I ncreasing the Size of Atomic Instruction Blocks
using Control Flow Assertions

SanjayJ.Patel Tony Tung Satarupdose Matthev M. Crum

Centerfor ReliableandHigh-Performanc€omputing
Departmenbf ElectricalandComputerEngineering
Universityof lllinois at Urbana-Champaign
{sjp, tonytung,sbosemcrum}@crhc.uiuc.edu

Abstract

For a variety of reasonspranc-lessregionsof instruc-
tionsare desiable for high-performancexecution.In this
paper we proposea meansfor increasingthe dynamic
length of brandh-lessregions of instructionsfor the pur-
posesof dynamic program optimization. We call these
atomicregionsframesand we constructthemby replacing
original branch instructionswith assertions.Assertionin-
structionsched if the original branding conditionsstill
hold. If they hold, no actionis taken. If they do not, thenthe
entire regionis undone In this manneran assertiorhasno
explicit control flow. We demonstatethatusingbrand cor-
relationto decidewhena branch shouldbe corvertedinto
anassertiorresultsin atomicregionsthataverage over 100
instructionsin length, with a probability of completionof
97%, and that constituteover 80% of the dynamicinstruc-
tion stream.We demonstatebothstaticanddynamicmeans
for constructingrames Whenframesare built dynamically
usingfinite sizedhardware, they average 80 instructionsin
lengthandhavegoodcading properties.

1 Introduction

An atomicregion of codehasthe following properties:
executionof theregion begins at a singleinstruction,ends
atasingleinstruction,andtheregion containsa singlepath
of execution. The region is consideredatomic becausef
oneinstructionin the region is committedto architectural
statethenall instructionsarecommitted.A basicblock, for
example,is anatomicregion.

Atomic regions consistingof mary instructionsare de-
sirable for a variety of reasons. They allow a compiler
maximumflexibility for optimizations.Codeschedulingn
atomicregions,for example,neednot accountfor sideen-

trancessideexits, or divergentpathsof execution. Atomic
regions provide hardware with a sequentialstreamof in-
structionswith no control flow. Instructionfetch mecha-
nismscanstreamout anatomicregionwith asinglePCand
asinglebranchprediction.Optimistic staterecosery mech-
anismseedonly save stateatboundarie®f atomicregions.
The natureof programs,however, is suchthat atomic
regions typically consistof very few instructions. Basic
blocksarethe mostfamiliar notion of atomicregions. The
datain Table 1 shavs that dynamicbasicblock size for
a majority of the SPEC2000nteger benchmarkss belov
9 instructions. The benchmarksvere compiledusing the
CompagAlpha compiler with a high level (-O4) of opti-
mizationincludingfunctionin-lining andloop unrolling.

Benchmark| Averageblocksize
bzip 9.17
crafty 9.23
eon 7.45
gap 8.52
gcc 6.43
gzip 11.07
mcf 5.33
parser 5.30
twolf 7.36
vortex 7.20
vpr 8.56

Table 1. Dynamic basic block size.

In this paper we presenian effective techniquefor gen-
eratinglongeratomicregionswith the useof control flow
assertions An assertioris aninstructionthat verifiesthat
the original branchingconditionsstill hold. If the condi-
tions arestill true, thenno actionis taken. If they arenot,
thentheentireregionis undoneandcontrolis divertedto an

original copy of thecode.

The atomic regions formed using our techniqueare
calledframes A frameis a region of codewhereall in-
ternalbrancheshave beenpromotedinto assertionsFrame
creationcan be donestatically by a profiling compiler, or
dynamicallywith a hardwarefill unit. We demonstratéhat
with a dynamictechniqueusingbranchcorrelation frames
canbeverylong—anorderof magnituddongerthanabasic
block—with several propertiesthat make themvery com-
pelling for furtherinvestigation.

In additionto the reasonsmentionedearlier in the in-
troduction,long atomicregionsareusefulfor low-level dy-
namictranslationand optimization,asexemplifiedby sev-
eral recentproposalssuchasthe rePLayFramevork [10],
the TransmetaCode Morphing System[5], and HP Dy-
namo[1l]. An atomic region can sene as the basicunit
of optimization. It canbe as small as an instruction, but
longerregionsarepreferredn orderto give adynamicopti-
mizergreateropportunityfor optimization.Furtherbenefits
arehadif recentlyoptimizedregionsoccurfrequently—the
overheadcostsof translationand optimization are amor
tized over eachoccurrence.While the frame construction
techniquesgpresentechere are specifically tailored for re-
PLay, they canbe extendedfor useby a variety of dynamic
optimizationschemes.

In this paper we contribute the following. We present
atechniquédor constructindogically atomicregionscalled
framesby using control flow assertions.We measurehe
effectivenes®f our constructiortechniquenvhenappliedto
staticcodeversusapplyingit dynamicallyusingbranchcor-
relation.We provide metricsfor evaluatingtheeffectiveness
of frameconstruction We proposeandevaluatea hardware
mechanisnfor constructingrames.

2 Basic concepts: assertionsand frames

Therearetwo basicconceptgproposedn this paper:as-
sertionsand frames. An assertionss a type of branchin-
structionthat hasno explicit control flow associatedvith
it [6]. An assertiorverifiesthat certainconditionsaretrue
during execution, and initiates a recovery action if they
arenot. Framesarelogically atomicblocksof instructions
whereall internalcontrol flow hasbeenreplacedby asser
tions. In this section,we elaboratefurther on thesecon-
cepts.

2.1 Assertions

A conditional branchinstruction and an assertionin-
structionaresimilarin thatthey bothtesta condition. They
are different, however, in the actionstaken after the con-
dition is tested A conditionalbranchinstructionwill either
diverttheinstructionstreanto thetakentargetof thebranch

instructionif the conditionis true, or allow the programto
progresssequentiallyif the conditionis false.An assertion
doesnothingif theconditionis true. If theconditionis false,
however, theassertiortriggersarecovery actionanddiverts
control backto a recovery point. The recovery actionin-
volvesreverting the architecturaktateto that of the begin-
ning of the block that containsit. Essentiallyanassertion
thatfires causests entireblock to be undone.We discuss
the specificsof therecovery actionlaterin this section.

This undoingof statecreateanimportantdistinctionbe-
tweena conditionalbranchandanassertionsubsequerin-
structionsin thesameblock arenotcontroldependentipon
theassertion An assertiorthereforerequiresno prediction
whenfetched.An implicit predictionis madethattheasser
tion will follow thedirectionthe original branchinstruction
wasbhiasediowards.

We demonstratéhe conceptwith anexample. Figure 1
shaws the differencebetweenoriginal codeand codewith
assertions.The original code containsthreebasicblocks:
BlockA, BlockFallThroughA, and BlockZ. BlockA con-
tainsa conditionalbranchthatis takento BlockZ. BlockA
andBlockZ canbecoalescedisinganassertionin Framel,
theinstructionsin BlockZ arenot controldependentn the
assertionandcanbesafelymovedaheadf theassertionlf
the conditionchecledby the assertioris true, nothinghap-
pens.If it is nottrue, the entireblockis flushed(i.e., archi-
tecturalstateis recoveredbackto thebeginningof Framel),
andcontrolis transferedo BlockA. We saythatin thiscase,
theassertiorhasfired.

Bl ockA:

BRz r3, BlockZ ;
Bl ockFal | Thr oughA:

BR 1

Bl ockZ:
i3Rz r4, BlockK ; BR 2
Framel:
'<i nsts from Bl ock A and Z>
ASSERTZ r3, Bl ockA
ERZ r4, BlockK ; BR 2

Figure 1. Example of a frame. Bloc kA, Bloc k-
FallThr oughA, and Bloc kZ constitute the orig-
inal contr ol flow. Framel contains copies of
Blocks A and Z joined by an assertion. If the
assertion fires, contr ol is diver ted to Bloc kA.

We will demonstrateghat using assertionsn place of
highly biasedbranchesallows for the creation of large
atomicregions(like Framel).The objectve is to promote
conditionalbranchednto assertionn situationswvherethey
areunlikely to fire.

The three generalforms of a conditional assertionare
shawn below.

ASSERT Rx, Ry, <cond>, assert_tgt
ASSERTi Rn, <imp, <cond>, assert_tgt
ASSERTi | Rn, <long_i mP, <cond>, assert_tgt

All threeversionscomparea registerwith eitheraregis-
ter, a shortimmediatevalue,or a long immediatevalue. A
PC-relatve assertiortarget(asserttgt) specifiesvherecon-
trol is to beredirectedn the casethe conditionis not true.
Theconditionalfield canbeary standardelationalcompar
ison (i.e., lessthan,lessthanor equalto, etc). Most ISAs
only supportconditionalbrancheghat comparea register
with the value zero (i.e., the relationalcomparisonis less
thanzero, lessthan or equalto zero, etc.). This is to al-
low high-speedmplementatiorof branchexecutionlogic;
performingaregisterto-registercomparisorandinitiating a
possiblemispredictiorrecoveryin asinglecycleathighfre-
guencieanbeproblematic.Sincethe caseof anassertion
firing is by designtheuncommorcasewe allow two regis-
tervaluesto becomparedvithin assertionsAs aresult,the
recoverydueto afired assertiormightstarta cycle afterthe
comparisons done.Thereis no directperformanceadwan-
tagein doingthis, andthis canbe donewith brancheslso.
It does,however, allow the removal of an extra instruction
in certainsituationavhencorvertingfrom basicblocksinto
frames.

As we will show, ourtechniquefor corvertingbranches
into assertionsalsoallowsindirectbrancheso becorverted.
Thethird form shavn above, ASSERTI | , comparesa reg-
isterwith a32-bit(or 64-bit)immediatevalue,andtherefore
anASSERTI | takesthespaceof 2 (or 3) regular32-bitin-
structions. Highly biasedindirect branchesor returnscan
be cornvertedinto assertionsandtheir target blocksencap-
sulatedwith a frame. The addresof the expectedtargetis
theimmediatevaluefield of the ASSERTi | instruction.

2.2 Frames

A sectionof codein which all internal brancheshave
beenpromotednto assertionss calledaframe. A frameis
anatomicregion. If ary instructionwithin the framecom-
mits, thenthey all commit. Figure 2 shows how a likely
paththrougha sectionof a programcanbe corvertedfrom
original basicblocksinto aframe.

Theframein Figure2 hasfour assertionsTheseasser
tionstestthatthe original branchingconditionsthatwould
have taken programcontrol from block A to block B to

A
W .

B A /
" . A

: —] ™~
N { D ASSERTION fired
D E
NTl\ — \

TN

Original Control Flow Frame

Figure 2. A frame is aregion where all internal
branc hes are promoted to assertions.

block C to block D to block E still hold. If they hold, then
the framecompletes.If any oneof themdo not hold, then
an assertionwill fire, the framewill be undone,and pro-
gramcontrolwill transferto the original block A andpro-
ceedfrom there.

An optimization can be donein the mappingbetween
branchesindassertionsAssertionseedonly checkfor the
most restrictve conditionthat mustbe true in orderfor a
frameto execute. For example,if the branchat the end of
block A testedfor (x < 10) andthebranchatthe endof
blockB testedor (x < 4) thenonly anassertioro verify
the condition(x < 4) is required(providedthe value of
x doesnotchangen theinterim).

Becausea firing assertioncan have a higher execution
penaltythan a mispredictedoranch,framesshouldnot be
constructedinlesshepathsthatthey encapsulataredeter
minedto have highlikelihoodof execution. The penaltyof
afiring assertiordepend®n two factors: (1) the dataflav
depthof thatassertiorand(2) theefficiency of theprocessor
in meetingthatdepthduringexecution.

Frameshave asimilarity to othertypesof regionsidenti-
fied by optimizing compilers but arenonethelesdifferent.
Hyperblocks superblocksandtracesfrom atraceschedul-
ing compilerare not strictly atomicregions—allcan have
side exits or divergentpaths. The useof the control flow
assertionin frame constructionalleviatesan olbvious lim-
itation to region sizeimposedby atomicity We will also
demonstrate¢hat frameconstructioncanbe carriedout dy-
namically

Recweryinvolvestwo things: (1) revertingarchitectural
statebackto whatit wasbeforethe framestartedexecution,
and (2) directing control backto the original (non-frame)
versionof thecode.Revertingstateis doneusinga statere-

covery mechanisnsimilar to whatis requiredfor adeeply-
pipelineddynamically-schedulegrocessarsuchascheck-
pointingor areorderbuffer. A large storebuffer is required
to hold valuesstoredto memory by instructionswithin a

frame.Oncetheframeis determinedo executecompletely

the storesarecommittedto memoryandtheregistervalues
producedby the frame are committedto the architectural
registerset.

2.3 TherePLay Framework

The techniquespresentedn this papercan be applied
directly to a hardware/softvareframenork for dynamicop-
timization calledrePLay[10]. In rePLay framesare con-
structedby hardware using some of the techniquesde-
scribedin this paper A software-driven optimizationen-
gineoptimizeseachframebeforestoringit within theframe
cache.Theatomicpropertyof framesenablegheoptimiza-
tion engineto performaggressie optimizationwith lower
overheadthan if frameswere non-atomic. A sequencer
speculateghrough the control flow, initiating fetchesof
both framesand regular basicblocks. Figure 3 shavs a
high-level diagramof therePLayframework.

(,::rarze Fetch Engine
ache

Optimization L
Engine

Execution Engine

f

Frame [— Completing instructions
Constructor

Figure 3. The rePLay Framework.

Since we are investigatingframe constructionfor use
with dynamic optimization, we are facedwith two com-
peting objectives: we want framesto be long in orderto
boostthe potentialof optimization,andwe wantframesto
completelyexecute. In this paper we examineframe con-
structiontechniqueghatachierse both.

3 Reated Work

Thefundamentaklementf this work arederivedfrom
work done by Melvin and Patt on the Block-Structured
ISA [6]. They proposedthe conceptof developing an
ISA centeredaroundatomicregions. In a similar vein to
frameconstructiontraceschedulind3] exploitsinfrequent
branchpathsby removing themfrom a traceand branch-
ing to compensatiorodeif aninfrequentpathshouldhave

beenexecuted. Assertions(and dynamic branchcorrela-
tion) improve upontracescheduling.

Much of this work builds upon previous trace cache
research11, 12, 9], in particularthat of Branch Promo-
tion [8]. Recently Mertenetal [7] have investigatedden-
tifying hot tracesto focusthe benefitsof a tracecache-lile
mechanismTheonekey differencebetweermostprevious
tracecachework andthis work is thathereframesarecon-
sideredatomicentities;tracesin previoustracecachework
could have sideexits. Furthermoreye considerframesfor
dynamicoptimization,and thus framesare requiredto be
long. Tracecacheswvereprimarily investigatedo boostin-
structionfetchbandwidth.

The conceptof dynamiccompilationand optimization
is anemeping area. The desireto boostperformanceand
efficiengy by exploiting run-timebehaior hasspavnedser-
eralalternatve proposalq1, 5, 4, 10]. All of thesesystems
rely onidentifying goodcandidateegionsfor optimization.
In this paperwe provide aregion-identificationrmechanism
thatcanbe usedby mostof theserun-timesystems.

4 Experimental Model
4.1 Benchmarks

For this study we usedall but one of the SPEC2000n-
tegerbenchmarksWe omittedthe benchmarkperlbmkbe-
causeof problemsin runningit within our simulationen-
vironment. All benchmarksvere simulatedto completion
exceptthe benchmarkvpr, which wassimulatedfor 1B in-
structions. Table2 shovsthenumberof simulatednstruc-
tions for eachbenchmark.For mostbenchmarkswe used
modifiedversionsof theinput setsprovidedby SPECin or-
derto getbenchmarknstanceshatsimulateccompletelyin
areasonablamountof time.

All benchmarksverecompiledusingthe CompadAlpha
C compilerDEC C V5.9 with optimizationlevel 4. At this
level of optimization,the compilerperformsin-lining, loop
unrolling, andcodereplicationto eliminatebranches.

4.2 Simulation Environment

Our simulation framework is built upon the Alpha
instruction-level simulatorprovided asthe coreof the Sim-
pleScalar3.0 tool set. For the studiesdonein this paper
we useaninstructiontraceanalyzerthat emulatesa frame
constructomndmodelsaframecacheandbranchbiastable.

*Thebenchmark/pr undegoesto two phase®f execution(placement
androuting). We cover all of the placemenphaseandpartof the routing
phasén our simulations.

Benchmark| Instructions| Input Set

bzip2 289M modified SPECtestinput
crafty 620M modified SPECtestinput
eon 609M SPECtestinput (cook)
gap 490M modified SPECtestinput
gcc 283M jump.i-ojump.o

gzip 870M modified SPECtestinput
mcf 413M modifiedSPECtrain input
parser 508M modified SPECtestinput
twolf 574M modified SPECtrain input
vortex 265M modifiedSPECtrain input
vpr 1000M SPECtestinput

Table 2. Benchmarks used in simulations.

5 Evaluation

In this sectiornwe evaluatetwo techniquegor framecon-
struction. The first techniqueis basedon a simple static
analysisof branchbehavior. Brancheghatarehighly biased
above a particularthresholdare promotedinto assertions.
Thesecondechniqueusesbranchcorrelationto identify in-
stance®f branchegor promotion.

Sincewe are proposinga frame constructiontechnique
for usewith dynamicoptimization,we haveonly considered
framesabove aminimumsize. Smallframesareunlikely to
provide substantiabenefitover basicblocksin termsof op-
timization opportunity andinsteadcanincur performance
overheadthat cannotbe recovered. We thereforediscard
framesconsistingof fewerthan3 basicblocksor fewerthan
16 instructionsfrom consideration.We also setan upper
limit onframesizeto accommodateestrictionamposedoy
realhardware (for instanceline sizein the frame cacheor
numberof outstandingstoresin a storequeue).Framesare
truncatedat the 256thinstruction.

We usethreeprimary metricsto evaluateour framecon-
structiontechniques:averagedynamicframe size, frame
completiorrate, andcoverageof theinstructionstream Av-
erageframe sizeis the averagesizein numberof instruc-
tions of a framemeasuredver all committedframes. The
frame completionratio measuredow likely a frameis to
commitonceissued.A framedoesnotcommitif ary of its
assertiondires. The completionratethereforeis a measure
of how oftenall assertionsvithin aframearecorrect.Frame
coveragemeasureshe fraction of the dynamicinstructions
thatis derived from committedframes. For example,80%
coverageindicatesthat 80% of the i-streamcamefrom in-
structionsencapsulatedithin aframe.

5.1 Static frame construction

Staticframeconstructions performedby usinga profil-
ing compilerto first identify branchego promoteinto as-
sertions. The compilerthen promotescandidatebranches
and arrangesheir blocks into sequentiaframes,keeping
theoriginal copiesto handleafiring assertionAn example
of staticframeconstructionis demonstrateth the example
in Figurel.

We evaluateda schemefor staticframe constructionby
emulatingan idealizedcompiler techniquewithin our ex-
perimentalframenork. We first profiled eachbenchmark
on a training input setto identify brancheshat are 97%
likely to goto a particulartarget. Thesecandidateéoranches
aretreatedasassertionsn subsequensimulationsof each
benchmarlon the measuremeritput setslistedin Table2.
In effect, we aremodelinga compilerthatis ideally ableto
promoteevery highly biasedbranch(conditional,indirect,
andreturn)into anassertiorandconstructframesout of all
pathscontainingsequencesf 2 or moreassertions.

Table 3 shows the averageframe size, completionrate
andcoveragefor eachof the benchmarksAlso includedis
the numberof uniqueframesgeneratedy this statictech-
nigue. With static frame construction framesaverage66
instructionsin length, have a 97% probability of complete
execution,andcover 50% of theinstructionstream.

Ave Frame | Completion | Coverage | Assertions| Unique

Size Rate perFrame | Frames

bzip2 137 91% 61% 15.9 1412
crafty 64 98% 42% 3.2 3954
eon 78 99% 57% 3.1 7210
gap 48 95% 53% 3.6 3844
gcc 37 99% 40% 3.6 21720
gzip 98 95% 59% 5.9 1423
mcf 93 96% 33% 6.1 1092
parser 33 99% 50% 4.1 3835
twolf 39 99% 54% 3.4 4497
vortex 58 99% 82% 5.2 8178
vpr 42 99% 18% 2.7 3428
Ave 66 97% 50% 52 5508

Table 3. Effectiveness of Static Frame Con-

struction.

Figure4 shaws the distribution of frame sizesobsenred
during execution,averagedover all benchmarks Eachbar
represents spanof four sizes.For examplethebarlabeled
16 representshe dynamicfrequeng of framesof size 16,
17,18, and19 instructions.It indicatesthat framesof this

TWe chosethe 97% after investigatingseveral thresholds We selected
onethatmaximizessizewhile not compromisingcompletionrates.

sizeaccountfor slightly over 9% of all frames. The distri-
bution is wide, however the bulk of framesarebetweenl 6
and48 instructiondong.

154

10+

: Wﬂmﬂﬂnﬁﬂmﬂmﬁ : H : N

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Frame Size

Percentage

Figure 4. Distrib ution of staticall y-generated
frame sizes at run-time .

5.2 Dynamic frame construction

A variety of basicresearchin branch prediction[14,
2] hasprovided substantialinsightsinto the relationships
amongdynamic branchinstructions. Thesestudieshave
identified two types of basic correlation: local correla-
tion, wherea branchs currentdirectionis highly correlated
to its previous directions,and global correlation, wherea
branchs currentdirectionis highly correlatedo the direc-
tion of any previousbranchor branches.

The dynamictechniquesve explorein this sectionrely
uponglobal correlationbetweenbranchego guide promo-
tion from branchedo assertionsFigure5 providesa high-
level view of the constructiortechnique.

TheframeconstructohashegusingXOR) thefetchad-
dressof eachincoming block of committedinstructions
with the committedbranchhistoryto index into the branch
biastable[8]. The biastable keepstrack of whetherthe
branchendingthe block hasgonein the samedirectionfor
aparticularnumberof successie occurrenceslf it has,the
biastableindicatesthatthe branchshouldbe promoted.In
our experimentsthe biastableis configuredto promoteif
the branchrepeatsts direction 32 consecutie times. Fig-
ure 6 shaws the structureof the biastable. Oncethe 5-
bit counterhassaturatedthe branchis promotedand the
entire block is addedto the frame constructionbuffer and
the pendingframecontinuego grow. Oncea branchis en-
counteredhatis not promoted the block is addedandthe
pendingframeis considereccomplete.A separatéiasta-
bleis maintainedor indirectbranchesndreturns.For such
branchesa singlebit for lastdirectiondoesnot sufiice. A
targetaddressnustbekeptin eachentry.

Committed instruction stream
Frame Construction Buffer l

frame branch hist

Incoming
Block

Pending
Frame lalock address

e
D

If the incoming block has Branch
a promoted branch, the pending Bias
frame continues to grow.

g Table

curr branch hist

If the branch is not promoted,
the frame is completed.

Promote? 4—‘

Figure 5. A hardware-based constructor that
utiliz es branc h correlation.

Branch Bias Table

Block address XOR history

dir ‘ n-bit saturating counter

\ j Promote
n

A
Consecutive occurrences

Previous outcome

Figure 6. Branch bias table for conditional
branc hes.

We alsodemoteassertiondackinto branchesvhenwe
detectthat their behaior haschanged. Using the branch
bias table, we also track firing assertiongo determineif
they shouldbe demotedbackinto branches.An assertion
is allowed to fire oncebeforeit is demoted. A demoted
assertiorcauseshe framecontainingit to bediscarded.

The startingbranchhistory of eachframe(i.e., thecom-
mitted history at the first branchin the frame)is keptwith
eachframe. Thishistoryis essentiallyaprefix thatidentifies
the instanceof eachpromotedbranchwithin a frame. For
example,if thehistoryof frameABCDE is XYZ, thenXYZ
was usedto decidewhetheror not to promotebranchA,
YZA wasusedto decidethe promotionof B, andsoforth.
The startinghistory XYZ forms a signatue for the frame
andspecifiesvhenit shouldbeinvoked. Wheneverthe cur-
rent history containsXYZ andthe currentfetch addresss

A, the frame sequencingnechanismattemptsto fetch the
frameABCDE.

The crux of this frameconstructiortechniquehingeson
theobsenationthatabranchcanbeseparateihto instances
basedon the pathleadingup to the branch.Onceseparated
thisway, agreatemumberof branchesendto exhibit biased
behaior. This is the samephenomenomxploited by two-
level branchpredictors.Saidanothemway, the outcomeof a
branchtendsto be correlatedo the outcomesof branches,
or path,beforeit. The historyusedin the promotiondeci-
sionhelpsseparatdranchesnto thesebiasednstances.

We gatheredranchinformationin two ways: globalhis-
tory andpathhistory. Globalhistoryis arecordingof then
most recentconditionalbranchoutcomes. Path history is

a recordingof the n mostrecentbranchtarget addresses.

Global history can more compactlyrepresentranchhis-
tory becaus®nly asinglebit is requiredto encodeabranch
direction. Path history is lesscompact. It requiresmore
bits pertargetin orderto uniquelyidentify the targetfrom
all others. In this way, the information storedin the path
history cancompletelyidentify pathsin casesvhereglobal
historywould beambiguousAlso, pathhistorycancapture
targetsof indirectbranchesvhereagylobal history cannot.
First we measurethe fraction of all dynamicbranches
thatare promotedinto assertionssa function of pathhis-
tory length. Figure 7 demonstrateshat as path history is
increasedeyond 6 targets,fewer than20% of all dynamic
branchesactually remain as branches. The rest are pro-
motedinto assertions.Of theseassertionslessthan0.5%
ever fire. This datawas collectedusing a biastable that
promotedafter32f consecutie similar occurrences.

1) S e —
80+

60
= Assertion fired
— Assertions
40 == Branches

20 1 = =

Per centage of Dynamic Branches

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Path History Length

Figure 7. Fraction of dynamic branc hes con-
verted into assertions. Bias threshold = 32.

Using anideal versionof this frame constructiontech-
nigue (i.e., a biastable that suffers no interferenceand an

fWe useathresholdof 32 throughouthis paper After extensie studies
on promotionthresholdswe determinedhat a thresholdof 32 produces
large frameswith low assertiorrates.

120+

100

©
=}
1

o
=
1

—— path history
- ---global branch history
rrrrrr static

Avelnstructions per Frame
3
1

N
=}
1

0 T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14

history length

Figure 8. Average dynamic frame size as a
function of histor y used in frame construc-
tion. Bias threshold = 32.

100

60—

40|

—— path_history
- - - global branch history
20|

Per centage of |-Stream Captured

0 T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

history length

Figure 9. Frame coverage of the i-stream as a
function of histor y. Bias threshold = 32.

ideal hardware frame cache),we measuredhe effects of
branchcorrelationon frameconstruction.

Figure8 demonstratetheaveragesizeof framesasmea-
suredon the benchmarksetusing both global branchhis-
tory and path history. Figure 9 shows the coverageof the
instructionstream.In theseexperimentsthe biastablewas
configuredo promotebrancheénto assertionafter32 con-
secutve similar outcomesTheimportanttrendis thateven
addinga smallamountof branchcorrelationto the promo-
tion decisionscauseshe size and coverageof the instruc-
tion streamincrease The completionrateof the framesre-
mainsnearly constantat 97% (this indicatesthat the per
assertionfire rate actually decreasebecausethe average
numberof assertionperframeincreases).

The datain Figures7 and 8 indicate that decreasing
the total dynamicbranchcount by even a small percent-

agecauses significantincreasdn framesize. This is be-
causeaftera certaincritical numberof branchedave been
promotedinto assertionspromotingmorebranchesauses
adjoiningframesto be coalescednto largerframes.
Averageframesizesenesasagrosssummaryof behar-
ior. Firstly, thisis becauséramesizehasawidedistribution
asdemonstratedh Figure10. Therearesmallframesand
very large frames(almost12% of all framesarethe maxi-
mum 256 instructionslong). Also, eachbenchmarkhasits
own characteristidistribution. Dueto spaceconstraintave
have omittedthe perbenchmarldistribution datahere.

154

10

Per centage

mHHﬂmmﬂHnmr”nnﬂmrhnﬂnmannnrhmMHmrhmmm

(1] 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Frame Size

o

Figure 10. Distrib ution of dynamic frame sizes
constructed using a9 element path histor y.

We do howeverincludeaperbenchmarlkaverageof the9
elemenpathhistoryschemeonthethreeimportantmetrics,
plus the averagenumberof assertiongper frame, and the
overall numberof dynamicallygeneratedrames.Included
for referencas the overall averageof the staticschemeand
thedynamicschemautilizing a 9-bit globalhistory.

The frame propertiesresultingfrom path-historybased
frameconstructioraresuperior Oneparticularitem of note
is therelatively highnumberof uniqueframesgeneratedia
globalhistory. We suspecthis hasto dowith theambiguity
surroundingglobal history.

Overall,theresultsarepromising.With adynamicframe
constructiorutilizing a9 elementpathhistory, we areable
to constructframesthat spanan averageof 102 instruc-
tions,encapsulatever 9 branchesandhave a 97% chance
of completeexecution. Theseframe characteristicsnake
atomic frame constructionuseful for optimization. The
reductionin dynamicbranchesopensopportunityfor less
comple fetch hardware. In the next section,we demon-
stratethatevenwith thesimulatedeffectsof finite hardware,
our frameconstructoiis ableto sustaingoodresults.

While we have beencalling this frameconstructiortech-
nigue a dynamicframe constructiontechniquebecauseof
its useof run-timebranchinformation,Youngetal [15] pro-
poseda mechanisnthatcanbe adaptedo exploit suchdy-

Ave Frame | Completion | Coverage | Assertions| Unigue

Size Rate perFrame | Frames

bzip2 180 89% 79% 18.9 1108

crafty 88 96% 85% 6.7 15432
eon 179 98% 89% 8.6 1515
gap 155 98% 96% 15.4 5662

gcc 70 96% 7% 8.2 24687
gzip 89 95% 79% 5.6 1505
mcf 52 96% 71% 6.7 2097
parser 46 98% 78% 6.2 7629
twolf 66 99% 82% 6.8 2533
vortex 135 99% 94% 13.4 3273
vpr 61 99% 74% 4.8 2656
path 102 97% 82% 9.2 6191

global 82 97% 79% 7.4 13324
static 66 97% 50% 5.2 5508

Table 4. Per benchmark statistics for a con-
structor using a9 element path histor y.

namicinformationstaticallyby creatingduplicateversions
of branchespecificto anexecutionpath.

5.3 Hardwarefor frame construction

In this section,we examinethe effectsof usinga finite
sizedbranchbiastableandafinite sizedframecacheonthe
frameconstructor

In the first experiment,we examinethe effects of bias
table size. The dataplottedin Figure 11 demonstratéhe
effectson framesizeof using16KB, 32KB, and64KB bias
tables.Also, eachconfigurationusesa 4KB indirectbranch
biastable. Thethresholdfor promotionwassetto 32.

The biastableusesa 9 elementpathhistory maintained
assuggestedyy Starket al [13]. They proposednaintain-
ing pathhistoryby XORing new targetsinto the pathhistory
and XORing old targetsout. Along theway, eachtargetis
rotatedto encodeeachtarget’s positionwithin the history.
The numberof bits selectedirom eachtarget addressde-
pendson the size of the biastable. For example,a 32KB
biastable usesl5 bits from eachtargetaddressn forming
the pathhistory.

The framesgenerateddy using finite sizedbias tables
peakat slightly over 80 instructions. The drop in frame
lengthbetweera 64KB biastableanda 16KB biastableis
significantbut not severe.

Two thingsof note: First,thehardwareframeconstructor
mechanisnmusescommittedbranchinformationandthere-
fore requiresno recavery mechanismfor misspeculations
aswould a branchpredictorin the frontendof a processar
Secondgpur biastablesuffersfrom negative interferencdas

100

404 —— Path-based 64KB bias table
- - - Path-based 32KB bias table
rrrrrr Path-based 16KB bias table
20

Ave#Instruction per Frame

0 T T
5 10

Path History Length

Figure 11. Dynamic frame size for various
sized hardware bias tables.

demonstratetly the degradatiorfrom idealto finite-sized).
Many of the proposednterferencereductiontechniquesx-

ploredfor branchpredictorssuchasfiltering andagreepre-
diction canbe appliedhereto improve performanceof the
biastables.

Next, we evaluatethe effects of a finite sized frame
cache Thedatapresentedh Table5 liststheresultsof using
a 256 elementframe cachewith a 32KB branchbiastable
anda 4KB indirect branchbiastable. Frameconstruction
usesa 9 elementpathhistory. Promotionthresholds again
setto 32 consecutie occurrences.

The dataindicatethatthe constructoiis ableto coalesce
almost8 basicblockstogetherto form atomic regions of
over 80 instructions,7 of which are assertions. Almost
70% of the dynamicinstructionstreamis coveredby these
frames. Thesecharacteristicof framesnot only present
useful opportunity for dynamic optimization, but the in-
creasen the spanof branchlesgegions makesthe job of
aprocessosfetchenginemuchsimpler A singlefetchcan
produce80 instructionswith only a single branchpredic-
tion.

To give further context to the frame characteristicpre-
sentedn Table5, we alsoincludethe branchpredictionac-
curag of asmall4KB gsharausingl4-bitsof globalbranch
history Frame completion rates are high even though
branchpredictionaccurag is not. However, mostbench-
marks that suffer from low branch prediction accuracies
alsohave smalleraverageframesizes.

We measurdramecachesizeby the numberof elements
cachedrather than number of bytes of storagebecause
framesizeis dependenbn optimizationsperformedby an
optimizer Handoptimizationsof high frequeng framesin
the SPECint95benchmarkssuite resultedin considerably
smallerframesthanwe startedwith. Whensmallerframe
cachesizesare evaluated the primary changein metricsis

areductionin coverage.A 64 elementframe cachegetsa
coverageof 58%,a 128elemenframecachegets64%,and
a 256 elementframe cachegets67%. Framesizeremains
nearlyconstant.

Degradatiorfrom idealhardwareis significant,but there
is opportunityfor increasingthe effectivenessof a frame
cacheusingthehot spotidentificationtechnique®f Merten
etal [7]. They have determinedhatthe behaior of frame-
like regions of the control flow exhibit hot-cold behaior.
At certainregionsof execution,someframesarelik ely to be
morefrequentlyutilized thanothers.Usingtheir technique
it is possibleto only cacheframesthat are detectedo be
hot, andto drop cold frames,and therebyusethe limited
capacityof theframecachemoreeffectively.

6 Analysis

In this section,we provide someinsightinto the frame
constructiortechniquesWe provide someancillary datato
shedlight on the typesof programbehaior thatarebeing
exploitedby theframeconstructor

6.1 Rationale behind what is happening

Frameconstructionpoth dynamicandstatic,exploit bi-
asedbranches. Basedon our experimentationwe found
thatvia profiling approximatelyp5%of all branchesrecat-
egorizedas promotablebiasedbranchesisingthe criterion
we mentionin Section5.1. This numberincreaseso 67%
whentheclassificatioris donedynamicallyusinga biasta-
ble. Thenumberincreaseso over 80%whenbranchcorre-
lation is addedto theclassification.

The phenomenotbeing capturedby the dynamicframe
constructoris very similar to the phenomenorapturedby
a2-level branchpredictor Take for examplea string of cor-
rectpredictionsmadeby a 2-level predictorsuchasgshare.
The initial correctpredictionis madeby indexing the pre-
dictor with the startingglobal branchhistory and a fetch
addressAt theendof thecycle the fetchengineprovidesa
fetchblock of instructions,a new globalhistory, anda new
fetchaddress.In the next cycle, the new history andfetch
addressndex thefetchmechanisnto produceanotheifetch
block, history, andfetch address.This cycle continuesun-
til an event suchasa branchmisprediction,or BTB miss,
or cachemisscauses disruption. The processeginswith
an initial history and an initial fetch address. The frame
constructorunfurls this processy prepackaginghe fetch
blockswith the predictions;both canbe known a priori by
traversinghistoryinformationstoredin thebiastable.Since
the costof anassertiorcanbe higherthanthatof a branch
mispredictionwe uselarger countersn the biastablethan
in the standardpatternhistorytable (5-bit asopposedo 2-
bit) to gain more confidenceaboutbranchbehaior. The

Average | Completion | Coverage | Assertions| Unique | 4KB gshare
FrameSize Rate perFrame | Frames

bzip2 179 89% 78% 18.9 1151 97.4
crafty 75 96% 61% 5.3 13643 92.4
eon 87 98% 46% 4.1 1613 97.1
gap 114 96% 88% 111 7569 98.0
gcc 51 97% 36% 5.7 21033 89.4
gzip 89 95% 7% 5.6 1579 90.7
mcf 53 96% 68% 6.6 2051 90.1
parser 43 99% 69% 5.9 6946 93.1
twolf 56 99% 67% 5.6 3569 90.4
vortex 89 98% 76% 8.4 5769 97.6
vpr 52 99% 75% 4.1 3085 85.0
Average 81 97% 67% 6.9 6182

Ave - |deal Dynamic 102 97% 82% 9.2 6191

Ave - Ideal Static 66 97% 50% 5.2 5508

Table 5. Frame stats with 256 entry frame cache, 32KB+4KB bias tables, and 9 element path histor y.

startingaddresandstartingbranchhistory sene asafetch
signaturefor a framecreatedwith thistechnique.

6.2 Isit simply loop unrolling?

One phenomenorthat both static and dynamic frame
constructionmay be capturingis loop unrolling. For all
datapresentedhusfar, the loop unrolling option was en-
abledwhenthe benchmarksverecompiledusingthe Com-
pagAlphacompiler soframeconstructiorwasableto boost
atomicregion sizebeyondtheloop unrolling performedby
aproductionC compilet

We exploredtheeffectsof compilerloopunrollingonthe
frame constructorby running an experimentwith binaries
generatedvith loop unrolling disabled. Table 6 presents
theresults.Thetablecontainghe averageacrossall bench-
marksfor a frame constructorutilizing a 9 elementpath
history. Thefirst two datarows of the tablepresenthere-
sultswith compilerunrolling enabledandwith it disabled.
Thedatain thethird row wasmeasuredisinga framecon-
structorthatwasinhibited from addingduplicateblocksto
a pendingframe (i.e., if a frame alreadycontainedblock
X, thentheframewould be consideredompleteif another
copy of X wereattemptedo be added).This is a very se-
vereway of restrictingthe effectsof loop unrolling because
it factorsout loopsthat would be otherwisedifficult for a
compilerto unroll, suchasloopswith complex controlpaths
or function calls. This testwasrun on binariesgenerated
with compilerunrolling enabled.

Basedonthedatacollectedwith loop unrolling disabled,
the effect of compiler unrolling on frame constructionis
minimal. The frame constructorexploits loops,asdemon-
stratedby the sharpdropin framesizeand coveragewhen

Ave Frame | Completion | Coverage | Unique

Size Rate Frames
W/ unrolling 102 97% 82% 6191
W/o unrolling 105 96% 90% 6774
No duplicates 74 98% 71% 4581

Table 6. The effects of loop unrolling on frame
construction using a 9-element path histor y.

duplicateblocksareinhibited. Nonethelessframesizeand
coverageis still substantial.

6.3 Phased behavior

Static constructionrelies on profiling and is therefore
brittle to the differencein behaior betweenthe execution
profilesand actualexecution. Dynamic constructionwith
extra hardware costs,canadaptto actualexecutionbeha-
ior.

Another benefit of dynamic frame constructionover
static constructionis the ability for framesto be gener
atedanddestryed dependingon the dynamicbehavior. A
branchmaybebiasedduringasectionof aprogramandnot
biasedduringanother Suchphaseehaior is moreeasily
exploitedby a dynamicmechanisnhana staticone.

We measuredhe dynamicvariationin branchpromo-
tionsthroughouthe executionof eachbenchmark For ev-
ery branchinstance(branchprecededy specificpath)that
executedat least3200times (this numberwas chosenbe-
causeour promotionthresholdis 32, thusthe warmupcost
is a smallerfactor), we countedhow often the branchin-

stancewas obsened asan assertiorand how often it was
not. We found that a majority of suchbranchesvere en-
counteredas promotedonly between90% and 95% of the
time, indicating that thereare periodsof executionwhere
thesebranchesaveirregularbehaior.

7 Conclusion

Frameconstructiorusingassertiongreategargeatomic
regions of instructionsthat have a very high probability
of completeexecution. We demonstrateéhatincorporating
branchcorrelationinto the branchpromotiondecisionre-
sultsin larger frameswith a larger degree of coverageof
the instructionstream,even whenfinite sizedhardwareis
usedfor frameconstructiorandframecaching.

We submit that the dynamic frame constructor is
pre-packagingthe instructions associatedwith easy-to-
predictbranchesnto a frame,leaving the harderto-predict
branchesstheconnectve branchebetweeroneframeand
thenext. Froma hardwarestandpointthisis goodbecause
with a singlefetch, severalcyclesworth of instructionscan
bestreamedaut of theframecacheallowing multiple cycles
for the predictionof theseconnectve branches.

Our analysisdemonstratethat the frame constructoris
ableto unroll loopsandin-line function calls in situations
difficult for a compilerto exploit. In additionto unrolling,
theframeconstructoiis ableto exploit run-timecontrolsta-
bility in pathsthatcontainnoloopsaswell.

We view theseresultsas preliminary; they arethe first
stepfor rePLay which is a hardware/softvare framewvork
for dynamicoptimization. Framessene asthe regions of
optimizationwithin rePLayin the sameway thata traceis
the basicunit within a traceschedulingcompiler Frames
aredifferentfrom superblockandhyperblocksn thatthey
containonly asinglepathof executionandnosideentrances
or sideexits. This givesa dynamicoptimizerwith greater
leeway in performinglow-overheadptimizations.

8 Acknowledgments

Wethankboththeothermember®f the AdvancedCom-
puting Systemsgroup and Prof. Steve Lumettafor their
valuablensightsin thedevelopmenbf thesddeas.We also
thankIntel andHewlett-Packardfor their generosityin pro-
viding equipment.

References

[1] V. Bala, E. Duestenald, and S. Banerjia. Transparently-
namicoptimization: Thedesignandimplementatiorof Dy-
namo. TechnicalReport HPL-1999-78, Hewlett-Packard
LaboratoriesJune1999.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Evers, S. J. Patel, R. S. Chappell,andY. N. Patt. An
analysisof correlationandpredictability: What makestwo-
level branchpredictorswork. In Proceedingsof the 25th
AnnuallnternationalSymposiunon ComputerArchitecture,
pagesH2-61,1998.

J.A. Fisher Tracescheduling:A techniquefor global mi-
crocodecompaction.IEEE Transactionson Computes, C-
30(7):478-490July 1981.

B. Grant,M. Mock, M. Phillipose,C. ChambersandsS. J.
Eggers. DyC: An expressve annotation-directedlynamic
compilerfor C. TechnicalReportUW-CSE-97-03-03Uni-
versity of WashingtonMay 1999.

A. Klaiber. ThetechnologybehindCrusoeprocessorsTech-
nical report, TransmetaCorporation,Jan.2000.

S. Melvin and Y. Patt. Enhancinginstruction scheduling
with a block-structuredSA. International Journal of Par-
allel Programming 23(3):221-243Junel995.

M. C. Merten, A. R. Trick, E. M. Nystrom,R. D. Barnes,
andW. W. Hwu. A hardware mechanisnfor dynamicex-
tractionandrelayoutof programhot spots. In Proceedings
of the 27th Annual International Symposiunon Computer
Architecture, 2000.

S.J.Patel,M. Evers,andY. N. Patt. Improving tracecache
effectivenesswith branchpromotionandtracepacking. In
Proceeding®fthe25thAnnuallnternationalSymposiunon
ComputerArchitecture, 1998.

S. J. Patel, D. H. Friendly, andY. N. Patt. Evaluationof
designoptionsfor the tracecachefetch mechanism.IEEE
Transactionon Computes, 48(2):435—-446Feh 1999.
S.J.PatelandS. S. Lumetta. rePLay: a hardware frame-
work for dynamicprogramoptimization. TechnicalReport
CRHC-99-16 University of lllinois TechnicalReport,Dec.
1999.

A. Pelgg andU. Weiser Dynamic flow instructioncache
memory organizedaroundtrace sgmentsindependenbf
virtual addresdine. U.S.PatentNumber5,381,533,1994.
E. Rotenbeg, S. Bennett,andJ. E. Smith. Tracecache:a
low latengy approacho highbandwidthinstructionfetching.
In Proceeding®f the 29th Annual ACM/IEEE International
Symposiunon Microarchitecture, 1996.

J. Stark, M. Evers,and Y. N. Patt. Variablelength path
branchprediction. In Proceedingof the 8th International
Confeenceon Architectuial Supportffor ProgrammingLan-
guagesandOpeiating Systemspagesl70—179,1998.
T.-Y. YehandY. N. Patt. Two-level adaptve branchpre-
diction. In Proceedingf the 24th Annual ACM/IEEE In-
ternational Symposiunon Microarchitectue, pagess1-61,
1991.

C.YoungandM. D. Smith. Improving theaccurag of static
branchpredictionusingbranchcorrelation. In Proceedings
ofthe6th InternationalConfeenceon Architectural Support
for ProgrammingLanguayesand Opeiating Systemspages
232-241]1994.

