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Abstract

One of the major challenges of post-PC computing is the need to reduce energy consumption,

thereby extending the lifetime of the batteries that power these mobile devices. Memory is a par-

ticularly important target for e�orts to improve energy e�ciency. Memory technology is becoming

available that o�ers power management features such as the ability to put individual chips in any

one of several di�erent power modes. In this paper we explore the interaction of page placement with

static and dynamic hardware policies to exploit these emerging hardware features. In particular, we

consider page allocation policies that can be employed by an informed operating system to comple-

ment the hardware power management strategies. We perform experiments using two complementary

simulation environments: a trace-driven simulator with workload traces that are representative of

mobile computing and an execution-driven simulator with a detailed processor/memory model and a

more memory-intensive set of benchmarks (SPEC2000). Our results make a compelling case for a

cooperative hardware/software approach for exploiting power-aware memory, with down to as little

as 50% of the Energy�Delay for the best static policy and 1% to 20% of the Energy�Delay for a

traditional full-power memory.

1 Introduction

One of the major challenges of the post-PC environment|encompassing ubiquitous mobile, embed-

ded, and wireless devices|is the need to reduce the energy consumed in their operation, thereby

extending the lifetime of the batteries that power them. Power consumption is an issue that extends

well beyond the realm of battery-powered mobile devices to any computing platform in which the

production of heat or fan noise is a consideration (e.g., medical applications). Energy e�ciency of

computers is also desirable from the economic and environmental points of view.

Sustained exponential growth in processor performance and memory density means that em-

bedded processors and handheld devices can soon have performance characteristics comparable to

today's workstations. This increased performance is usually accompanied by increased power con-

sumption. Memory is a particularly important target for e�orts to address the energy e�ciency issue.

Instructions invoking memory operations have a relatively high power cost, both within the processor

and in the memory system [44]. Intel's guidelines for mobile power [18] indicate that the target for

main memory should be approximately 4% of the power budget (e.g. an average 1.3W for 96MB)for

year 2000 laptops. This percentage can dramatically increase in systems with low power processors

(e.g., Transmeta Crusoe [14]), displays [35], or without hard disks. Since many small devices have

no secondary storage and rely on memory to retain data, there are power costs for memory even in

otherwise idle systems. The amount of memory available in mobile devices is expanding with each

new model to support more demanding applications (e.g., multimedia) while the demand for longer

battery life also continues to grow signi�cantly.

Hardware components, such as memory chips, are becoming available that o�er power manage-

ment features. In particular, we consider power-aware DRAM chips that support several di�erent

power modes. Our goal in this work is to determine how to exploit these emerging hardware features

for the most e�ective main memory power management.

Speci�cally, we ask two basic questions:

1. How can the various power modes available in state-of-the-art DRAM devices be utilized? We

consider both static and dynamic hardware policies for determining the power state.



2. What is the e�ect of code and data placement within such power-aware memory chips? Thus

we consider page allocation strategies that complement the ability of the hardware to adjust

power modes.

Our work is based on the premise that a cooperative hardware/software approach will o�er

expanded opportunities for energy e�ciency. A primary contribution of this paper is a quantitative

study that explores the interaction of virtual memory page allocation with dynamic hardware policies

to orchestrate the use of power modes provided in emerging DRAM devices.

We measure the energy savings within the memory system and any additional delay in execution

time resulting from these power management strategies, expressed in terms of an Energy�Delay

metric. Using trace-driven simulation with a simpli�ed processor and memory system model we

evaluate our ideas for a set of productivity applications as a workload representative of mobile laptop

and handheld devices. We also use an execution-driven simulator with a more detailed processor

and memory model to evaluate a set of programs from the integer SPEC2000 suite that place higher

demands on the memory system than the available traces.

Our results show the following:

� Among static policies in which every power-aware DRAM chip in the system resides in the

same base power mode between accesses, choosing the nap mode as the base achieves the

lowest Energy�Delay product for our workload (only about 15% of staying in active mode).

� Power-aware page allocation by an informed operating system coupled with dynamic hardware

policies can dramatically improve energy e�ciency of memory. Power-aware allocation allows

a 6% to 50% improvement in Energy�Delay over the best static hardware policy.

� Power-aware page allocation when used with static hardware policies can improve Energy�Delay

by 12% to 30%.

� Dynamic hardware policies without informed OS support (i.e., using random page allocation)

do not improve energy e�ciency as measured by Energy�Delay.

In the next section, we describe the power-managed memory technology upon which this study

is based and present related work. Section 3 describes the policies that determine which power mode

each chip should be in. Then, in Section 4, we discuss simple page allocation strategies that exploit

the power management features of the hardware. Section 5 presents our experimental methods and

results are presented in Section 6. Finally, we conclude in Section 7 and describe future work.

2 Background and Related Work

2.1 Rambus RDRAM

Memory technology has developed to respond to the needs of mobile computer designers to limit

power consumption in the face of increasing demand for performance. One concrete example is Direct

Rambus DRAM (RDRAM)[40]. The Direct Rambus technology delivers high bandwidth (1.6GB/sec

per device), using a narrow bus topology operating at a high clock rate. As a result, each RDRAM

chip can be activated independently. RDRAM o�ers four power modes: active, standby, nap, and

powerdown. Because of the narrow topology, each chip can be independently set to an appropriate
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power state. Conventional DRAMs generally require multiple active chips to achieve high bandwidth.

Whereas we could apply the ideas presented in this paper to these conventional memory systems, it

would sacri�ce bandwidth. By adopting the RDRAM model, we can concentrate on the interactions

of page allocation with the power modes without the concern for a tradeo� between bandwidth and

energy consumption.

An RDRAM device must be in active mode while performing a read or write transaction. Active

mode consumes the most power. A chip that is not servicing a memory request can be in any of

the lower power states. However, these states incur additional delay for clock resynchronization.

Standby is fast and uses 60% of the power of active mode. Greater power savings can be achieved

by using nap mode (10% of the power of active) with an additional resynchronization time required

to transition to the active state in order to service a memory request. Powerdown mode has the

minimal power consumption (1% of active), but a signi�cant delay for clock synchronization (100

times that needed by nap mode) to enter the active state. Figure 1 shows the power states and their

relative power costs as well as the possible transitions and relative transition times into active mode.

Standby
0.6x mW

Active
1.0x mW

Nap
0.1x mW

PwrDown
.01x mW0.1x ns

100x ns1.0x ns

Read/write
transaction

Figure 1: RDRAM Power States

The challenge for the laptop designer is to utilize these modes e�ectively. It is not only the

availability of these power states but the ability to transition between them dynamically on a per-

chip basis that gives the RDRAM its potential for power management.

2.2 Power-Aware DRAM Model

Rather than trying to model the full complexity of the Direct RDRAM speci�cations, we incorpo-

rate the essential features (i.e., multiple, independently controlled memory chips with multiple power

states) into an abstract model of a Power-Aware DRAM (PADRAM). We can choose parameters

that are consistent with the power modes, the relative power costs, and relative resynchronization

times given in Figure 1 so our results are relevant to RDRAM; however, we do not claim to have

precise numbers for the power consumed in each state and state transition of any particular RDRAM

implementation. We make simplifying assumptions about the power consumption during state tran-

sitions and we concentrate only on the transition times that impose additional latency on a memory

request.

We focus on improving the energy consumption of main memory, ignoring the energy used by

all other system components (including processor and cache). The processor and cache a�ect the
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energy e�ciency of memory in terms of execution time and miss rate.

2.3 Related Work

Architectural studies have examined the impact of software structure on power consumption [6, 34,

45]. Other architectural studies investigated processor design [4, 33, 39], focused speci�cally on the

memory hierarchy [13, 16, 20, 36], or examined ways to optimize DRAM refresh counts [38]. RDRAM

was clearly designed to enable designers to create pools of devices in various power states, as it is

stated in various documentation [40]. However, to our knowledge, ours is the �rst quantitative study

to explore the interaction of page allocation with dynamic hardware policies to orchestrate the use

of power modes being provided in emerging PADRAM-class memory devices.

A novel aspect of our work is the cooperative hardware/OS approach to exploit PADRAM fea-

tures. Previous OS-level studies focusing on power management include work on scheduling for low

power processor modes [31, 32, 47], spindown policies for disks and alternatives [1, 7, 8, 9, 15, 24, 30,

48], and managing wireless communication [17, 23, 43]. A consortium of companies has developed

a speci�cation [19] that addresses the lower-level OS/device interface, providing one model for gross

system-wide power states and per-component power states as a basis for the development of OS-

directed power management. Recent work with Odyssey [37, 10] demonstrates how system support

for application-aware adaptation can bene�t energy e�ciency. Common themes that appear in these

power management strategies are the identi�cation / prediction of idleness in the activity patterns of

a component and techniques that attempt to change those activity patterns. A particularly valuable

approach is based on the \ski rent-to-buy" problem formulation for competitive algorithms [21, 24].

Another related area involves operating system page placement policies. Virtual memory page

research originally concentrated on techniques for improving program execution time, focusing on

replacement algorithms. Recent studies examined page coloring policies for selecting appropriate

physical page frames to minimize cache misses [2, 22]. Other recent work has studied page placement

aimed at improving TLB performance [41] or NUMA multiprocessor memory access [27, 28, 46, 11, 3].

Each of these problems bears some resemblance to the issues we face.

3 Hardware Power Management Policies

This section explains various hardware policies for controlling PADRAM power states. Since each

chip is controlled independently, the memory controller can implement a variety of power manage-

ment policies. In this paper we investigate two types of policies: static and dynamic.

3.1 Static Policies

The static schemes we investigate correspond to placing all PADRAM chips in a single power state.

We note that for an access to occur, the PADRAM chip must �rst transition to the active state.

Only when there are no outstanding requests for the device does it return to the speci�ed static

power state. Our �rst static policy assumes that all PADRAM devices are in the active state. This

corresponds to a conventional performance oriented design, targeted at reducing execution time.

The next three static schemes place all PADRAM chips in the standby, nap, and powerdown state,

respectively, when there are no accesses to service. These policies correspond to implementations

targeting energy e�ciency by sacri�cing performance, since the memory access time increases as the
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power consumption is reduced. Ideally, we want to maximize performance while minimizing energy

consumption. The remainder of this section describes policies with this goal.

3.2 Dynamic Policies

To obtain higher performance and energy e�ciency we must relax the constraint that each PADRAM

chip return to the same base power state when there are no pending accesses. This allows the possi-

bility of exploiting locality in the program's memory access pattern to reduce energy consumption.

To accomplish this, we need to dynamically determine the power state of each chip. Clearly, a chip

needs to be in the active state to perform an access. The more di�cult decision is to determine when

the chip should transition to a lower power state.

Our approach uses the time between accesses to a chip as a metric for transitioning to lower

power states. If a chip is not accessed for a threshold amount of time it transitions to the next lower

power state. This allows individual chips to reside in di�erent power states, based on their individual

access patterns.

The threshold values are an important parameter in this approach. Too large a threshold and

the chip will spend too much time in the higher power state, increasing energy consumption. In

contrast, if the threshold is too small, then the chip will transition into a slower, but lower power

state, increasing execution time.

Dynamic power state management exploits locality of reference to individual PADRAM chips.

Reference locality is determined in part by the algorithm/data structures and part by the mapping of

program virtual addresses to physical addresses. The next section discusses how the operating system

can in
uence energy e�ciency through physical page allocation. Source code and data structure

transformation for improving energy e�ciency is an important and interesting topic, but is beyond

the scope of this paper.

4 Page Allocation

An important contribution of this paper is to re-examine virtual memory page allocation policies in

light of new PADRAM technology. Previous page allocation studies ignored which actual DRAM

chips contained the allocated page frame. In contrast, our work focuses speci�cally on this parameter

in an e�ort to maximize energy e�ciency. Given hardware mechanisms, as described above, that

can determine when to transition between power states, the operating system may further improve

energy e�ciency by allocating physical pages in a manner that fully exploits the hardware. As a

�rst step, the page allocation should cluster an application's pages into the minimum number of

PADRAM chips.

To determine the bene�ts of power aware page allocation (see Section 6) we compare random

and the well-known sequential �rst-touch placement policies. Our �rst policy randomly chooses a

PADRAM chip for the physical page. We believe that the allocation policies in conventional operating

systems would appear to be essentially a random assignment with respect to chip selection.

The sequential �rst-touch policy allocates pages in the order they are accessed, �lling an entire

PADRAM chip before moving on to the next. This scheme minimizes the number of PADRAM chips

utilized for a given application. Therefore, the hardware can automatically place unused PADRAMs

in the powerdown state, and hence potentially reduce energy consumption.
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This new form of page coloring targets reducing power consumption rather than improving per-

formance. However, we note that conventional page coloring for improved cache performance can

still be utilized when selecting pages from within a PADRAM chip. We also assume that physical

addresses are not interleaved across PADRAM chips. We can interleave at the word, cache line, or

page granularity within the PADRAM chip, since each chip will likely contain multiple independent

banks.

Finally, experience has shown that �rst-touch is often not representative of subsequent locality

since it may capture only an initialization phase of the program. Thus, we also consider the potential

for limited reassignment intended to cluster pages with similar access patterns within PADRAM

chips. The Frequency policy attempts to improve upon an initial allocation of frequently accessed

pages at some point into the execution. Identi�cation of candidates for reassignment is done with

small per-page hardware counters, recording frequency of accesses to each page, outside of the L1

and L2 caches, over a window of time. A limited number of the most frequently accessed pages are

then moved into a common chip. In our formulation of this scheme, a block of free page frames

is reserved in one chip during initial placement to serve as a destination during this later one-time

reallocation. Of course, this could be repeated, but movement is costly and a single \correction"

should be e�ective for relatively stable access patterns.

In Section 6, an o�ine version (counting over the entire trace and then placing pages accordingly)

is �rst considered in order to ascertain that \better" placements are possible using such frequency

information. Then the online policy, described above, is simulated, including the costs of page

migration.

5 Methodology

To evaluate energy e�ciency, we use the Energy�Delay product [12]. This metric captures our goal

of achieving high performance (seconds) while minimizing energy consumption (joules). Although

total system energy consumption is important, it is highly dependent on speci�c design choices

(e.g., processor, display type, wireless network interface, etc.). Therefore, we concentrate only on

PADRAM energy consumption, and ignore the energy consumed by all other system components.

To compute energy e�ciency, we developed two simulators: a trace-driven simulator and a de-

tailed execution-driven out-of-order processor simulator. One of the prime considerations that went

into our experimental design was the choice of a workload that would seem appropriate to mo-

bile/wireless devices. The availability of traces from a set of popular applications used on laptops

motivated the development of our trace-driven simulator. While these traces satis�ed the need for

a representative workload for the target environment, they had disadvantages for memory research:

low miss rates and the constraints of trace-driven simulation. Thus, the execution-driven simulator

was developed to address the need for a more detailed processor/memory model and more memory-

intensive benchmarks.

Table 1 shows the parameter values we use to determine energy consumption and DRAM access

delay. These values were obtained from the Rambus Direct RDRAM manual [40] and from an EE

Times article [26] on Rambus. At the time of writing, RDRAM vendor data sheets did not contain

su�cient information on power consumption. It is important to note that precise values will vary

from vendor to vendor. The values we use match the relative values provided by Rambus. While

the values for a particular power state are taken from the literature, we approximate the power

consumption associated with a transition between two power states as the average of the power
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Power State/Transtion Power Time

Active 300mW 60ns

Standby 180mW -

Nap 30mW -

Powerdwn 3mW -

Standby ! Active 240mW +6ns

Nap ! Active 165mW +60ns

Powerdwn ! Active 152mW +6000ns

Table 1: Power State and Transition Values: All accesses incur the 60ns Active access time, additional

delay (denoted by the +) is incurred for clock resynchronization.

consumed in the two states. The total energy consumption depends on the time for the transition

to complete, also shown in Table 1 [26, 40].

5.1 Trace-Driven Simulation

The trace-driven simulator processes instruction and data address traces and uses a simpli�ed

PADRAM model. This simulator models a two-level cache hierarchy with a 16KB, direct-mapped

level one cache and a 256KB direct-mapped second-level cache, both caches have 32B cache blocks.

We also model the individual PADRAM chips and their associated power state. Each cache is lockup-

free [25] and can have up to eight outstanding misses. In this simulator, we do not model memory

bus contention or the internal DRAM banks. Instead we optimistically assume all requests to a single

PADRAM can be overlapped (i.e., no bank con
icts). In these studies we only model the transition

from the lower power state to active. The transitions from active to lower power states are assumed

to incur no delay or energy consumption. These assumptions are removed in our execution-driven

simulator.

For timing considerations (necessary to compute energy consumption), we use a simpli�ed pro-

cessor model that executes one instruction per cycle, and never stalls due to long latency operations

(i.e., execution only stalls when the maximum number of outstanding misses is reached). We assume

a 500Mhz processor clock, the level one cache takes 2 cycles to access, while the level two cache

incurs an additional 10 cycles. We simulate a non-interleaved main memory system with eight 32Mb

PADRAM chips, for a total main memory capacity of 32MB.

For our trace-driven studies we use instruction traces from personal productivity applications

executing on an Intel processor with Microsoft Windows NT. These traces, provided by the University

of Washington Etch project [29], include instruction and data accesses for several popular applications

typical of those used on laptops today. Table 2 provides information on the applications we use. The

�rst six benchmarks are from the NT traces.

5.2 Execution-Driven Simulation

To overcome the limitations of trace-driven simulation, we augmented the SimpleScalar execution-

driven simulator [5] with a PADRAM model based on the detailed timing and power speci�cations of

Rambus RDRAM. SimpleScalar models a dynamically scheduled processor using a Register Update
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Benchmark Description Instructions Size

Executed

(Millions) (MB)

acrord32 Adobe Acrobat Reader 3.0 PDF �le reader. 408 9.73

Trace compress SPEC95 version of Unix compress utility. 403 0.849

Driven go SPEC95 version of game go. 315 1.05

netscape Netscape Navigator 3.1 web browser. 92 9.95

powerpnt Microsoft PowerPoint 7.0b slide preparation

package.

209 12.5

winword Microsoft Word 7.0 word processor 351 11.2

bzip SPEC2000 compression. 100 180

compress SSPEC95 version of Unix compress utility. 100 32

Execution go SPEC95 version of game go. 100 1

Driven gcc SPEC2000 compiler. 100 32

vpr SPEC2000 FPGA placement and routing. 100 37

Table 2: Benchmarks

Unit (RUU) and a Load/Store Queue (LSQ) [42]. We use a 400Mhz 8-issue processor that can have

up to 256 active instructions and 128 memory operations. The �rst-level cache is 32KB, 4-way set-

associative with 32B blocks, while the second-level cache is 256KB, direct-mapped, with 64B blocks.

Each cache can have up to 16 outstanding misses. The processor executes Compaq Alpha binaries.

Our PADRAM memory model uses the values from Table 1, but includes further details, such

as multiple banks per chip, open page and close page policies, and various interleaving strategies for

mapping physical addresses to speci�c chips and banks within chips. This simulator provides a more

accurate model of timing at all levels of the memory hierarchy, including contention at each level

and within each PADRAM device and transitions from higher to lower power states. In particular,

active to either nap or powerdown takes 8 cycles, standby to nap takes 12 cycles, nap to powerdown

takes 61 cycles because we must �rst enter the active state. Active to standby either takes 1 cycle or

73 cycles, depending on the DRAM page mode (See Section 6.4.1). We simulate a non-interleaved

main memory system with eight 256Mb chips for a total capacity of 256MB.

Due to excessive simulation time, we fast-forward the simulator over the �rst 4 billion instructions,

and then simulate in detail the next 100 million committed instructions. This allows us to skip over

program initialization, however page placement is based on accesses from the beginning of program

execution (during the fast-forwarding). In addition to the two SPEC95 benchmarks for which NT

traces also exist (compress and go, above), we use three integer programs from the SPEC2000 suite

(bzip, gcc, and vpr) for our execution-driven analysis (described at the bottom of Table 2). These

three were chosen because they exhibited the highest data cache miss ratios. For all benchmarks, we

use the reference input data set.
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6 Experimental Results

This section presents our results on power management for PADRAM. We begin with analysis of

static hardware power state policies and their interaction with page allocation (Section 6.1). This

is followed in Section 6.2 by analysis of the e�ects of page allocation on dynamic hardware power

management policies described in Section 3. We then investigate the e�ects of open/close DRAM

page policies and interleaving on energy e�ciency.

The main results from this study are:

1. Cooperative hardware and software for power aware page allocation can improve main memory

energy e�ciency, measured in terms of Energy�Delay, by 6% to 55%.

2. Nap mode is the most energy e�cient static policy for our applications.

3. Power aware page allocation without dynamic hardware support can improve energy e�ciency

by up to 30%, depending on application characteristics.

4. Dynamic hardware schemes do not improve energy e�ciency for random page allocation.

6.1 Static Power State Policies

In this section we evaluate the static policies that uniformly place all PADRAM chips in the same

power state. We begin by evaluating PADRAM power management techniques in the context of

random physical page allocation. In other words, the operating system is oblivious to the power

management capabilities of the underlying hardware.

Figures 2 and 3 show the Energy�Delay product for the four static policies (active, standby,

nap, and powerdown) normalized to the active policy for each program. Table 3 shows the absolute

values for runtime, energy, and Energy�Delay product. From Figures 2 and 3 we see that placing all

PADRAM chips in the nap state provides the lowest Energy�Delay product for all applications in

both simulations. Nap achieves approximately 15% of the Energy�Delay of active for the trace-driven

simulations, while it achieves 20% to 40% of active for the execution-driven results. Powerdown is

generally the poorest performing, followed by active.
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Figure 2: Static Base Power State Policies and Random Page Allocation (NT Traces), Energy�Delay

normalized to active policy.
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These results match our expectations, since powerdown incurs a signi�cant increase in access delay,

while active consumes too much energy when it is not servicing requests. The notable exception is

acrord32, where powerdown is better than active. This is due to the low rate at which acrord32

generates DRAM accessess. From Table 3 we see that acrord32 has the lowest rate of DRAM

accesses. Therefore, it still achieves energy savings even though its delay increases. We also note

that the Energy�Delay of powerdown is directly related to the rate at which benchmarks generate

DRAM accesses.
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Figure 3: Static Base Power State Policies and Random Page Allocation (SPEC benchmarks),

Energy�Delay normalized to active policy.

Standby is the next best mode after nap achieving 60% of active in the trace-driven simulations,

and 60% to 70% of active in the execution-drive simulations. Standby is worse than nap because

the additional time penalty of nap causes only a slight increase in total run time, while the power

reductions are very large (30mW vs 180mW).

We note that the relative Energy�Delay values for active, standby, and nap follow the relative

ratios of power consumption. This is particularly true for the trace-driven simulations, and is a

direct result of the low L2 miss rates exhibited by those programs (< 1%). The extremely high

time penalty of powerdown is too much for even these low miss rates, and Energy�Delay increases

dramatically.

6.1.1 Impact of Page Allocation

We now examine the bene�ts of sequential-�rst-touch page allocation over random page allocation

for the static hardware power management schemes. Figures 4 and 5 show the Energy�Delay of

sequential allocation normalized to the Energy�Delay of random allocation. From Figure 4 we see

that page allocation has very little e�ect on energy e�ciency for active, standby, or nap, using

the trace-driven simulations, producing at most a 6% reduction for nap (go). For these policies

with random allocation, each chip consumes near its minimum energy because the programs have

very low miss ratios. Packing all the program's pages into the minimum number of chips reduces the

unused chips' energy by very little, which is o�set by the increase in energy consumption for the more

utilized chips. We note that sequential page allocation dramatically improves the energy e�ciency

for the powerdown static policy, achieving 30% to 70% of the random allocation. This is because the
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Benchmark Policy DRAM Run Time Energy Energy�Delay

Accesses (ms) (mJ)

Active 2142947 821.60 1971.84 1.6201
acrord32 Standby 2144482 830.79 1194.39 0.9923

Nap 2140029 836.07 211.85 0.1771
Power Down 2138783 1811.26 598.93 1.0848

Active 3460487 805.80 1933.92 1.5584
compress95 Standby 3460256 806.23 1162.98 0.9376

Nap 3450740 807.27 221.22 0.1786
Power Down 3446425 2465.30 1526.98 3.7645

Active 5306343 631.66 1515.98 0.9576
go Standby 5326190 632.35 913.66 0.5778

Nap 5307126 635.93 192.41 0.1224
Power Down 5397678 3626.58 1970.60 7.1465

Active 927654 186.06 446.54 0.0831
netscape Standby 935725 187.15 269.80 0.0505

Nap 928205 189.73 50.58 0.0096
Power Down 932157 695.25 268.59 0.1867

Active 1890243 419.17 1006.01 0.4217
powerpnt Standby 1888144 420.00 605.71 0.2544

Nap 1895739 422.83 113.25 0.0479
Power Down 1786613 1382.50 554.91 0.7672

Active 6186470 762.86 1830.87 1.3967
winword Standby 6202047 786.38 1120.78 0.8814

Nap 6185615 805.36 221.68 0.1785
Power Down 6180983 3926.53 1757.27 6.9000

Active 493496 124.82 299.58 0.0374
bzip Standby 493351 125.58 189.17 0.0238

Nap 493333 138.78 56.40 0.0078
Power Down 491150 3647.10 982.09 3.5818

Active 171871 115.09 276.21 0.0318
compress Standby 171869 115.11 168.06 0.0193

Nap 171886 125.24 38.16 0.0048
Power Down 171823 3524.68 698.08 2.4605

Active 624912 260.96 626.31 0.1634
go Standby 625651 261.41 385.24 0.1007

Nap 630775 293.45 99.39 0.0292
Power Down 631931 8264.94 2021.63 16.7086

Active 335303 99.78 239.48 0.0239
gcc Standby 335262 100.57 149.20 0.0150

Nap 335813 112.48 39.73 0.0045
Power Down 335857 3406.77 777.38 2.6483

Active 2268727 227.14 545.14 0.1238
vpr Standby 2266131 232.11 385.02 0.0894

Nap 2271568 271.83 191.98 0.0522
Power Down 2272356 13211.38 5216.70 68.9199

Table 3: Raw Data for Static Policies with Random Allocation, Energy�Delay is de�ned in terms of

joules�seconds
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delay to transition out of powerdown is extremely long, and consumes a signi�cant amount of energy.

When program text and data are packed into the minimum number of chips, each chip is likely to

statisfy more requests when it reaches the active state than when pages are randomly spread across

chips. This observation is supported by our data that shows an increase in the number of references

that occur when the target chip is already in the active state.
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Figure 4: Bene�ts of Sequential Page Allocation for Static Policies (NT Traces), each Energy�Delay

result normalized to same policy with Random Allocation

In contrast to the trace-driven results, our execution-driven results (see Figure 5) show that power

aware page allocation does improve energy e�ciency for the nap policy by 12% to 30%. In particu-

lar, we note that compress and go, the SPEC95 benchmarks, show larger improvements than those

observed in the trace-driven experiments. This is due in part because �rst-touch produces lower L2

cache miss ratios and part to the more detailed processor model used by SimpleScalar. Recall, our

trace-driven simulator does not model data dependencies or �nite processor resources, which mini-

mizes the e�ects of long latency operations. Our execution-driven simulator accurately models these

constraints and the corresponding additional delays when long latency operations cause resources

(e.g., instruction bu�ers) to be overcommitted. Finally, as before, we see very little improvement for

active and standby, while powerdown bene�ts the most from sequential page allocation.

6.2 Dynamic Power State Management

We now examine more sophisticated hardware support for PADRAM power management. By dy-

namically determining each chip's power state based on recent references, we hope to improve overall

energy e�ciency. Figure 6 shows the Energy�Delay of various dynamic policies normalized to the

static nap policy for our trace-driven simulations using sequential �rst-touch allocation. Each bar in

the graph represents a di�erent set of thresholds (in nano-seconds) for transitioning from active to

nap (x) and from nap to powerdown (y), represented as x/y.

We determined a loose lower bound on the time required to be spent in a lower power state

in order to overcome the transition costs by analytically computing the penalty vs. reward for

transitioning to the lower power state. We use that bound to guide the choice of threshold values to

explore. Appendix A provides details on our threshold computation. Our analysis determined that

there was very little bene�t for remaining in standby, and that the active to nap threshold should be

on the order of 100's of nanoseconds, while the nap to powerdown threshold should be on the order

12



Benchmark Policy Run Time Energy Energy�Delay

(ms) (mJ)

Nap 837.69 211.11 0.1768
acrord32 Power Down 1860.70 383.34 0.7133

Dynamic 100ns/5,000ns 915.84 128.70 0.1179

Nap 807.33 216.26 0.1746
compress95 Power Down 2767.50 457.89 1.2672

Dynamic 100ns/5,000ns 805.96 126.56 0.1020

Nap 636.90 183.14 0.1166
go Power Down 4064.43 682.03 2.7721

Dynamic 100ns/5,000ns 638.39 136.02 0.0868

Nap 190.03 49.89 0.0095
netscape Power Down 724.81 155.85 0.1130

Dynamic 100ns/5,000ns 212.54 35.25 0.0075

Nap 423.28 112.16 0.0475
powerpnt Power Down 1432.95 295.56 0.4235

Dynamic 100ns/5,000ns 453.05 77.43 0.0351

Nap 809.23 218.86 0.1771
winword Power Down 4039.94 1000.87 4.0435

Dynamic 100ns/5,000ns 911.53 195.14 0.1779

Nap 132.77 41.61 0.0055
bzip Power Down 3037.55 340.82 1.0353

Dynamic 2,000ns/50,000ns 122.85 25.95 0.0032

Nap 121.06 32.91 0.0040
compress Power Down 2560.44 291.30 0.7458

Dynamic 2,000ns/50,000ns 115.60 20.21 0.0023

Nap 286.51 85.29 0.0244
go Power Down 6785.82 890.64 6.0437

Dynamic 2,000ns/50,000ns 262.26 45.80 0.0120

Nap 111.84 36.02 0.0040
gcc Power Down 2987.83 447.47 1.3370

Dynamic 2,000ns/50,000ns 101.33 18.89 0.0019

Nap 273.39 134.26 0.0367
vpr Power Down 12199.88 2618.03 31.9396

Dynamic 2,000ns/50,000ns 231.88 112.27 0.0260

Table 4: Raw Data for Static Nap and Power Down and Best Dynamic Policy with Sequential

Allocation, Energy�Delay is de�ned in terms of joules�seconds
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Figure 5: Bene�ts of Sequential Page Allocation for Static Policies (SPEC benchmarks), each

Energy�Delay result normalized to same policy with Random Allocation

of 10,000ns. Our trace-driven simulation results show that thresholds of 100ns/5,000ns produce the

best overall Energy�Delay.

From Figure 6 we see that the combination of power aware page allocation and dynamic hardware

policies can produce Energy�Delay values that are 50% to 94% of the static nap policy. Five of the

six benchmarks achieve 80% or lower.
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Figure 6: Dynamic Power Management and Sequential Page Allocation (NT Traces), normalized to

Static nap policy. Each threshold combination for transitioning from active to nap (x ns) and from

nap to powerdown (y ns) is represented as x/y.

Our execution-driven results show that dynamic hardware policies improve energy e�ciency of

sequential page allocation by 42% for bzip, 43% for compress, 50% for go, 55% for gcc, and 30%

for vpr over static nap, the best static policy. Furthermore, this is an overall improvement of 50%

to 60% compared to static nap using random page allocation. Due to excessive simulation time we

did not perform as exhaustive of an evaluation as with the trace-driven studies. The best results in

the limited experiments we did perform are produced by threshold values of 0ns between active and
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standby, 2,000ns between standby and nap, and 50,000ns between nap and powerdown. Section 6.4.1

discusses aspects of our RDRAM model that produce the 0ns threshold. While further improvements

might be achieved by �ne tuning the thresholds, these results are su�cient to show that cooperative

hardware/software techniques can improve energy e�ciency.

The energy e�ciency of sequential-�rst-touch page allocation and dynamic hardware power state

management is signi�cantly better than using a traditional full-power memory system, e.g., static

active. Our cooperative hardware/software schemes achieve from 7% to 20% of the Energy�Delay for

the static active policy for the execution-driven simulations and from 1% to 10% of the Energy�Delay

for the trace-driven experiments.

An important observation from our simulation results is that dynamic power state management

does not improve energy e�ciency for random page allocation over the static nap policy. In particular,

for the execution-driven experiments above, the dynamic policies with random placement are over

an order of magnitude worse than the static nap policy for two of the benchmarks. This poor

performance is a result of moving to the powerdown state too soon, and incurring the large delay and

corresponding energy consumption to transition out of powerdown. This overhead can be reduced by

increasing the nap to powerdown threshold, and thus preventing any chip from entering powerdown.

We veri�ed this behavior through simulation, and achieved energy e�ciency comparable to the

static nap policy. Further tuning of the other thresholds produced only minor bene�ts. We also note

that for sequential page allocation, the higher powerdown thresholds do not signi�cantly change the

results from those presented above. This is important since we want the dynamic polices to produce

comparable results to the static schemes in cases where the operating system is unable to successfully

perform power aware page allocation.

6.3 Frequency-based Page Placement and Movement

The primary goal of page placement thus far has been to cluster all pages into the minimum number

of PADRAM chips. In this section, we present preliminary results from an alternative placement

technique that further re�nes page allocation based on access frequency. To achieve this, we �rst

construct a histogram of page accesses o�ine. The results of this pro�le run are then used to

determine initial page placement, starting with the most frequently accessed page and continuing to

the least accessed.

Figure 7 shows the Energy�Delay for both the frequency and sequential �rst-touch allocation

policies and the dynamic hardware policy with thresholds of 100ns/5,000ns normalized to sequential

�rst-touch static nap. These results clearly show that �rst-touch is not the best placement policy.

Compress and go do not show any bene�t since they both �t entirely on a single chip. Acrord32,

netscape, and powerpoint all reduce the Energy�Delay by approximately 20% beyond the values

achieved by �rst-touch. Winword exhibits the largest bene�t of frequency based placement, achieving

60% of the static nap value, whereas �rst-touch did not improve energy e�ciency at all.

We are currently investigating online techniques to reassign pages based on reference frequency.

Our initial implementation reserves 128 physical pages in chip 0, reallocates the 128 most frequently

accessed pages from the other chips to chip 0, and then packs the remaining pages into the smallest

number of chips. We execute the program for a 100ms warmup period to skip initialization, and then

sample page accesses for 2ms. We associate a 10-bit saturating counter with each physical page, and

increment the appropriate counter for each page accessed during the sample period. At the end of the

sample period, the OS sorts the counters and performs the movement and repacking operations, and
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Figure 7: Frequency vs. Sequential First-Touch Page Allocation (NT Traces) for Dynamic Policy,

thresholds of 100ns/5,000ns, normalized to sequential �rst-touch static nap.

resumes program execution. We include the cost of page moves as 0.011ms and 0.008mJ, obtained

by measuring the energy and delay of a bcopy using our execution-driven simulator.

The above implementation produces a 10% reduction in Energy�Delay for winword, the program

with the most opportunity, over static nap. This is because winword is a long running program that

accesses a large amount of memory. We did not see any improvement for the other programs. The

other programs either do not run very long or do not stress the memory system much. Furthermore,

the other programs achieve signi�cant gains from �rst-touch, while winword does not. We are

currently investigating other applications and other, less hardware intensive, techniques for obtaining

page reference frequency. However, we note that conventional page reference counting may not

directly apply since large L2 caches can �lter many accesses, whereas it is L2 misses that dictate

DRAM access frequency.

6.4 Alternative DRAM Architectures

In this section we examine the e�ects of two important DRAM architectural alternatives: DRAM

page policy and interleaving.

6.4.1 Open vs. Close Page Policy

The previous execution-driven results use a 0ns threshold for transitioning from active to standby.

This is a result of the detailed DRAM model used in those simulations. Most current DRAM devices

support two operating modes: open page and close page. These modes indicate what occurs after

the DRAM services a request. In open page mode, data from a DRAM page
1
remains on the

sense ampli�ers in anticipation of future accesses to nearby data. However, subsequent accesses to

a di�erent DRAM page incur an additional precharge delay before fetching the appropriate DRAM

page. In contrast, close page mode immediately precharges the DRAM bank after an access in an

attempt to avoid the precharge delay. If the same DRAM page is accessed, it incurs higher delay

than the open page technique, since the data must be fetched again.

1A DRAM page is one row of an internal DRAM bank.
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The DRAM page policy relates to power management in that the primary di�erence between the

active and standby power states is whether there is data on the sense ampli�ers. In particular, the

resynchronization delay of standby can be completely overlapped with the precharge delay. Therefore,

in close page mode, when there are no requests to any banks of a chip, it enters standby (0ns threshold

from active), since this will not introduce any additional delay, but can reduce energy consumption.

This is the policy used to obtain the previous results. In open page mode, a device can remain

in the active state while it retains data on the sense ampli�ers. The threshold for transitioning to

standby determines when all DRAM pages on a device should be closed. In this case, there is also an

additional 73 cycle delay incurred to issue appropriate commands to close the open DRAM pages.

We use the execution-driven simulator to evaluate the impact of open vs. close page modes on

energy e�ciency. The trace-driven simulator does not model the PADRAM devices in su�cient

detail to perform this study. We use the dynamic hardware policies with sequential �rst-touch page

allocation and non-interleaved main memory. Our simulations show that close page mode produces

Energy�Delay values 20% lower than open page mode.

6.4.2 Interleaving

The results thus far do not use any interleaving; physical addresses are mapped sequentially to each

chip, so chip 0 contains physical pages 0 to N-1, chip 1 contains N to 2N-1, etc. However, we do

interleave cache blocks across internal DRAM banks.
2
This allows sequential cache block accesses

within a page to overlap much of their DRAM latency.

Alternatively, we may get higher performance if we can spread pages across DRAM chips, poten-

tially exposing more parallelism by reducing DRAM bank con
icts. For example, we could interleave

at the page granularity, such that physical pages are allocated in a round-robin manner across chips

(e.g., page 0 to chip 0, page 1 to chip 1, etc.). While this may reduce execution time, it forces many

chips to be active, similar to random page allocation. The operating system could still pack pages

into the minimum number of DRAM chips, but that produces the same DRAM access pattern as

no interleaving. It also has the additional disadvantage of potentially using only a subset of large

physically indexed caches.

Execution-driven simulation results reveal that page-grain interleaving produces Energy�Delay

values close to random page allocation, as expected. Further experiments that vary the cache block

interleaving within a DRAM chip reveal no signi�cant di�erences among alternatives.

7 Conclusion

In this paper, we have built a compelling case for cooperative hardware/software policies that can

exploit the power management features o�ered by new PADRAM memory devices, such as the

Rambus RDRAM, to dramatically improve the Energy�Delay of main memory. We use trace-driven

simulations of a set of personal productivity applications and execution-driven simulation of integer

SPEC2000 benchmarks to evaluate static and dynamic hardware policies that determine the power

states of each memory chip. We show that statically assigning the nap mode as the base power mode

for all memory chips in a system is a successful strategy, achieving an Energy�Delay of only 15% of

that of active mode. We show that power aware page allocation can improve energy e�ciency by

another 12% to 30%.

2RDRAM has 32 internal banks, a maximum of 16 can be accessed in parallel.
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Using power-aware page allocation in conjunction with hardware policies that dynamically adjust

the power mode of each individual memory chip based on thresholds of inactivity can provide 6%

to 50% improvement in Energy�Delay over the best static hardware policy and o�ers 99% to 80%

improvement over a traditional full-power memory system with random page placement.

There are many opportunities left for future work with the PADRAM model of memory devices

and especially with the interaction between hardware and software management. Following our

belief that energy conservation should become a \�rst class" design goal for higher levels of system

design, many of our plans explore ways to give the OS more explicit control over PADRAM power

modes. This may even eventually extend into API features that allow some degree of application-

level direction of memory power states. Sequential �rst-touch is a simple page allocation scheme. We

may consider other \page coloring" techniques and further explore the movement of pages between

chips to improve initial placements based on observed access patterns.

We note that our clustered page allocation has other power-related side-e�ects. It can also be

used to reduce DRAM refresh rates. By compacting physical pages into the minimum number of

internal memory banks, we can potentially eliminate refresh for entire DRAM banks in which there

are no active pages.

The threshold values in our dynamic policy are an important parameter. Unfortunately, using

the same threshold value for all programs and all PADRAM chips may not produce the best results.

Thus, another possible direction we are exploring is a dynamic policy that attempts to adaptively

determine the best threshold values for each chip.

Our dynamic policies have concentrated on the transition into lower power states. Policies that

support pre-transitioning into higher power states, in anticipation of imminent access in a manner

analogous to prefetching, may also have a role to play in improving the Energy�Delay metric of some

applications.
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A Determining Threshold Values

In the dynamic scheme, we gain bene�t from staying in lower power state, while paying the cost

for transitioning back to active on next access. If the chip can stay in the lower power state long

enough, the bene�t could be greater than the cost. Assume Tp, Tn and Ts are the times of staying in

powerdown, nap and standby to improve the E �D product. Based on these times, we pick our idle

time threshold for transitioning to lower power state. Assume Pp, Pn, Ps and Pa are per-chip power

consumption for powerdown, nap, standby and active states respectively; Pp!a, Pn!a and Ps!a

are transition (resynchronization) power consumption from powerdown, nap and standby to active;

Tp!a, Tn!a and Ts!a are transition (resynchronization) time from powerdown, nap and standby to

active.

We observe a single independent transition active! powerdown. Assume E0 and T0 are the original

energy consumption and run time without power state transition. We have

Enew �Dnew = (E0 + Tp!aPp!a � (Pa � Pp)Tp) � (T0 + Tp!a)

In order for Enew �Dnew < E0 � T0

Tp >
E0Tp!a + T0Tp!aPp!a + T 2

p!aPp!a

(Pa � Pp)(T0 + Tp!a)

because Tp!a << T0, and Tp!aPp!a << E0, and the active power is P0 =
E0

T0
, we have

Tp >
Pp!a + P0

Pa � Pp
Tp!a
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Now we pick
Pp!a+P0
Pa�Pp

Tp!a as the lower bound of our time threshold between accesses to a chip for

transitioning from active to powerdown. Similarly, we have

Tn >
Pn!a + P0

Pa � Pn
Tn!a

Ts >
Ps!a + P0

Pa � Ps
Ts!a

Plug in numbers from our RDRAM con�guration (Pp = 3mW;Pn = 30mW;Ps = 180mW;Pa =

300mW;Pp!a = 152mW;Pn!a = 165mW;Ps!a = 240mW;Tp!a = 6000ns; Tn!a = 60ns; Ts!a =

6ns; P0 = Pa = 300mW ), we have

Tp > 9131ns

Tn > 103ns

Ts > 27ns

As we can see from the above lower bound, Tn is in the same magnitude as Ts, and considering the

extra hardware overhead of standby state, we don't remain in standby. The threshold of active to

nap should be in magnitude of 10
2ns, and active to powerdown in 10

4ns.
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