
Increasing the Size of Atomic Instruction Blocks
using Control Flow Assertions

SanjayJ.Patel Tony Tung SatarupaBose Matthew M. Crum

Centerfor ReliableandHigh-PerformanceComputing
Departmentof ElectricalandComputerEngineering

Universityof Illinois at Urbana-Champaign�
sjp, tonytung,sbose,mcrum� @crhc.uiuc.edu

Abstract

For a varietyof reasons,branch-lessregionsof instruc-
tionsare desirablefor high-performanceexecution.In this
paper, we proposea meansfor increasing the dynamic
length of branch-lessregions of instructionsfor the pur-
posesof dynamic program optimization. We call these
atomicregionsframesandweconstructthemby replacing
original branch instructionswith assertions.Assertionin-
structionscheck if the original branching conditionsstill
hold. If they hold,noactionis taken. If they donot,thenthe
entire region is undone. In thismanner, anassertionhasno
explicit control flow. Wedemonstratethatusingbranch cor-
relation to decidewhena branch shouldbeconvertedinto
anassertionresultsin atomicregionsthataverageover100
instructionsin length,with a probability of completionof
97%,andthat constituteover 80%of thedynamicinstruc-
tion stream.Wedemonstratebothstaticanddynamicmeans
for constructingframes.Whenframesarebuilt dynamically
usingfinite sizedhardware, they average 80 instructionsin
lengthandhavegoodcachingproperties.

1 Introduction

An atomicregion of codehasthe following properties:
executionof the region beginsat a singleinstruction,ends
at a singleinstruction,andtheregioncontainsa singlepath
of execution. The region is consideredatomicbecauseif
one instructionin the region is committedto architectural
state,thenall instructionsarecommitted.A basicblock,for
example,is anatomicregion.

Atomic regionsconsistingof many instructionsarede-
sirable for a variety of reasons. They allow a compiler
maximumflexibility for optimizations.Codeschedulingin
atomicregions,for example,neednot accountfor sideen-

trances,sideexits, or divergentpathsof execution.Atomic
regions provide hardware with a sequentialstreamof in-
structionswith no control flow. Instructionfetch mecha-
nismscanstreamoutanatomicregionwith asinglePCand
a singlebranchprediction.Optimisticstaterecoverymech-
anismsneedonly savestateatboundariesof atomicregions.

The natureof programs,however, is such that atomic
regions typically consistof very few instructions. Basic
blocksarethemostfamiliar notionof atomicregions. The
data in Table 1 shows that dynamicbasicblock size for
a majority of the SPEC2000integer benchmarksis below
9 instructions. The benchmarkswerecompiledusing the
CompaqAlpha compiler with a high level (-O4) of opti-
mizationincludingfunctionin-lining andloop unrolling.

Benchmark Averageblocksize
bzip 9.17
crafty 9.23
eon 7.45
gap 8.52
gcc 6.43
gzip 11.07
mcf 5.33
parser 5.30
twolf 7.36
vortex 7.20
vpr 8.56

Table 1. Dynamic basic bloc k size.

In this paper, we presentaneffective techniquefor gen-
eratinglongeratomicregionswith the useof control flow
assertions. An assertionis an instructionthat verifiesthat
the original branchingconditionsstill hold. If the condi-
tions arestill true, thenno actionis taken. If they arenot,
thentheentireregionis undoneandcontrolis divertedto an

original copy of thecode.
The atomic regions formed using our techniqueare

called frames. A frame is a region of codewhereall in-
ternalbrancheshave beenpromotedinto assertions.Frame
creationcanbe donestaticallyby a profiling compiler, or
dynamicallywith a hardwarefill unit. We demonstratethat
with a dynamictechniqueusingbranchcorrelation,frames
canbeverylong—anorderof magnitudelongerthanabasic
block—with several propertiesthat make themvery com-
pelling for furtherinvestigation.

In addition to the reasonsmentionedearlier in the in-
troduction,long atomicregionsareusefulfor low-level dy-
namictranslationandoptimization,asexemplifiedby sev-
eral recentproposalssuchasthe rePLayFramework [10],
the TransmetaCode Morphing System[5], and HP Dy-
namo[1]. An atomic region can serve as the basicunit
of optimization. It can be as small as an instruction,but
longerregionsarepreferredin orderto giveadynamicopti-
mizergreateropportunityfor optimization.Furtherbenefits
arehadif recentlyoptimizedregionsoccurfrequently—the
overheadcostsof translationand optimization are amor-
tized over eachoccurrence.While the frameconstruction
techniquespresentedhereare specifically tailored for re-
PLay, they canbeextendedfor useby a varietyof dynamic
optimizationschemes.

In this paper, we contribute the following. We present
a techniquefor constructinglogically atomicregionscalled
framesby usingcontrol flow assertions.We measurethe
effectivenessof ourconstructiontechniquewhenappliedto
staticcodeversusapplyingit dynamicallyusingbranchcor-
relation.Weprovidemetricsfor evaluatingtheeffectiveness
of frameconstruction.We proposeandevaluateahardware
mechanismfor constructingframes.

2 Basic concepts : assertions and frames

Therearetwo basicconceptsproposedin this paper:as-
sertionsandframes. An assertionsis a type of branchin-
structionthat hasno explicit control flow associatedwith
it [6]. An assertionverifiesthatcertainconditionsaretrue
during execution, and initiates a recovery action if they
arenot. Framesarelogically atomicblocksof instructions
whereall internalcontrol flow hasbeenreplacedby asser-
tions. In this section,we elaboratefurther on thesecon-
cepts.

2.1 Assertions

A conditional branch instruction and an assertionin-
structionaresimilar in thatthey bothtesta condition.They
are different, however, in the actionstaken after the con-
dition is tested.A conditionalbranchinstructionwill either
diverttheinstructionstreamto thetakentargetof thebranch

instructionif theconditionis true,or allow theprogramto
progresssequentiallyif theconditionis false.An assertion
doesnothingif theconditionis true.If theconditionis false,
however, theassertiontriggersarecoveryactionanddiverts
control back to a recovery point. The recovery action in-
volvesrevertingthearchitecturalstateto thatof thebegin-
ning of theblock that containsit. Essentially, anassertion
that fires causesits entireblock to be undone.We discuss
thespecificsof therecoveryactionlaterin this section.

Thisundoingof statecreatesanimportantdistinctionbe-
tweenaconditionalbranchandanassertion:subsequentin-
structionsin thesameblockarenotcontroldependentupon
theassertion.An assertionthereforerequiresno prediction
whenfetched.An implicit predictionis madethattheasser-
tion will follow thedirectiontheoriginalbranchinstruction
wasbiasedtowards.

We demonstratetheconceptwith anexample. Figure1
shows the differencebetweenoriginal codeandcodewith
assertions.The original codecontainsthreebasicblocks:
BlockA, BlockFallThroughA, and BlockZ. BlockA con-
tainsa conditionalbranchthat is taken to BlockZ. BlockA
andBlockZ canbecoalescedusinganassertion.In Frame1,
theinstructionsin BlockZ arenot controldependenton the
assertion,andcanbesafelymovedaheadof theassertion.If
theconditioncheckedby theassertionis true,nothinghap-
pens.If it is not true,theentireblock is flushed(i.e.,archi-
tecturalstateis recoveredbackto thebeginningof Frame1),
andcontrolis transferedto BlockA. Wesaythatin thiscase,
theassertionhasfired.

BlockA:
:
BRz r3, BlockZ ; BR 1

BlockFallThroughA:
:

BlockZ:
:
BRz r4, BlockK ; BR 2
:

Frame1:
:
<insts from Block A and Z>
:
ASSERTz r3, BlockA
:
BRz r4, BlockK ; BR 2

Figure 1. Example of a frame . Bloc kA, Bloc k-
FallThr oughA, and Bloc kZ constitute the orig-
inal contr ol flo w. Frame1 contains copies of
Bloc ks A and Z joined by an asser tion. If the
asser tion fires, contr ol is diver ted to Bloc kA.

We will demonstratethat using assertionsin place of
highly biasedbranchesallows for the creation of large
atomicregions(like Frame1).The objective is to promote
conditionalbranchesinto assertionsin situationswherethey
areunlikely to fire.

The threegeneralforms of a conditionalassertionare
shown below.

ASSERT Rx, Ry, <cond>, assert_tgt
ASSERTi Rn, <imm>, <cond>, assert_tgt
ASSERTil Rn, <long_imm>, <cond>, assert_tgt

All threeversionscomparea registerwith eithera regis-
ter, a shortimmediatevalue,or a long immediatevalue. A
PC-relativeassertiontarget(asserttgt) specifieswherecon-
trol is to beredirectedin thecasetheconditionis not true.
Theconditionalfield canbeany standardrelationalcompar-
ison (i.e., lessthan,lessthanor equalto, etc). Most ISAs
only supportconditionalbranchesthat comparea register
with the valuezero (i.e., the relationalcomparisonis less
thanzero, lessthanor equalto zero,etc.). This is to al-
low high-speedimplementationof branchexecutionlogic;
performingaregister-to-registercomparisonandinitiatinga
possiblemispredictionrecoveryin asinglecycleathighfre-
quenciescanbeproblematic.Sincethecaseof anassertion
firing is by designtheuncommoncase,we allow two regis-
tervaluesto becomparedwithin assertions.As a result,the
recoverydueto afiredassertionmightstartacycleafterthe
comparisonis done.Thereis no directperformanceadvan-
tagein doingthis,andthis canbedonewith branchesalso.
It does,however, allow theremoval of anextra instruction
in certainsituationswhenconvertingfrom basicblocksinto
frames.

As we will show, our techniquefor convertingbranches
intoassertionsalsoallowsindirectbranchestobeconverted.
Thethird form shown above,ASSERTil, comparesa reg-
isterwith a32-bit(or 64-bit) immediatevalue,andtherefore
anASSERTil takesthespaceof 2 (or 3) regular32-bit in-
structions. Highly biasedindirect branchesor returnscan
be convertedinto assertionsandtheir target blocksencap-
sulatedwith a frame. Theaddressof theexpectedtarget is
theimmediatevaluefield of theASSERTil instruction.

2.2 Frames

A sectionof codein which all internal brancheshave
beenpromotedinto assertionsis calleda frame.A frameis
anatomicregion. If any instructionwithin theframecom-
mits, then they all commit. Figure 2 shows how a likely
paththrougha sectionof a programcanbeconvertedfrom
originalbasicblocksinto a frame.

The framein Figure2 hasfour assertions.Theseasser-
tions testthat the original branchingconditionsthatwould
have taken programcontrol from block A to block B to

B

C

D

E

NT T

NT T

NT T

NT T

NT T

A

B

C

D

A

E

A

Original Control Flow Frame

ASSERTION fired

Figure 2. A frame is a region where all internal
branc hes are promoted to asser tions.

block C to block D to block E still hold. If they hold, then
the framecompletes.If any oneof themdo not hold, then
an assertionwill fire, the frame will be undone,andpro-
gramcontrolwill transferto theoriginal block A andpro-
ceedfrom there.

An optimizationcan be donein the mappingbetween
branchesandassertions.Assertionsneedonly checkfor the
most restrictive condition that must be true in order for a
frameto execute.For example,if the branchat the endof
block A testedfor (x < 10) andthebranchat theendof
blockB testedfor (x < 4) thenonly anassertionto verify
the condition(x < 4) is required(providedthe valueof
x doesnot changein theinterim).

Becausea firing assertioncan have a higherexecution
penaltythana mispredictedbranch,framesshouldnot be
constructedunlessthepathsthatthey encapsulatearedeter-
minedto have high likelihoodof execution.Thepenaltyof
a firing assertiondependson two factors: (1) the dataflow
depthof thatassertionand(2) theefficiency of theprocessor
in meetingthatdepthduringexecution.

Frameshaveasimilarity to othertypesof regionsidenti-
fied by optimizingcompilers,but arenonethelessdifferent.
Hyperblocks,superblocks,andtracesfrom a traceschedul-
ing compilerarenot strictly atomicregions—allcanhave
sideexits or divergentpaths. The useof the control flow
assertionin frame constructionalleviatesan obvious lim-
itation to region size imposedby atomicity. We will also
demonstratethat frameconstructioncanbecarriedout dy-
namically.

Recovery involvestwo things:(1) revertingarchitectural
statebackto whatit wasbeforetheframestartedexecution,
and (2) directing control back to the original (non-frame)
versionof thecode.Revertingstateis doneusingastatere-

coverymechanismsimilar to what is requiredfor a deeply-
pipelineddynamically-scheduledprocessor, suchascheck-
pointingor a reorderbuffer. A largestorebuffer is required
to hold valuesstoredto memoryby instructionswithin a
frame.Oncetheframeis determinedto executecompletely,
thestoresarecommittedto memoryandtheregistervalues
producedby the frame are committedto the architectural
registerset.

2.3 The rePLay Framework

The techniquespresentedin this papercan be applied
directly to ahardware/softwareframework for dynamicop-
timization calledrePLay[10]. In rePLay, framesarecon-
structedby hardware using some of the techniquesde-
scribedin this paper. A software-driven optimizationen-
gineoptimizeseachframebeforestoringit within theframe
cache.Theatomicpropertyof framesenablestheoptimiza-
tion engineto performaggressive optimizationwith lower
overheadthan if frameswere non-atomic. A sequencer
speculatesthrough the control flow, initiating fetchesof
both framesand regular basicblocks. Figure 3 shows a
high-level diagramof therePLayframework.

Optimization

Frame

Engine

Fetch Engine

Constructor
Frame

Execution Engine

Completing instructions

Sequencer
Cache

Figure 3. The rePLay Framework.

Since we are investigatingframe constructionfor use
with dynamicoptimization, we are facedwith two com-
peting objectives: we want framesto be long in order to
boostthepotentialof optimization,andwe want framesto
completelyexecute. In this paper, we examineframecon-
structiontechniquesthatachieveboth.

3 Related Work

Thefundamentalelementsof thiswork arederivedfrom
work done by Melvin and Patt on the Block-Structured
ISA [6]. They proposedthe conceptof developing an
ISA centeredaroundatomic regions. In a similar vein to
frameconstruction,tracescheduling[3] exploits infrequent
branchpathsby removing themfrom a traceandbranch-
ing to compensationcodeif aninfrequentpathshouldhave

beenexecuted. Assertions(and dynamicbranchcorrela-
tion) improveupontracescheduling.

Much of this work builds upon previous trace cache
research[11, 12, 9], in particular that of BranchPromo-
tion [8]. Recently, Mertenet al [7] have investigatediden-
tifying hot tracesto focusthebenefitsof a tracecache-like
mechanism.Theonekey differencebetweenmostprevious
tracecachework andthis work is thathereframesarecon-
sideredatomicentities;tracesin previoustracecachework
couldhave sideexits. Furthermore,we considerframesfor
dynamicoptimization,and thus framesarerequiredto be
long. Tracecacheswereprimarily investigatedto boostin-
structionfetchbandwidth.

The conceptof dynamiccompilationand optimization
is an emerging area. The desireto boostperformanceand
efficiency by exploiting run-timebehavior hasspawnedsev-
eralalternativeproposals[1, 5, 4, 10]. All of thesesystems
rely onidentifyinggoodcandidateregionsfor optimization.
In thispaper, weprovidearegion-identificationmechanism
thatcanbeusedby mostof theserun-timesystems.

4 Experimental Model

4.1 Benchmarks

For this study, we usedall but oneof theSPEC2000in-
tegerbenchmarks.We omittedthebenchmarkperlbmkbe-
causeof problemsin runningit within our simulationen-
vironment. All benchmarksweresimulatedto completion
exceptthebenchmarkvpr, which wassimulatedfor 1B in-
structions� . Table2 showsthenumberof simulatedinstruc-
tions for eachbenchmark.For mostbenchmarks,we used
modifiedversionsof theinputsetsprovidedby SPECin or-
derto getbenchmarkinstancesthatsimulatedcompletelyin
a reasonableamountof time.

All benchmarkswerecompiledusingtheCompaqAlpha
C compilerDEC C V5.9 with optimizationlevel 4. At this
level of optimization,thecompilerperformsin-lining, loop
unrolling,andcodereplicationto eliminatebranches.

4.2 Simulation Environment

Our simulation framework is built upon the Alpha
instruction-level simulatorprovidedasthecoreof theSim-
pleScalar3.0 tool set. For the studiesdonein this paper,
we usean instructiontraceanalyzerthat emulatesa frame
constructorandmodelsaframecacheandbranchbiastable.

�
Thebenchmarkvpr undergoesto two phasesof execution(placement

androuting). We cover all of theplacementphaseandpartof therouting
phasein oursimulations.

Benchmark Instructions InputSet
bzip2 289M modifiedSPECtestinput
crafty 620M modifiedSPECtestinput
eon 609M SPECtestinput (cook)
gap 490M modifiedSPECtestinput
gcc 283M jump.i -o jump.o
gzip 870M modifiedSPECtestinput
mcf 413M modifiedSPECtrain input
parser 508M modifiedSPECtestinput
twolf 574M modifiedSPECtrain input
vortex 265M modifiedSPECtrain input
vpr 1000M SPECtestinput

Table 2. Benc hmarks used in sim ulations.

5 Evaluation

In thissectionweevaluatetwo techniquesfor framecon-
struction. The first techniqueis basedon a simple static
analysisof branchbehavior. Branchesthatarehighly biased
above a particularthresholdarepromotedinto assertions.
Thesecondtechniqueusesbranchcorrelationto identify in-
stancesof branchesfor promotion.

Sincewe areproposinga frameconstructiontechnique
for usewith dynamicoptimization,wehaveonly considered
framesaboveaminimumsize.Smallframesareunlikely to
providesubstantialbenefitoverbasicblocksin termsof op-
timization opportunity, andinsteadcanincur performance
overheadthat cannotbe recovered. We thereforediscard
framesconsistingof fewerthan3 basicblocksor fewerthan
16 instructionsfrom consideration.We also set an upper
limit onframesizeto accommodaterestrictionsimposedby
realhardware(for instance,line sizein the framecacheor
numberof outstandingstoresin a storequeue).Framesare
truncatedat the256thinstruction.

We usethreeprimarymetricsto evaluateour framecon-
struction techniques:averagedynamic frame size, frame
completionrate,andcoverageof theinstructionstream.Av-
erageframesize is the averagesize in numberof instruc-
tionsof a framemeasuredover all committedframes.The
framecompletionratio measureshow likely a frameis to
commitonceissued.A framedoesnot commit if any of its
assertionsfires. Thecompletionratethereforeis a measure
of how oftenall assertionswithin aframearecorrect.Frame
coveragemeasuresthefractionof thedynamicinstructions
that is derivedfrom committedframes.For example,80%
coverageindicatesthat80%of the i-streamcamefrom in-
structionsencapsulatedwithin a frame.

5.1 Static frame construction

Staticframeconstructionis performedby usinga profil-
ing compiler to first identify branchesto promoteinto as-
sertions. The compiler thenpromotescandidatebranches
and arrangestheir blocks into sequentialframes,keeping
theoriginal copiesto handlea firing assertion.An example
of staticframeconstructionis demonstratedin theexample
in Figure1.

We evaluateda schemefor staticframeconstructionby
emulatingan idealizedcompiler techniquewithin our ex-
perimentalframework. We first profiled eachbenchmark
on a training input set to identify branchesthat are97%�
likely to go to a particulartarget.Thesecandidatebranches
aretreatedasassertionsin subsequentsimulationsof each
benchmarkon themeasurementinputsetslistedin Table2.
In effect,we aremodelinga compilerthatis ideally ableto
promoteevery highly biasedbranch(conditional,indirect,
andreturn)into anassertionandconstructframesout of all
pathscontainingsequencesof 2 or moreassertions.

Table 3 shows the averageframe size, completionrate
andcoveragefor eachof thebenchmarks.Also includedis
thenumberof uniqueframesgeneratedby this statictech-
nique. With static frame construction,framesaverage66
instructionsin length,have a 97% probability of complete
execution,andcover50%of theinstructionstream.

AveFrame Completion Coverage Assertions Unique

Size Rate perFrame Frames

bzip2 137 91% 61% 15.9 1412
crafty 64 98% 42% 3.2 3954
eon 78 99% 57% 3.1 7210
gap 48 95% 53% 3.6 3844
gcc 37 99% 40% 3.6 21720
gzip 98 95% 59% 5.9 1423
mcf 93 96% 33% 6.1 1092
parser 33 99% 50% 4.1 3835
twolf 39 99% 54% 3.4 4497
vortex 58 99% 82% 5.2 8178
vpr 42 99% 18% 2.7 3428
Ave 66 97% 50% 5.2 5508

Table 3. Effectiveness of Static Frame Con-
struction.

Figure4 shows the distribution of framesizesobserved
duringexecution,averagedover all benchmarks.Eachbar
representsa spanof four sizes.For examplethebarlabeled
16 representsthe dynamicfrequency of framesof size16,
17, 18, and19 instructions.It indicatesthat framesof this�

We chosethe97%after investigatingseveral thresholds.We selected
onethatmaximizessizewhile not compromisingcompletionrates.

sizeaccountfor slightly over 9% of all frames.Thedistri-
bution is wide, however thebulk of framesarebetween16
and48 instructionslong.

0� 16 32 48 64 80 96 112 128 144 160� 176� 192	 208� 224 240 256

Frame Size�

0

5

10

15

P
er

ce
nt

ag
e

Figure 4. Distrib ution of staticall y-generated
frame sizes at run-time .

5.2 Dynamic frame construction

A variety of basic researchin branchprediction [14,
2] hasprovided substantialinsights into the relationships
amongdynamic branchinstructions. Thesestudieshave
identified two types of basic correlation: local correla-
tion, wherea branch’scurrentdirectionis highly correlated
to its previous directions,andglobal correlation, wherea
branch’s currentdirectionis highly correlatedto thedirec-
tion of any previousbranchor branches.

The dynamictechniqueswe explore in this sectionrely
uponglobalcorrelationbetweenbranchesto guidepromo-
tion from branchesto assertions.Figure5 providesa high-
level view of theconstructiontechnique.

Theframeconstructorhashes(usingXOR) thefetchad-
dressof each incoming block of committed instructions
with thecommittedbranchhistoryto index into thebranch
bias table [8]. The bias table keepstrack of whetherthe
branchendingtheblock hasgonein thesamedirectionfor
aparticularnumberof successiveoccurrences.If it has,the
biastableindicatesthat thebranchshouldbepromoted.In
our experiments,the biastableis configuredto promoteif
the branchrepeatsits direction32 consecutive times. Fig-
ure 6 shows the structureof the bias table. Oncethe 5-
bit counterhassaturated,the branchis promotedand the
entireblock is addedto the frameconstructionbuffer and
thependingframecontinuesto grow. Oncea branchis en-
counteredthat is not promoted,the block is addedandthe
pendingframeis consideredcomplete.A separatebiasta-
bleis maintainedfor indirectbranchesandreturns.For such
branches,a singlebit for lastdirectiondoesnot suffice. A
targetaddressmustbekeptin eachentry.

frame branch hist

curr branch hist

Branch

Table
Bias

Promote?

Block
Incoming

Frame Construction Buffer

Block addressFrame
Pending

Committed instruction stream

the frame is completed.

frame continues to grow.

If the incoming block has

If the branch is not promoted,

a promoted branch, the pending

Figure 5. A hardware-based constructor that
utiliz es branc h correlation.

Promote

Block address XOR history

n−bit saturating counter

Consecutive occurrencesPrevious outcome

n

dir

Branch Bias Table

Figure 6. Branc h bias table for conditional
branc hes.

We alsodemoteassertionsbackinto brancheswhenwe
detectthat their behavior haschanged.Using the branch
bias table, we also track firing assertionsto determineif
they shouldbe demotedback into branches.An assertion
is allowed to fire oncebefore it is demoted. A demoted
assertioncausestheframecontainingit to bediscarded.

Thestartingbranchhistoryof eachframe(i.e., thecom-
mittedhistoryat the first branchin the frame)is keptwith
eachframe.Thishistoryis essentiallyaprefixthatidentifies
the instanceof eachpromotedbranchwithin a frame. For
example,if thehistoryof frameABCDE is XYZ, thenXYZ
was usedto decidewhetheror not to promotebranchA,
YZA wasusedto decidethepromotionof B, andso forth.
The startinghistory XYZ forms a signature for the frame
andspecifieswhenit shouldbeinvoked.Wheneverthecur-
rent history containsXYZ andthe currentfetch addressis

A, the framesequencingmechanismattemptsto fetch the
frameABCDE.

Thecrux of this frameconstructiontechniquehingeson
theobservationthatabranchcanbeseparatedinto instances
basedon thepathleadingup to thebranch.Onceseparated
thisway, agreaternumberof branchestendto exhibit biased
behavior. This is the samephenomenonexploited by two-
level branchpredictors.Saidanotherway, theoutcomeof a
branchtendsto becorrelatedto theoutcomesof branches,
or path,beforeit. The historyusedin thepromotiondeci-
sionhelpsseparatebranchesinto thesebiasedinstances.

Wegatheredbranchinformationin two ways:globalhis-
tory andpathhistory. Globalhistory is a recordingof then
most recentconditionalbranchoutcomes.Path history is
a recordingof the n most recentbranchtarget addresses.
Global history can more compactlyrepresentbranchhis-
tory becauseonly asinglebit is requiredto encodeabranch
direction. Path history is lesscompact. It requiresmore
bits per target in orderto uniquelyidentify the target from
all others. In this way, the informationstoredin the path
historycancompletelyidentify pathsin caseswhereglobal
historywouldbeambiguous.Also, pathhistorycancapture
targetsof indirectbrancheswhereasglobalhistorycannot.

First we measurethe fraction of all dynamicbranches
thatarepromotedinto assertionsasa functionof pathhis-
tory length. Figure7 demonstratesthat aspathhistory is
increasedbeyond6 targets,fewer than20%of all dynamic
branchesactually remainas branches. The rest are pro-
motedinto assertions.Of theseassertions,lessthan0.5%
ever fire. This datawas collectedusing a bias table that
promotedafter32� consecutivesimilar occurrences.

0 1� 2� 3� 4
�

5� 6� 7� 8� 9� 10 11 12 13 14
�

Path History Length�
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

yn
am

ic
 B

ra
nc

he
s

� Assertion fired
�
Assertions
Branches

�

Figure 7. Fraction of dynamic branc hes con-
ver ted into asser tions. Bias threshold = 32.

Using an ideal versionof this frameconstructiontech-
nique(i.e., a biastablethat suffers no interferenceandan

�
Weuseathresholdof 32throughoutthispaper. After extensivestudies

on promotionthresholds,we determinedthat a thresholdof 32 produces
largeframeswith low assertionrates.

0� 1 2 3� 4 5� 6� 7 8! 9" 10 11 12 13 14

history length#
0

20

40

60

80

100

120

A
ve

 I
ns

tr
uc

ti
on

s
pe

r
F

ra
m

e

$
path history%
global branch history&
static

Figure 8. Average dynamic frame size as a
function of histor y used in frame construc-
tion. Bias threshold = 32.

0� 1' 2(3� 4
)

5� 6� 7 8! 9" 10 11 12 13 14
)

history length#
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 I

-S
tr

ea
m

 C
ap

tu
re

d

*

path_history%
global branch history&

Figure 9. Frame coverage of the i-stream as a
function of histor y. Bias threshold = 32.

ideal hardware frame cache),we measuredthe effects of
branchcorrelationon frameconstruction.

Figure8 demonstratestheaveragesizeof framesasmea-
suredon the benchmarksetusingboth global branchhis-
tory andpathhistory. Figure9 shows the coverageof the
instructionstream.In theseexperiments,thebiastablewas
configuredto promotebranchesinto assertionsafter32con-
secutivesimilaroutcomes.Theimportanttrendis thateven
addinga smallamountof branchcorrelationto thepromo-
tion decisionscausesthe sizeandcoverageof the instruc-
tion streamincrease.Thecompletionrateof theframesre-
mainsnearlyconstantat 97% (this indicatesthat the per-
assertionfire rate actually decreasesbecausethe average
numberof assertionsperframeincreases).

The data in Figures7 and 8 indicate that decreasing
the total dynamicbranchcount by even a small percent-

agecausesa significantincreasein framesize. This is be-
cause,aftera certaincritical numberof brancheshavebeen
promotedinto assertions,promotingmorebranchescauses
adjoiningframesto becoalescedinto largerframes.

Averageframesizeservesasagrosssummaryof behav-
ior. Firstly, thisis becauseframesizehasawidedistribution
asdemonstratedin Figure10. Therearesmall framesand
very large frames(almost12% of all framesarethe maxi-
mum256instructionslong). Also, eachbenchmarkhasits
own characteristicdistribution. Dueto spaceconstraintswe
haveomittedtheperbenchmarkdistributiondatahere.

0� 16 32 48 64+ 80 96 112, 128- 144+ 160� 176� 192	 208� 224- 240+ 256

Frame Size�

0

5

10

15

P
er

ce
nt

ag
e

Figure 10. Distrib ution of dynamic frame sizes
constructed using a 9 element path histor y.

Wedohoweverincludeaperbenchmarkaverageof the9
elementpathhistoryschemeonthethreeimportantmetrics,
plus the averagenumberof assertionsper frame, and the
overall numberof dynamicallygeneratedframes.Included
for referenceis theoverallaverageof thestaticschemeand
thedynamicschemeutilizing a9-bit globalhistory.

The framepropertiesresultingfrom path-historybased
frameconstructionaresuperior. Oneparticularitemof note
is therelativelyhighnumberof uniqueframesgeneratedvia
globalhistory. Wesuspectthishasto dowith theambiguity
surroundingglobalhistory.

Overall,theresultsarepromising.With adynamicframe
constructionutilizing a 9 elementpathhistory, we areable
to constructframesthat spanan averageof 102 instruc-
tions,encapsulateover9 branches,andhave a 97%chance
of completeexecution. Theseframe characteristicsmake
atomic frame constructionuseful for optimization. The
reductionin dynamicbranchesopensopportunityfor less
complex fetch hardware. In the next section,we demon-
stratethatevenwith thesimulatedeffectsof finite hardware,
our frameconstructoris ableto sustaingoodresults.

While wehavebeencallingthis frameconstructiontech-
niquea dynamicframeconstructiontechniquebecauseof
its useof run-timebranchinformation,Youngetal [15] pro-
poseda mechanismthatcanbeadaptedto exploit suchdy-

AveFrame Completion Coverage Assertions Unique

Size Rate perFrame Frames

bzip2 180 89% 79% 18.9 1108
crafty 88 96% 85% 6.7 15432
eon 179 98% 89% 8.6 1515
gap 155 98% 96% 15.4 5662
gcc 70 96% 77% 8.2 24687
gzip 89 95% 79% 5.6 1505
mcf 52 96% 71% 6.7 2097
parser 46 98% 78% 6.2 7629
twolf 66 99% 82% 6.8 2533
vortex 135 99% 94% 13.4 3273
vpr 61 99% 74% 4.8 2656
path 102 97% 82% 9.2 6191
global 82 97% 79% 7.4 13324
static 66 97% 50% 5.2 5508

Table 4. Per benc hmark statistics for a con-
structor using a 9 element path histor y.

namicinformationstaticallyby creatingduplicateversions
of branchesspecificto anexecutionpath.

5.3 Hardware for frame construction

In this section,we examinethe effectsof usinga finite
sizedbranchbiastableandafinite sizedframecacheonthe
frameconstructor.

In the first experiment,we examinethe effectsof bias
tablesize. The dataplotted in Figure11 demonstratethe
effectson framesizeof using16KB, 32KB, and64KB bias
tables.Also, eachconfigurationusesa4KB indirectbranch
biastable.Thethresholdfor promotionwassetto 32.

Thebiastableusesa 9 elementpathhistorymaintained
assuggestedby Starket al [13]. They proposedmaintain-
ingpathhistorybyXORingnew targetsinto thepathhistory
andXORing old targetsout. Along theway, eachtarget is
rotatedto encodeeachtarget’s positionwithin the history.
The numberof bits selectedfrom eachtarget addressde-
pendson the sizeof the biastable. For example,a 32KB
biastableuses15 bits from eachtargetaddressin forming
thepathhistory.

The framesgeneratedby using finite sizedbias tables
peakat slightly over 80 instructions. The drop in frame
lengthbetweena 64KB biastableanda 16KB biastableis
significantbut not severe.

Two thingsof note:First,thehardwareframeconstructor
mechanismusescommittedbranchinformationandthere-
fore requiresno recovery mechanismfor misspeculations
aswould a branchpredictorin the frontendof a processor.
Second,ourbiastablesuffersfrom negativeinterference(as

0. 5/ 10

Path History Length0
0

20

40

60

80

100

A
ve

 #
 I

ns
tr

uc
ti

on
 p

er
 F

ra
m

e

Path-based 64KB bias table
1
Path-based 32KB bias table

1
Path-based 16KB bias table

Figure 11. Dynamic frame size for various
sized hardware bias tables.

demonstratedby thedegradationfrom idealto finite-sized).
Many of theproposedinterferencereductiontechniquesex-
ploredfor branchpredictorssuchasfiltering andagreepre-
diction canbe appliedhereto improve performanceof the
biastables.

Next, we evaluate the effects of a finite sized frame
cache.Thedatapresentedin Table5 liststheresultsof using
a 256 elementframecachewith a 32KB branchbiastable
anda 4KB indirect branchbiastable. Frameconstruction
usesa 9 elementpathhistory. Promotionthresholdis again
setto 32 consecutiveoccurrences.

Thedataindicatethat theconstructoris ableto coalesce
almost8 basicblocks togetherto form atomic regionsof
over 80 instructions,7 of which are assertions. Almost
70%of thedynamicinstructionstreamis coveredby these
frames. Thesecharacteristicsof framesnot only present
useful opportunity for dynamic optimization, but the in-
creasein the spanof branchlessregionsmakesthe job of
aprocessor’sfetchenginemuchsimpler. A singlefetchcan
produce80 instructionswith only a singlebranchpredic-
tion.

To give further context to the framecharacteristicspre-
sentedin Table5, wealsoincludethebranchpredictionac-
curacy of asmall4KB gshareusing14-bitsof globalbranch
history. Frame completion rates are high even though
branchpredictionaccuracy is not. However, mostbench-
marks that suffer from low branchprediction accuracies
alsohavesmalleraverageframesizes.

Wemeasureframecachesizeby thenumberof elements
cachedrather than number of bytes of storagebecause
framesizeis dependenton optimizationsperformedby an
optimizer. Handoptimizationsof high frequency framesin
the SPECint95benchmarkssuite resultedin considerably
smallerframesthanwe startedwith. Whensmallerframe
cachesizesareevaluated,theprimarychangein metricsis

a reductionin coverage.A 64 elementframecachegetsa
coverageof 58%,a128elementframecachegets64%,and
a 256 elementframecachegets67%. Framesizeremains
nearlyconstant.

Degradationfrom idealhardwareis significant,but there
is opportunityfor increasingthe effectivenessof a frame
cacheusingthehotspotidentificationtechniquesof Merten
et al [7]. They have determinedthatthebehavior of frame-
like regionsof the control flow exhibit hot-cold behavior.
At certainregionsof execution,someframesarelikely to be
morefrequentlyutilized thanothers.Usingtheir technique
it is possibleto only cacheframesthat aredetectedto be
hot, and to drop cold frames,and therebyusethe limited
capacityof theframecachemoreeffectively.

6 Analysis

In this section,we provide someinsight into the frame
constructiontechniques.We providesomeancillarydatato
shedlight on the typesof programbehavior thatarebeing
exploitedby theframeconstructor.

6.1 Rationale behind what is happening

Frameconstruction,bothdynamicandstatic,exploit bi-
asedbranches. Basedon our experimentation,we found
thatvia profilingapproximately55%of all branchesarecat-
egorizedaspromotablebiasedbranchesusingthecriterion
we mentionin Section5.1. This numberincreasesto 67%
whentheclassificationis donedynamicallyusinga biasta-
ble. Thenumberincreasesto over80%whenbranchcorre-
lation is addedto theclassification.

The phenomenonbeingcapturedby the dynamicframe
constructoris very similar to thephenomenoncapturedby
a2-level branchpredictor. Takefor exampleastringof cor-
rectpredictionsmadeby a2-level predictorsuchasgshare.
The initial correctpredictionis madeby indexing the pre-
dictor with the startingglobal branchhistory and a fetch
address.At theendof thecycle thefetchengineprovidesa
fetchblock of instructions,a new globalhistory, anda new
fetchaddress.In the next cycle, the new historyandfetch
addressindex thefetchmechanismto produceanotherfetch
block, history, andfetchaddress.This cycle continuesun-
til an event suchasa branchmisprediction,or BTB miss,
or cachemisscausesa disruption.Theprocessbeginswith
an initial history and an initial fetch address.The frame
constructorunfurls this processby prepackagingthe fetch
blockswith thepredictions;bothcanbeknown a priori by
traversinghistoryinformationstoredin thebiastable.Since
thecostof anassertioncanbehigherthanthatof a branch
misprediction,we uselargercountersin thebiastablethan
in thestandardpatternhistory table(5-bit asopposedto 2-
bit) to gain more confidenceaboutbranchbehavior. The

Average Completion Coverage Assertions Unique 4KB gshare

FrameSize Rate perFrame Frames

bzip2 179 89% 78% 18.9 1151 97.4
crafty 75 96% 61% 5.3 13643 92.4
eon 87 98% 46% 4.1 1613 97.1
gap 114 96% 88% 11.1 7569 98.0
gcc 51 97% 36% 5.7 21033 89.4
gzip 89 95% 77% 5.6 1579 90.7
mcf 53 96% 68% 6.6 2051 90.1
parser 43 99% 69% 5.9 6946 93.1
twolf 56 99% 67% 5.6 3569 90.4
vortex 89 98% 76% 8.4 5769 97.6
vpr 52 99% 75% 4.1 3085 85.0
Average 81 97% 67% 6.9 6182
Ave - IdealDynamic 102 97% 82% 9.2 6191
Ave - IdealStatic 66 97% 50% 5.2 5508

Table 5. Frame stats with 256 entr y frame cache, 32KB+4KB bias tables, and 9 element path histor y.

startingaddressandstartingbranchhistoryserve asa fetch
signaturefor a framecreatedwith this technique.

6.2 Is it simply loop unrolling?

One phenomenonthat both static and dynamic frame
constructionmay be capturingis loop unrolling. For all
datapresentedthus far, the loop unrolling option wasen-
abledwhenthebenchmarkswerecompiledusingtheCom-
paqAlphacompiler, soframeconstructionwasabletoboost
atomicregion sizebeyondtheloop unrolling performedby
aproductionC compiler.

Weexploredtheeffectsof compilerloopunrollingonthe
frameconstructorby runningan experimentwith binaries
generatedwith loop unrolling disabled. Table 6 presents
theresults.Thetablecontainstheaverageacrossall bench-
marks for a frame constructorutilizing a 9 elementpath
history. Thefirst two datarows of the tablepresentthere-
sultswith compilerunrolling enabledandwith it disabled.
Thedatain thethird row wasmeasuredusinga framecon-
structorthatwasinhibited from addingduplicateblocksto
a pendingframe (i.e., if a frame alreadycontainedblock
X, thentheframewould beconsideredcompleteif another
copy of X wereattemptedto be added).This is a very se-
verewayof restrictingtheeffectsof loopunrollingbecause
it factorsout loops that would be otherwisedifficult for a
compilerto unroll, suchasloopswith complex controlpaths
or function calls. This testwasrun on binariesgenerated
with compilerunrollingenabled.

Basedonthedatacollectedwith loopunrollingdisabled,
the effect of compiler unrolling on frame constructionis
minimal. The frameconstructorexploits loops,asdemon-
stratedby thesharpdrop in framesizeandcoveragewhen

Ave Frame Completion Coverage Unique

Size Rate Frames

W/ unrolling 102 97% 82% 6191
W/o unrolling 105 96% 90% 6774
No duplicates 74 98% 71% 4581

Table 6. The effects of loop unr olling on frame
construction using a 9-element path histor y.

duplicateblocksareinhibited. Nonetheless,framesizeand
coverageis still substantial.

6.3 Phased behavior

Static constructionrelies on profiling and is therefore
brittle to the differencein behavior betweenthe execution
profilesandactualexecution. Dynamicconstruction,with
extra hardwarecosts,canadaptto actualexecutionbehav-
ior.

Another benefit of dynamic frame constructionover
static constructionis the ability for framesto be gener-
atedanddestroyeddependingon thedynamicbehavior. A
branchmaybebiasedduringasectionof aprogram,andnot
biasedduringanother. Suchphasedbehavior is moreeasily
exploitedby a dynamicmechanismthana staticone.

We measuredthe dynamicvariation in branchpromo-
tionsthroughouttheexecutionof eachbenchmark.For ev-
ery branchinstance(branchprecededby specificpath)that
executedat least3200times(this numberwaschosenbe-
causeour promotionthresholdis 32, thusthewarmupcost
is a smallerfactor),we countedhow often the branchin-

stancewasobserved asan assertionandhow often it was
not. We found that a majority of suchbrancheswereen-
counteredaspromotedonly between90% and95% of the
time, indicating that thereareperiodsof executionwhere
thesebrancheshave irregularbehavior.

7 Conclusion

Frameconstructionusingassertionscreateslargeatomic
regions of instructionsthat have a very high probability
of completeexecution. We demonstratethat incorporating
branchcorrelationinto the branchpromotiondecisionre-
sults in larger frameswith a larger degreeof coverageof
the instructionstream,even whenfinite sizedhardwareis
usedfor frameconstructionandframecaching.

We submit that the dynamic frame constructor is
pre-packagingthe instructions associatedwith easy-to-
predictbranchesinto a frame,leaving theharder-to-predict
branchesastheconnectivebranchesbetweenoneframeand
thenext. Froma hardwarestandpoint,this is goodbecause
with a singlefetch,severalcyclesworth of instructionscan
bestreamedoutof theframecacheallowing multiplecycles
for thepredictionof theseconnectivebranches.

Our analysisdemonstratesthat the frameconstructoris
ableto unroll loopsandin-line function calls in situations
difficult for a compilerto exploit. In additionto unrolling,
theframeconstructoris ableto exploit run-timecontrolsta-
bility in pathsthatcontainno loopsaswell.

We view theseresultsaspreliminary; they are the first
stepfor rePLay, which is a hardware/softwareframework
for dynamicoptimization. Framesserve asthe regionsof
optimizationwithin rePLayin thesameway thata traceis
the basicunit within a traceschedulingcompiler. Frames
aredifferentfrom superblocksandhyperblocksin thatthey
containonlyasinglepathof executionandnosideentrances
or sideexits. This givesa dynamicoptimizerwith greater
leeway in performinglow-overheadoptimizations.

8 Acknowledgments

Wethankboththeothermembersof theAdvancedCom-
puting Systemsgroup and Prof. Steve Lumetta for their
valuableinsightsin thedevelopmentof theseideas.Wealso
thankIntel andHewlett-Packardfor their generosityin pro-
viding equipment.

References

[1] V. Bala, E. Duesterwald, andS. Banerjia. Transparentdy-
namicoptimization:Thedesignandimplementationof Dy-
namo. TechnicalReport HPL-1999-78,Hewlett-Packard
Laboratories,June1999.

[2] M. Evers,S. J. Patel, R. S. Chappell,andY. N. Patt. An
analysisof correlationandpredictability:Whatmakestwo-
level branchpredictorswork. In Proceedingsof the 25th
AnnualInternationalSymposiumonComputerArchitecture,
pages52 – 61,1998.

[3] J. A. Fisher. Tracescheduling:A techniquefor global mi-
crocodecompaction.IEEE Transactionson Computers, C-
30(7):478–490,July1981.

[4] B. Grant,M. Mock, M. Phillipose,C. Chambers,andS. J.
Eggers. DyC: An expressive annotation-directeddynamic
compilerfor C. TechnicalReportUW-CSE-97-03-03,Uni-
versityof Washington,May 1999.

[5] A. Klaiber. ThetechnologybehindCrusoeprocessors.Tech-
nical report,TransmetaCorporation,Jan.2000.

[6] S. Melvin and Y. Patt. Enhancinginstructionscheduling
with a block-structuredISA. InternationalJournal of Par-
allel Programming, 23(3):221–243,June1995.

[7] M. C. Merten,A. R. Trick, E. M. Nystrom,R. D. Barnes,
andW. W. Hwu. A hardwaremechanismfor dynamicex-
tractionandrelayoutof programhot spots. In Proceedings
of the 27th Annual InternationalSymposiumon Computer
Architecture, 2000.

[8] S.J.Patel,M. Evers,andY. N. Patt. Improving tracecache
effectivenesswith branchpromotionandtracepacking. In
Proceedingsof the25thAnnualInternationalSymposiumon
ComputerArchitecture, 1998.

[9] S. J. Patel, D. H. Friendly, and Y. N. Patt. Evaluationof
designoptionsfor the tracecachefetch mechanism.IEEE
Transactionson Computers, 48(2):435–446,Feb. 1999.

[10] S. J. Patel andS. S. Lumetta. rePLay: a hardwareframe-
work for dynamicprogramoptimization. TechnicalReport
CRHC-99-16,Universityof Illinois TechnicalReport,Dec.
1999.

[11] A. Peleg and U. Weiser. Dynamic flow instructioncache
memoryorganizedaroundtrace segmentsindependentof
virtual addressline. U.S.PatentNumber5,381,533,1994.

[12] E. Rotenberg, S. Bennett,andJ. E. Smith. Tracecache:a
low latency approachtohighbandwidthinstructionfetching.
In Proceedingsof the29thAnnualACM/IEEEInternational
SymposiumonMicroarchitecture, 1996.

[13] J. Stark, M. Evers, and Y. N. Patt. Variable length path
branchprediction. In Proceedingsof the 8th International
ConferenceonArchitectural Supportfor ProgrammingLan-
guagesandOperating Systems, pages170– 179,1998.

[14] T.-Y. Yeh andY. N. Patt. Two-level adaptive branchpre-
diction. In Proceedingsof the 24th AnnualACM/IEEEIn-
ternationalSymposiumon Microarchitecture, pages51–61,
1991.

[15] C.YoungandM. D. Smith. Improving theaccuracy of static
branchpredictionusingbranchcorrelation. In Proceedings
of the6thInternationalConferenceonArchitectural Support
for ProgrammingLanguagesandOperating Systems, pages
232–241,1994.

