage, overlapping transfer of
different class files to allow a procedure to transfer in time to switch
from one class file to the the next without stalling execution.

The greedy algorithm establishes dependencies between files
from the first-use procedure reordering. Class file B is dependent
on a class file A if class file A executes a procedure prior to the
execution of the first procedure of B. For example, in our sample
application, class file B is dependent on class file A since main
executes prior to Bar B. The global data in class B and all code
up to and including procedure Bar B must have completed trans-
fer when the method main in class A calls method Bar B in class
B. With the dependence information, the algorithm uses the num-
ber of unique bytes from each of the dependencies to determine the
transfer schedule. If we are using the static first use estimation tech-
nique, the number of unique bytes is computed by accumulating the
total static size in bytes of procedures that are executed before trans-
ferring to the dependent class file. For the profile driven estimation
technique, unique bytes are accumulated using the total size of the
instructions executed from the procedures that a class file is depen-
dent on. In our example, method Bar B is dependent on k unique
bytes from A where k is the sum of the total bytes of class A’s global
data, and the (unique) bytes in method main (of class A).

During execution, a new class begins transfer once the predicted
number of bytes from all classes that the new class is dependent on
have transfered. Additionally, there must be bandwidth available
for the class to begin transfer. If there is a restriction on the number
of classes that can transfer at once (e.g., four in the recent spec-
ification of HTTP 1.1), then the class must wait until a currently
transferring class completes transfer. In our results section we ex-
amine the impact of limiting the number of classes that can transfer
at once.

Figure 4: Parallel File Transfer Schedule: Class B must start earlier
than class A so that first use dependencies are met according to the
requirements determined from the first use procedure order and ad-
ditional size information. The arrow indicates the place in the code
where Bar B is called by method main. Bar B must have completed
transfer at this point in order to prevent the execution from stalling.

If the restructuring techniques have mispredicted the execution
order, parallel file transfer must dynamically correct for this during
execution. A misprediction occurs when a procedure is invoked, but
the class file the procedure is contained in has not been transfered
and is currently not transferring. If there is available bandwidth, and
the limit on the number of files that can be concurrently transfered
has not been exceeded, the missing class file immediately starts to
transfer. If the class file cannot start transferring because of the
transfer file limit, it is queued up to be transfered next.

� ��� ��� ����	 � ���$/��  	 ��� ��� 	 ����� + ��	
In Java, an application is composed of multiple classes each con-
taining global data, local data and code. This organization is similar
to other programming languages for which multiple files comprise
the executable program: for those languages the final program is
typically a single binary. With interleaved file transfer, we consider
a group of Java class files and compose a program as a single en-
tity (an interleaved file), consisting of multiple procedures and data.
This technique transfers the procedures and data to the destination
in the order specified in this virtual interleaved file.

An interleaved file is a reordering of procedures. The transfer
algorithm takes the application and the restructuring information as
input. It generates an interleaved file from the input information and
transfers it in the order dictated by the restructuring, e.g., methods
from different classes may be interspersed for transfer. This transfer
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Figure 5: Virtual Interleaved File: This file is a combination of all
of the class files in an application. The methods are interleaved to
provide the most efficient transfer schedule according to the first
use procedure order.

technique assumes that transfer proceeds at the method (procedure)
level, in the order established by the restructuring algorithms. Fig-
ure 5 illustrates an interleaved file for our example application.

A method grouped together with its local data is a transfer unit.
A single transfer unit is transferred at a time in the order specified
by the first use procedure order. This allows each unit to acquire the
total bandwidth available. As with parallel file transfer, global data
is sent first and a procedure may execute if its code and data have
all transferred. If this information has not arrived, then execution is
stalled until the necessary transfer completes.

� &�($� � 	 � � � ������� � � � � � ��)� � ���
To evaluate non-strict execution for Java, we used a bytecode in-
strumentation tool called BIT [16, 17]. The BIT interface enables
elements of the bytecode class files, such as bytecode instructions,
basic blocks and procedures, to be queried and manipulated. We
use BIT to generate our first-use profiles, to perform the reordering,
and to simulate the execution of the restructured class files.

For our Java implementation, we use the JDK version 1.12beta
provided by Digital Equipment Corporation (DEC). The applica-
tions are instrumented and executed on a 500 MHz DEC Alpha
running operating system OSF V4.0. We present results for the six
Java programs described in Table 1. Five of the six programs are
applications and the other is an applet (Hanoi). The programs were
chosen based on the large number of bytecodes contained in each.
The programs are well known and have been used in previous stud-
ies to evaluate tools such as Java compilers, decompilers, profilers,
bytecode to binary, and bytecode to source translators [17, 24].

Table 2 shows the general statistics for the benchmarks. For
each benchmark we use two inputs, the test input and a smaller
train input. The static statistics shown in Table 2 apply to both
inputs, and the dynamic statistics are shown for the test input, with
the dynamic statistics for the train input shown in parenthesis.

�� � % � � ��� � � ��	 � �� �$�
Our simulation results are in terms of the number of Alpha pro-
cessor cycles needed to execute a program taking into account the
cycles for transferring the program and the cycles for executing the
program. To develop a baseline for the number of cycles it takes
to execute a program with strict execution, we first timed each pro-
gram to find out the number of cycles to execute the program on
a 500 MHz Alpha 21164 processor. The number of cycles it took

to execute each program and its program average CPI is shown in
Table 3. Table 3 shows, the CPI (Alpha cycles per Java bytecode
instruction) varies significantly with the application, ranging from
82 to 3830. The reason for this high variance is that some appli-
cations, such as Hanoi, invoke bytecodes that call uninstrumented
implementations of some methods, e.g., window system calls. We
use the average CPI for each program to model the number of cy-
cles it takes to execute each bytecode instruction when performing
our simulations. In our future work we plan to establish a more
accurate measurement of the cycles required for each of the indi-
vidual bytecode instructions in order to more accurately model this
variance.

To evaluate non-strict versus strict execution we examine the
performance of transferring the program over a T1 link (1Mb/sec)
and a 28.8 Kbaud modem link (29Kb/sec). For a 500 MHz Al-
pha this equates to the T1 link taking approximately 3,815 cycles to
transfer each byte, and 134,698 cycles to transfer 1 byte for the Mo-
dem link. These numbers are used during our cycle level simulation
to determine how many bytes of each class file have finished trans-
ferring each cycle. This number is then used to determine when the
global data or a procedure has finished transferring.

Table 3 shows the average CPI and the number of cycles (in mil-
lions) to execute the program. The fourth column shows the number
of cycles (in millions) to transfer the complete program. The next
column shows the total number of cycles to execute the program for
strict execution, which is the sum of columns three and four. The
fifth column shows the percent of strict execution due to the transfer
delay. In reporting our results we computed a normalized execution
time. The normalized execution time is calculated by taking the
number of cycles for our current configuration and dividing that by
the number of cycles for strict execution reported in Table 3.
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To evaluate the impact of non-strict execution and program restruc-
turing we present simulation results. The overall improvement is
achieved by reducing the total number of cycles that an applica-
tion waits for transferring code and data. This improvement results
from the combination of non-strict execution and transfer schedule
techniques. Our results measure the impact on invocation latency
as well as on total execution time. In addition, we discuss the im-
pact of global data restructuring to provide additional performance
improvements.

� � � ����/ � � � ��� ��� ��� ��� �����
Invocation latency is the number of cycles between the initiation
of remote execution of an application and when execution of the
application actually begins. We present these results to emphasize
the importance of non-strict execution. If an application is allowed
to begin execution upon receiving the first procedure (e.g., main())
instead of being required to wait for the entire first file to transfer,
then invocation latency can be greatly reduced.

Table 4 shows the the number of cycles (in millions) from ini-
tiation until the program can start executing. For strict execution,
this is the time it takes for the first class file to finish transferring.
For non-strict execution, this is the number of cycles it takes for
the global data and the first procedure to finish transferring. In
parenthesis is the percent decrease in cycles provided by non-strict
execution. Data partitioning is included with these results but ex-
plained in detail in Section 7.3. In essence, it is the restructuring
of the global data throughout the class as it is needed, as opposed
to transferring it all at the start of the class. The results show that

6



BIT Bytecode Instrumentation Tool: Each basic block in the input program
is instrumented to report its class and method name

Hanoi (Java Applet) Towers of Hanoi puzzle solver: Solutions to 6 and 8 ring problems are computed
JavaCup LALR Parser Generator: A parser is created to parse simple mathematics expressions
Jess Expert System Shell: Computes solutions to rule based puzzles
JHLZip PKZip file generator: Input is combined into a single file in PKZip format
TestDes DES encryption/decryption algorithm: Encrypts a string then decrypts it

Table 1: Description of Benchmarks Used.

Dynamic Instrs Static Instructions Instrs
Total Size In Thousands In Thousands Total Per

Program Files KB Test (Train) Total % Executed Methods Method
BIT 48 124 7763 (5582) 10.8 66 643 17
Hanoi 3 6 329 (68) 0.4 85 58 8
JavaCup 35 139 318 (126) 14.8 81 843 18
Jess 97 266 3116 (270) 15.1 47 1568 10
JHLZip 7 35 2380 (1023) 4.0 76 186 22
TestDes 3 50 310 (303) 8.9 98 51 174

Table 2: General Statistics for the Benchmarks. The columns represent the total number of files (classes), the size in KBytes of the application,
the dynamic instruction count (in thousands), the static instruction count (in thousands), the total number of methods, and the average number
of instructions per method.

Execution T1 Link (Millions of Cycles) Modem Link (Millions of Cycles)
Cycles Transfer Exe Total Strict % Cycles Transfer Exe Total Strict % Cycles

Program CPI in Millions (secs) Cycles (secs) Cycles (secs) Transfer Cycles (secs) Cycles (secs) Transfer
BIT 147 1141 (2.3) 776 (1.6) 1916 (3.8) 40.5 28404 (56.8) 27264 (54.5) 96.0
Hanoi 3830 1261 (2.5) 27 (0.1) 1289 (2.6) 2.1 2327 (4.7) 1066 (2.1) 45.8
JavaCup 1241 482 (1.0) 988 (2.0) 1471 (2.9) 67.2 35208 (70.4) 34726 (69.5) 98.6
Jess 225 700 (1.4) 1885 (3.8) 2585 (5.2) 72.9 66932 (133.9) 66232 (132.5) 99.0
JHLZip 82 194 (0.4) 258 (0.5) 452 (0.9) 57.0 9247 (18.5) 9053 (18.1) 97.9
TestDes 484 150 (0.3) 306 (0.6) 456 (0.9) 67.1 10952 (21.9) 10802 (21.6) 98.6
AVG 1001 655 (1.3) 707 (1.4) 1361 (2.7) 51.1 25512 (51.0) 24857 (49.7) 89.3

Table 3: Base Case Statistics. For each cycle count in this table, the equivalent number of seconds (on the 500Mhz Alpha) is provided in
parenthesis. The columns represent the average cycles per instruction, total time in cycles for local execution, transfer time required in cycles,
total execution time in cycles using strict execution, and the percentage of cycles due to transfer for both transfer rates, respectively.

T1 Link Modem Link
Program Strict NonStrict Data Part. Strict NonStrict Data Part.
BIT 14 11 (19) 10 (26) 475 386 (19) 352 (26)
Hanoi 13 7 (42) 3 (77) 452 263 (42) 106 (77)
JavaCup 66 34 (49) 8 (88) 2333 1197 (49) 287 (88)
Jess 24 16 (32) 7 (72) 835 572 (32) 237 (72)
JHLZip 13 8 (43) 3 (76) 465 267 (42) 112 (76)
TestDes 71 70 ( 1) 70 ( 1) 2481 2459 ( 1) 2457 ( 1)
AVG 33 24 (31) 17 (56) 1173 857 (31) 592 (56)

Table 4: The Effect of Non-Strict Execution and Program Restructuring on Invocation Latency. For each transfer rate we show: a cycle count
(in millions) to initiate strict execution, non-strict execution, and non-strict execution with data partitioning. The numbers in parenthesis are
the percent decrease of strict execution cycles.
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the invocation latency can be significant for strict execution, and
non-strict execution can help to reduce this delay by 31% to 56%.

� ����� /���	���� � &)(*��� ����� ���
The impact of non-strict execution can also be measured by the im-
provement of total remote execution time. The performance results
presented in the remaining tables are normalized to the baseline
model of strict execution. We compute the results as the percent
of normalized execution time by taking the number of cycles to
execute for a configuration and dividing it by the number of strict
cycles to execute the program from Table 3. For example, a per-
cent normalized execution time of 60 means that the number of
cycles was 60% of the base, which resulted in a 40% improvement,
so smaller numbers are better. For all of the results, our base ex-
ecution was a simulation in which the application transferred one
class to completion at a time and executed strictly: methods exe-
cute only when the entire class file in which they are contained has
been transferred.

We present the results for the different transfer methods and
for the T1 and modem link using procedure reordering guided by
our estimated static call graph (SCG), using the train input profile
to guide the ordering (Train), and using the test input profile to
guide the ordering (Test). All results are shown for executing the
test input. Therefore, the test results are perfect results since they
use both the test input to profile and restructure the program and to
gather the simulation results. Whereas, the Train results are more
realistic since the train input is used to guide the first-use ordering
and the simulation results are reported for the test input.

Table 5 and Table 6 show the results from our simulations us-
ing the parallel file transfer technique with restructuring for the two
transfer rates, respectively. Results are shown for limiting the num-
ber of files that can be transferred in parallel to one, two, and four.
Results for simultaneously transferring an infinite number of files
are also shown. The results show that a maximum number of four
parallel transfers is sufficient to provide most of the performance
improvement for non-strict execution.

The benefits from having a single virtual file is shown in Ta-
ble 7. Since a Java program consists of many files, these results
model the effect of interleaving the transfer among the different
files, or the performance that would be gained if the files were
combined into one unified virtual file. This technique transfers one
method at a time according to the predicted order of the restructur-
ing. The results show additional performance gains can be achieved
if all the class files were considered as one, or the transfer was in-
terleaved between the different class files.

� ��� � � 	 ��� ��� ��� � ��� ��+ � � ���������.� ���
Up to this point we have discussed restructuring the code section of
the class files only. We now consider restructuring the global data.
The global data section of each class file is divided into structures
containing information about the global data. Table 8 shows the
major parts of the class file pertinent to global data and the size
of each as a percentage of the total global data size. These fields
are described in detail in [19]. Since the constant pool takes up a
majority of the class file, we also describe the parts of this structure
in Table 8. These results show that if we are to optimize the data
for class files, then we should concentrate on the Constant Pool and
the Utf8 Java strings.

Table 9 shows the size of the global data in comparison to the
local data for the programs we examined. Since the global data
needs to be transferred before the first procedure, it can be advan-
tageous to split the global data and to store the global data that is
not needed at the method level. We examine breaking the global

data into the global data that must be transferred before execution,
the global data transferred with methods, and the global data un-
used as shown in Table 9. To break up the data at the method level
we propose creating a JVM GlobalMethodData (GMD) structure.
There is a GMD before each procedure in the new non-strict pro-
gram. The GMD contains only the data in the constant pool and
attributes that are needed to execute up to and including the proce-
dure the GMD is placed before in the compiled bytecode file. This
placement requires analysis to determine the first use of global data
across the predicted ordering of procedures. This decomposition al-
lows more efficient overlapping of computation and transfer, since
we no longer have to wait for an entire global JVM ClassFile
structure to be transferred before transferring the first procedure.
Table 10 contains the results from partitioning the data with non-
strict execution and code restructuring.

We include global data partitioning as an aside since imple-
menting it increasingly complicates the existing linking and veri-
fication process in the JVM, as well as the incremental verification
we suggest in this paper. All global data is currently required dur-
ing JVM verification; techniques are needed that enable verification
and security without requiring all of the global data at once. The re-
sults presented do not account for the overhead from a more compli-
cated verification process. In our future work, we hope to establish
techniques for such verification and to determine their performance
impact so that we may more accurately determine the significance
of partitioning the global data.

� � � % � ��� � 	 � ��+ � ��� � � ���
Our results show that significant performance gains can be achieved
by overlapping execution with transfer. Invocation latency is shown
to decrease on average between 31% and 56%.

Figure 6 provides a visual summary of our results for normal-
ized execution time. The Y-axis is the percentage of the execu-
tion time of the base case: strict execution with no restructuring.
The results show that a 25% to 35% reduction in executed cycles is
achieved when using the static call graph and 30% to 45% reduc-
tion in cycles is achieved when using training inputs to guide the
testing inputs.

� � ��� ��� ��� � �����
In this paper we present a non-strict model for transferring and ex-
ecuting programs for Internet computing. We present new tech-
niques for rearranging the program in first-use order along with
partitioning the global data for Java programs for more efficient
non-strict execution. We also present two new methods for trans-
ferring Java programs to take advantage of non-strict ordering. The
results show that non-strict execution combined with first-use code
reordering and transfer methods significantly reduces the latency
of invoking a remote application and the execution time for remote
computing for the programs we examined. The reduction in invoca-
tion latency ranges from 31% to 56% on average, and the reduction
in execution time ranges from 25% to 40% on average.

Although these latency hiding techniques are useful for improv-
ing Java performance, they may also be useful for Java related com-
pilation, e.g., just in time, ahead of time, or way ahead of time
compiling. If compilation can take place as the class files are be-
ing transferred, then the latency of transfer and compilation can
overlap. In addition, non-strict execution techniques can be applied
to other languages and mobile program technologies, such as Ac-
tiveX.
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T1 Link
SCG Train Test

Program One Two Four Inf. One Two Four Inf. One Two Four Inf.
BIT 99 96 94 90 94 88 79 79 90 87 79 79
Hanoi 100 99 99 99 100 99 99 99 100 99 99 99
JavaCup 82 81 76 76 63 61 61 59 61 56 55 55
Jess 97 93 86 77 94 90 78 70 89 64 64 64
JHLZip 97 82 74 74 82 79 72 72 75 73 72 72
TestDes 92 90 90 90 91 90 90 88 73 72 72 72
AVG 94 90 87 84 87 85 80 78 81 75 74 74

Table 5: Normalized Execution Time for Parallel File Transfer Using a T1 link. Results are shown for configurations where the transfer
technology can only transfer one, two, four and an infinite number of class files at a time.

Modem Link
SCG Train Test

Program One Two Four Inf. One Two Four Inf. One Two Four Inf.
BIT 95 92 88 76 57 55 53 53 56 54 53 53
Hanoi 90 90 90 90 90 88 88 88 90 87 88 87
JavaCup 69 69 67 65 63 60 58 56 54 54 54 54
Jess 72 70 69 69 57 57 56 55 54 53 52 51
JHLZip 56 55 55 55 56 53 53 53 54 53 53 53
TestDes 86 85 85 85 82 82 81 76 63 62 61 61
AVG 78 77 76 73 68 66 65 63 62 61 60 60

Table 6: Normalized Execution Time for Parallel File Transfer Using a 28 Kbaud modem link. Results are shown for configurations where
the transfer technology can only transfer one, two, four and an infinite number of class files at a time.

T1 Link Modem Link
Program SCG Train Test SCG Train Test
BIT 84 82 77 62 50 49
Hanoi 99 99 92 88 85 85
JavaCup 68 61 49 54 51 46
Jess 67 62 52 55 50 42
JHLZip 73 67 67 54 44 44
TestDes 74 72 72 63 60 60
AVG 78 74 68 63 57 54

Table 7: Normalized Execution Time for Interleaved File Transfer for both T1 and 28 baud modem transfer rates.
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Figure 6: Summary of Results: Average normalized execution time for both transfer rates. Results are shown for parallel file transfer, parallel
file transfer with data partitioning, interleaved file transfer, and interleaved file transfer with data partitioning.
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Percent of Global Data Percent of Constant Pool
Program CPool Field Attrib Intfc Utf8 Ints Float Long Double String Class FRef MRef NandT IMRef
BIT 88.2 9.2 0.7 0.0 80.1 2.2 0.0 0.0 0.0 1.8 2.4 2.6 4.5 0.1 6.3
Hanoi 93.5 3.3 0.8 0.1 75.1 0.0 0.0 0.0 1.2 0.2 3.0 4.3 6.3 0.0 9.9
JavaCup 95.3 2.9 0.5 0.0 80.3 0.3 0.0 0.0 0.0 2.3 1.7 1.8 6.1 0.1 7.3
Jess 95.6 2.0 0.6 0.1 81.9 0.2 0.0 0.0 0.0 1.1 3.7 1.3 5.4 0.1 6.2
JHLZip 94.2 4.0 0.5 0.0 63.2 17.0 0.0 0.0 0.0 1.0 1.6 3.1 6.0 0.1 8.0
TestDes 94.7 3.4 0.5 0.0 34.9 52.9 0.0 0.0 0.0 0.4 1.3 2.5 2.9 0.0 5.2
AVG 93.6 4.1 0.6 0.0 69.3 12.1 0.0 0.0 0.2 0.9 2.3 2.6 5.2 0.1 0.0

Table 8: Breakdown of Global Data and Constant Pool: Pertinent parts of ClassFile: Constant Pool (CPool), Fields, Attributes (Attribs),
Interfaces (Intfcs). Parts of the Constant Pool: Utf8 (Java strings), Integers (Ints), Floats, Longs, Doubles, Strings, Classes, FieldRef Struc-
tures (FRefs), MethodRef Structures (MRefs), Interface MethodRef Structures (IMRefs). Data given is the percent of the total size of the
containing structure.

Local Global % Globals % Globals % Globals
Program Data (KB) Data (KB) Needed First in Methods Unused
BIT 43.9 56.9 34 63 3
Hanoi 1.8 3.1 21 75 4
JavaCup 53.9 59.4 17 82 1
Jess 93.8 129.9 19 61 20
JHLZip 15.1 12.0 19 79 2
TestDes 29.7 5.0 15 84 1
AVG 39.7 44.4 21 74 5

Table 9: Breakdown of data in the class files into data local to methods and global data. The global data is further broken down into the data
that must be transferred before execution, the data needed to be transferred with methods, and the unused data in the class files.

Parallel File Transfer Interleaved File Transfer
T1 Link Modem Link T1 Link Modem Link

Program SCG Train Test SCG Train Test SCG Train Test SCG Train Test
BIT 82 78 75 68 51 51 81 77 72 57 49 47
Hanoi 98 98 98 87 86 84 98 97 90 85 83 82
JavaCup 69 54 52 61 51 50 66 52 45 52 43 41
Jess 72 65 62 62 54 50 67 59 45 50 47 35
JHLZip 73 71 71 53 48 48 72 64 64 50 40 40
TestDes 89 71 71 84 76 60 73 70 70 61 58 58
AVG 81 73 71 69 61 57 76 70 64 59 53 51

Table 10: The Normalized Execution Time for Partitioning the Global Data with Parallel File Transfer and the Interleaved File Transfer
technique for both T1 and 28 Baud Modem Transfer Rates. Results are shown for the parallel file transfer assuming a limit of four files for
parallel transfer.
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