
Slipstream Processors:
Improving both Performance and Fault Tolerance

ABSTRACT

Processorsexecutethe full dynamicinstructionstreamto arrive at
the final output of a program,yet thereexist shorterinstruction
streamsthatproducethesameoverall effect. We proposecreating
a shorterbut otherwiseequivalentversionof theoriginal program
by removing ineffectual computationand computationrelatedto
highly-predictablecontrolflow. Theshortenedprogramis runcon-
currentlywith thefull programon a chip multiprocessoror simul-
taneous multithreaded processor, with two key advantages:

1) Improved single-program performance. The shorterprogram
speculatively runsaheadof the full programandsuppliesthe full
programwith control and dataflow outcomes.The full program
executesefficiently due to the communicatedoutcomes,at the
sametime validating the speculative, shorterprogram.The two
programscombinedrun faster than the original programalone.
Detailedsimulationsof anexampleimplementationshow anaver-
age improvement of 7% for the SPEC95 integer benchmarks.

2) Fault tolerance. Theshorterprogramis a subsetof thefull pro-
gram and this partial-redundancy is transparentlyleveragedfor
detecting and recovering from transient hardware faults.

1.  INTRODUCTION
A conventional processorexecutesthe full dynamic instruction
streamto arrive at thefinal outputof theprogram.The slipstream
paradigm proposesthat only a subsetof the original dynamic
instructionstreamis neededto makefull, correct,forwardprogress
[25]. Unfortunately, we cannotknow for certain what dynamic
instructionscanbe validly skipped.Creatinga shorter, equivalent
programis speculative — ultimately, it must be checked against
the full program to verify it produces the same overall effect.

Therefore,the operatingsystemcreatestwo redundantprocesses,
i.e., theuserprogramis instantiatedtwiceandeachinstancehasits

own context. Thetwo redundantprogramsexecutesimultaneously
on a single-chipmultiprocessor(CMP) [20] or on a simultaneous
multithreadedprocessor(SMT) [37]. Oneof theprogramsalways
runsslightly aheadof theother. The leadingprogramis calledthe
advanced stream, or A-stream,andthe trailing programis called
theredundant stream, or R-stream.Hardwaremonitorsthetrailing
R-streamanddetects1) dynamicinstructionsthat repeatedlyand
predictablyhave no observable effect (e.g., unreferencedwrites,
non-modifyingwrites) and2) dynamicbrancheswhoseoutcomes
are consistentlypredictedcorrectly. Futuredynamicinstancesof
the ineffectual instructions,branchinstructions,andthe computa-
tion chainsleadingup to them are speculatively bypassedin the
leadingA-stream— but only if thereis high confidencecorrect
forward progresscan still be made, in spite of bypassingthe
instructions.

The much-reducedA-streamis spedup becauseit fetches,exe-
cutes,andretiresfewer instructionsthanit would otherwise.Also,
all valuesandbranchoutcomesproducedin the leadingA-stream
arecommunicatedto thetrailing R-stream.AlthoughtheR-stream
is not reducedin termsof retired instructions,it hasan accurate
pictureof thefutureandfetches/executesmoreefficiently. In sum-
mary, the A-stream is sped up becauseit is shorter and the
R-streamis spedup becauseit receivesaccuratepredictionsfrom
the A-stream.The two redundant programs combined run faster
than either can alone.

TheA-stream’s outcomesareusedonly aspredictions to speedup
theR-stream.But ultimately, thesameinformationis redundantly
and independentlycomputedby the R-stream.This is crucial
becausethe A-stream occasionally(but infrequently) bypasses
computationthatshouldnot have beenbypassed,andit no longer
makes correct forward progress.The R-streamcan detectdevia-
tions becauseits redundantly-computedoutcomesdiffer from the
A-stream’s outcomes.And the checksare alreadyin placeif the
existing designimplementsconventionalbranchandvaluepredic-
tion [24]. WhentheA-streamdeviates,thearchitecturalstateof the
R-streamis usedto selectively recover the corruptedarchitectural
state of the A-stream.

An analogyto theslipstreamparadigm(andthesourceof its name)
is “slipstreaming” in stock-carracing (e.g., NASCAR) [23]. At
speedsin excessof 190m.p.h.,high air pressureformsat thefront
of a racecar and a partial vacuumforms behindit. This creates
dragandlimits thecar’s topspeed.A secondcarcanpositionitself
closebehindthe first (a processcalledslipstreaming or drafting).
This fills the vacuumbehindthe leadcar, reducingits drag.And
thetrailing carnow haslesswind resistancein front (andby some
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accounts,the vacuumbehindthe lead car actually helpspull the
trailing car).As a result,bothcarsspeedup by severalm.p.h.:the
two combined go faster than either can alone.

Similarly, the A-stream and R-stream mutually improve one
another’s performance.The A-stream could not be accurately
reducedwithout thetrailing R-stream.And theR-streamis helped
along in the slipstream(control and dataflow outcomes)of the
A-stream.Theuserperceivesanoverall speedupbecausebothpro-
gramsfinish earlier(theR-streamfinishesjust after theA-stream,
sotheR-streamdetermineswhentheuser’s programis done).The
amountof performanceimprovementdependson the natureand
amountof reductionin theA-stream.Slipstreamingalsorelieson
properresourceallocationbetweenthe two programs(e.g.,dedi-
catedprocessorsin a CMP or carefulfetch/issueschedulingin an
SMT processor).

In additionto potentialperformanceimprovements,slipstreaming
providesfault-tolerantcapabilities.The trendsof very high clock
speedsandvery small transistorsmay make the entirechip prone
to transientfaults[29], andthereis renewedinterestin fault-toler-
ant architecturesfor commodity, high-performancemicroproces-
sors [24,2,22].

Slipstreamprocessorsprovidesubstantialbut incompletefaultcov-
erage,specifically, faultsthat affect redundantly-executedinstruc-
tions are detectableand recoverable. Not all instructions are
redundantly-executed becausethe A-stream is a subsetof the
R-stream,and this opensup opportunitiesfor dynamically and
flexibly tradingperformanceandfault coverage.A transientfault,
whetherit affects the A-stream,the R-stream,or both streams,is
transparentlydetected as a “misprediction” by the R-stream
becausethe communicatedcontrol and dataflow outcomesfrom
the A-streamwill differ from the correspondingoutcomesin the
R-stream.Fault detection/recovery is transparentbecausetransient
faults are indistinguishable from prediction-induced deviations.

In summary, this paper makes the following contributions.

• We suggestspeculatively creating a shorter but otherwise
equivalent versionof the program,exploiting 1) computation
that repeatedlyandpredictablyhasno effect on the final pro-
gramoutputand2) computationthatinfluenceshighly-predict-
able branches.

• Theshortenedprogramis run in parallelwith thefull program
on a single-chipmultiprocessoror simultaneousmultithreaded
processorand,by communicatinginformationfrom the short-
enedprogramto the full program,single-programexecution
time is potentiallyimprovedandsubstantialtransientfaultcov-
erage is achieved.

• This work is part of a larger effort using multiple on-chip,
architecturalcontexts in new ways.CMP/SMT processorsare
strategic becausethey effectively utilize billion-transistorchips
with relativeease,integratingparallelismthatalreadyexistsat
thesystem-level ontoasingledie.Ourgoalis threefold:1) pro-
vide more functionality in the sameCMP/SMT processor—
not just throughput-orientedparallelism,but also fault toler-
anceandimprovedsingle-programperformance(for example),
2) provide thenew functionsin anon-intrusiveway, by placing
hardware“around” theexisting componentsandleveraging,as
much as possible, the existing design, and 3) enable the
user/operatingsystemto flexibly anddynamicallychoosefrom

amongseveralmodesof operation,e.g.,throughputmode,sin-
gle-program-speedup mode, or reliable mode.

2.  SLIPSTREAM MICROARCHITECTURE
A slipstreamprocessorrequirestwo architecturalcontexts,onefor
eachof the A-streamandR-stream,andnew hardwarefor direct-
ing instruction-removal in the A-streamandcommunicatingstate
betweenthe threads.A high-level block diagramof a slipstream
processorimplementedon topof a two-waychipmultiprocessoris
shown in Figure1 (anSMT processorcouldbeusedinstead).The
shadedboxesshow the original processorscomprisingthe multi-
processor. Each is a conventional superscalar/VLIWprocessor
with a branchpredictor, instructionanddatacaches,andanexecu-
tion engine— including the register file and either an in-order
pipeline or out-of-orderpipeline with reorderbuffer (we assume
the latter in the rest of the paper).

There are four new components to support slipstream processing.

1. The instruction-removal predictor, or IR-predictor, is a modi-
fied branchpredictor. It generatestheprogramcounter(PC)of
the next block of instructionsto be fetchedin the A-stream.
Unlike a conventionalbranchpredictor, however, thepredicted
next PC may reflect skipping past any number of dynamic
instructions that a conventional processorwould otherwise
fetchandexecute.In this paper, theIR-predictoris built on top
of aconventionaltracepredictor[13] but otherdesignsarepos-
sible (e.g., using conventional single-branch predictors).

2. The instruction-removal detector, or IR-detector, monitorsthe
R-stream and detects instructions that could have been
removed from the program.The IR-detectorconveys to the
IR-predictor that particular instructionsshouldpotentially be
skipped by the A-stream when they are next encountered.
Repeatedindicationsby theIR-detectorbuild up confidencein
theIR-predictor, andthepredictorwill remove futureinstances
from the A-stream.

3. Thedelaybuffer is usedto communicatecontrolanddataflow
outcomes from A-stream to R-stream (the R-stream is
“delayed” with respect to the A-stream [24]).

4. The recovery controller maintainsthe addressesof memory
locationsthatarepotentiallycorruptedin theA-streamcontext.
A-streamcontext is corruptedwhenthe IR-predictorremoves
instructions that should not have been removed. Unique
addressesareaddedto andremovedfrom therecoverycontrol-
ler asstoresareprocessedby theA-stream,theR-stream,and
the IR-detector. The current list of memory locationsin the
recovery controlleris sufficient to recover theA-streammem-
ory context from theR-stream’s memorycontext. Theregister
file is repairedby copying all valuesfrom theR-stream’s regis-
ter file.

Notethattwo kindsof speculationoccurin theA-stream.Conven-
tional speculationoccurs when branchesare predictedand the
branch-relatedcomputation has not been removed from the
A-stream.Mispredictionsresultingfrom conventionalspeculation
aredetectableby the A-stream,do not corrupt the A-streamcon-
text, and do not involve the recovery controller.

The secondtype of speculationoccurs when the IR-predictor
removes instructionsequencesfrom the A-stream.The A-stream
hasno way of detectingwhetheror not removing the instructions



was correct.Therefore,an incorrectdecisionby the IR-predictor
can result in corruptedA-streamstate.In the remainderof the
paper, we refer to mispredictionsby the IR-predictoras instruc-
tion-removal mispredictions, or IR-mispredictions,distinguishing
this type of misprediction from A-stream-detectable ones.

In Sections2.1 through2.3,we describetheabove componentsin
moredetail andelaborateon Figure1. Section2.1 describeshow
the IR-detectorand IR-predictorwork to createthe shorterpro-
gram.Section2.2 describesthe delay buffer and its interfacesto
the A-streamandR-stream.Section2.3 explainshow IR-mispre-
dictions are detectedby either the R-streamor IR-detector, and
how the A-streamcontext is recoveredfrom theR-streamcontext
with relatively low latency.

2.1  Creating the Shorter Program
The IR-detector monitors past run-time behavior and detects
instructionsthat could have beenremoved,andmight possiblybe
removedin thefuture.This informationis conveyedto theIR-pre-
dictor, andaftersufficient repeatedindicationsby the IR-detector,
the IR-predictor removes future instances of the instructions.

2.1.1  IR-predictor

In thispaper, theIR-predictoris built ontopof aconventionaltrace
predictor [13]. A tracepredictordivides the dynamicinstruction
streaminto traces— largedynamicinstructionsequences(e.g.,16
to 32 instructions)typically containingmultiple taken/not-taken
branch instructions.The next trace in the dynamic instruction
stream is predicted using a path history of past traces.

A conventional tracepredictorworks as follows [13]. A traceis
uniquelyidentifiedby a startingPCandbranchoutcomesindicat-
ing thepaththroughthetrace,andthecombinationof startPCplus
branchoutcomesis called a trace id. An index into a correlated

prediction table is formed from the sequenceof past trace ids,
usinga hashfunction that favors bits from more recenttraceids
over lessrecenttraceids. Eachentry in the correlatedprediction
tablecontainsa traceid anda 2-bit counterfor replacement.The
predictor is augmentedwith a secondtable that is indexed with
only the mostrecenttraceid. The secondtablerequiresa shorter
learningtime andsufferslessfrom aliasingpressure.Together, the
two tablesform a hybrid predictorthatoutputsthepredictedtrace
id of the next trace.

To form an IR-predictor, threepiecesof informationareaddedto
each table entry.

1. Instruction-removal bit vector (ir-vec). This bit vector indi-
cateswhich instructionsin thepredictedtraceto remove from
the A-stream.An instructionis removed if its corresponding
bit in their-vec is set.

2. Intermediateprogram countervalues. To fetch a tracefrom a
conventional instructioncache,the trace is decomposedinto
multiple sequentialfetchblocks(fetchblocksareseparatedby
taken branches).A traceid only specifiesthe PC of the first
fetch block anda seriesof embeddedbranchpredictions.PCs
of embeddedfetch blocks are not available. Conventionally,
embeddedfetch block PCs are producedusing pre-decoded
branchesin the branchtarget buffer (BTB) and/orinstruction
cache.If this approachis used unmodified, the number of
dynamicinstructionsfetchedin the A-streamis not reduced.
The ir -vec itself is only useful for removing instructionsafter
fetch and before decode.To remove A-stream instructions
before they are fetched, eachpredictorentrycontainsinterme-
diate programcountervaluesneededby the instructionfetch
unit to skip over chunks of the trace.

3. Confidencemechanism. A singleresettingconfidencecounter
[12] limits instruction-removal to caseswhereit is likely to be
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correct.The counteris incrementedwhen a newly-generated
{ trace-id, ir-vec} pair from the IR-detectormatchesthe old
{ trace-id, ir-vec} pair at the entry being updated.If the new
pair doesnot matchthe old pair, the counteris resetto zero.
Whenthe confidencecounterhasreacheda certainthreshold,
their-vec andintermediatePCsareusedto remove instructions
from the A-stream.Otherwise,the instruction-removal infor-
mation is ignored and all instructions in the trace are
fetched/executed.

Figure2 shows an example of A-streaminstruction fetching. A
singlelength-32dynamictraceis shown. Thetraceis decomposed
into five fetch blocksseparatedby taken (T) branches.Not-taken
(NT) branchesareembeddedwithin fetchblocks.Thefetchblocks
are labeled with PCs A through E. Each box is an individual
instruction, and shaded boxes indicate predicted-removable
instructions.In theexample,theinstructioncachecansupplyup to
16 sequential instructions per cycle.

• Conventionalfetching:Thetracepredictorstoresonly thetrace
id { A, NT-T-T-NT-T-T}. PCs B, C, D, and E are produced
using the BTB/instructioncacheand multiple branchpredic-
tions.Five fetch cycles areexpendedanda total of 32 instruc-
tions are fetched, decoded, and executed.

• Fetchingusingthe IR-predictor:The tracepredictoraddition-
ally storesan ir-vec {0011...} and intermediatePCsX and Y.
Pre-decodedtargets from the BTB/instruction cache are
ignored.Only three fetch cycles areexpended:1 cycle for each
of theblocksstartingat PCA, PCX, andPCY. 18 instructions
arefetched(block A: 8, block X: 7, block Y: 3). Among these,
the ir-vec is used to collapse the number of instructions
decoded/executed down to 12 instructions.

Note thata compressedversionof the ir-vec is storedin place
of thefull ir-vec, in orderto properlyline up removal bits with
corresponding instructions in the new fetch blocks {A, X, Y}.

Figure 2: A-stream instruction fetching example.

2.1.2  IR-detector

Therearepotentiallymany waysof speculatively creatingashorter
program.Here,we considertwo casesof ineffectualcomputation
— writesthatarenever referenced(dynamicdeadcode)andwrites
that do not modify the stateof a location [14,15,18,19,38]— as
well as branch-predictable computation.

• Someinstructionswrite a valueto a registeror memoryloca-
tion andthevalueis overwrittenbeforeever beingused.Such
instructions,and the computationchainsleadingup to these
instructions, have no effect on final program state.

• Someinstructionswrite thesamevalueinto a registeror mem-
ory location as alreadyexists at that location. Such instruc-
tions,andthecomputationchainsleadingup to them,have no
effectonfinal programstatebecausetheirwriteswerenot truly
modifications.

• Certaincontrolflow in theprogrammaybesopredictablethat
it appears deterministic.With a high level of confidence,we
may chooseto remove the branchesinvolved, alongwith the
computation chains feeding the branches.

To detectcandidateinstructionsfor removal, theR-streamis moni-
toredas it retiresinstructions.Retiredinstructionsandvaluesare
usedto 1) constructa small reversedataflow graph(R-DFG) and
2) detect any of the three triggering conditions for instruction
removal, i.e., unreferencedwrites, non-modifying writes, and
branchinstructions.Whena triggeringcondition is observed, the
correspondinginstruction is selectedfor removal. Then, the cir-
cuits forming the R-DFG back-propagate the selectionstatusto
predecessorinstructions.A predecessorinstructionis alsoselected
for removal if all of its dependentinstructionsareknown andthey
have beenselectedfor removal. All dependentinstructionsare
known when the consumedvalue is killed, i.e., when there is
another write to the same register/memory location.

The IR-detectoris shown in Figure3. Thesizeof theR-DFG is a
single trace(32 instructionsin this paper),resulting in practical
back-propagation circuitry. Although the scopeof back-propaga-
tion is limited to a single trace, the IR-detectortracks multiple
traces.Maintainingmultiple tracesat thesametime allows a much
largerscopefor killing values(observinganotherwrite to thesame
location)without increasingthesize/complexity of eachindividual
R-DFG.

The operandrenametable in Figure3 is similar to a register
renamerbut it can track both memoryaddressesand registers.It
performsdatadependencecheckingfor merging new instructions
into the R-DFG and also detects unreferencedwrites and
non-modifying writes. Memory entries are invalidated and
reclaimed,and register entriessimply invalidated,when the last
producerof thelocationis no longerwithin theanalysisscope(the
producer field facilitates this).

A singleentry of the operandrenametable is shown in Figure3,
for demonstration.To merge an instructioninto its R-DFG, each
sourceoperandis checked in the renametable to get the most
recentproducerof the value (check the valid bit and producer
field). Theconsumerinstructionusesthis informationto establish
connections with its producer instructions, i.e., set up the
back-propagationlogic. If theproduceris not in thesametrace,no
connectionis made.Theref bit is setfor eachsourceoperandindi-
cating the values have been used.

Whenan instructionwrites a register/memorylocation,the corre-
sponding operand rename table entry is checked to detect
non-modifying/unreferenced writes and to kill values, as follows.

1. If the valid bit is set,andthe currentinstructionproducedthe
samevalue as indicated in the value field, then the current
instructionis a non-modifyingwrite. Thecurrentinstructionis
selected for removal as it is merged into the R-DFG.

2. If thevalid bit is setandthenew andold valuesdo not match,
theold producerindicatedby theproducer field is killed. Fur-
thermore,if the ref bit is not set, then the old produceris an
unreferenced write and is selected for removal.

After thesechecksareperformed,all fields areupdatedto reflect
the new producerinstruction unlessit is a non-modifyingwrite
(the old producer remains “live” in this case).
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All branch instructionsare selectedfor removal when they are
merged into the R-DFG. This meansall branchesare candidates
for removal, andtheconfidencecounterassociatedwith eachtrace
prediction (Section2.1.1) makes the actual decision to remove
branches.

Finally, any otherinstructionmaybeselectedfor removal if it has
beenkilled, all of its consumerinstructionsarein the sametrace,
and all consumers are selected for removal. The R-DFG
back-propagation circuitry handles this case.

When a tracebecomesthe oldesttracein the analysisscope,an
instruction-removal bit vector (ir-vec) is formed basedon the
selectedinstructionswithin the trace.IntermediatePCsfor skip-
ping chunksof the tracearealsocomputed.The traceid, ir -vec,
and intermediate PCs are loaded into the IR-predictor
(Section2.1.1) and the R-DFG circuitry is reclaimedfor a new
trace.

2.1.3  Discussion of Trace-Based Instruction-Removal

Instruction-removal in this paperis trace-based,meaning1) confi-
dence is measuredfor a trace as a whole (single confidence
counter),and2) back-propagationis confinedto a trace.Both con-
ditions guaranteedependencechainsare removed as a whole, or
not at all. Doing otherwiserisks removing a producerinstruction
but not thecorrespondingconsumerinstruction.Even if bothpro-
ducerandconsumerarealwaysremovable,in practicethe IR-pre-
dictor could remove oneandnot the other if separateconfidence
countersaremaintained(e.g.,tablealiasingcandisplacethe con-
sumer’s counter). This scenario results in many spurious
IR-mispredictions.It is explicitly avoidedby maintaininga single
confidencecounterper traceandconfiningback-propagation to a
trace.

Trace-based instruction-removal has serious drawbacks, however.

1. Often, therearestableandunstableremoval patternswithin a
trace.Thestablepatternscorrespondto dependencechainsthat
areconsistentlyremovable.Unrelated,unstablepatternsdilute
overall confidence andno instructions are removed as a result.

2. Tracesthemselves are unstableif they embedunpredictable
branches.When a traceis unstable,its confidencecounteris
rarelysaturated.Thus,removableinstructionsbeforeandafter
the difficult branchare not removed in practice.Terminating
tracesat difficult branchescanreducethe numberof unstable
traces.But accuratetrace prediction relies on a consistent
(static) trace selection policy.

3. Confining back-propagation to a trace limits the amountof
instruction-removal.

We believe diluted confidenceand unstable traces are largely
responsiblefor modestA-streamreductionin someof our bench-
marks(Section5). We are currently developing a more effective
instruction-removal mechanism,not available in this paper:1) it
measuresconfidencefor instructions individually, so unrelated
instructionsdo not dilute confidence;2) tracesare not used,so
tracestability is not an issue;3) chainsarenot confinedwithin a
small region, except to reduceR-DFG complexity if needed;4)
dependencechains tend to be removed together even though
per-instruction confidence counters are used.

2.2  Delay Buffer
Thedelaybuffer is a simpleFIFO queuethatallows theA-stream
to communicatecontrol flow and data flow outcomesto the
R-stream.During normal operation,the A-streampushesboth a
completehistoryof branchoutcomesanda partial historyof oper-
andvaluesonto thedelaybuffer. This is shown in Figure1 with a
solid arrow from thereorderbuffer of theA-stream(left-mostpro-
cessor)to the delaybuffer. Valuehistory is partial becauseonly a
subsetof theprogramis executedby theA-stream.Completecon-
trol history is available,however, becausethe instruction-removal
processinvolvespredictingall control flow first andthenmodify-
ing it so that the A-streammay skip instructions(the job of the
combined IR-predictor/trace predictor, described in Section2.1.1).

The R-streampops control and data flow information from the
delay buffer. This is shown in Figure1 with solid arrows from
delay buffer to the instruction cacheand execution core of the
R-stream(right-mostprocessor).Branchoutcomesfrom thedelay
buffer areroutedto theinstructioncacheto directinstructionfetch-
ing. Sourceoperandvaluesandload/storeaddressesfrom thedelay
buffer are merged with their respective instructions after the
instructionshave beenfetched/renamedandbeforethey enterthe
executionengine.To know which values/addressesgo with which
instructions, the delay buffer also includes information about
which instructionswereskippedby theA-stream(for which there
is no data flow information available).

Notice thatneithertheA-streamnor theR-streamusetheconven-
tionalbranchpredictorsin their respectiveprocessors.This is indi-
catedwith an open-switchsymbolbetweenbranchpredictorsand
instructioncachesin Figure1. As alreadymentioned,the IR-pre-
dictor/trace predictor provides all branch predictions to the
A-stream.For branch-relatedcomputationthat is executedin the
A-stream,the correspondingbranchpredictionsare validated—
althoughvalidation itself may be speculative due to removal of
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other, presumed-ineffectualcomputation.For branch-relatedcom-
putationthatis bypassed,branchpredictionsarepresumedcorrect.
Via the delaybuffer, the R-streamseesa completebranchhistory
asdeterminedby the A-stream— whetherit is corrector not —
and the conventional branch predictor is not used.

The delay buffer contents can be summarized as follows.

• Control flow: Control flow outcomesare encodedas the
sequenceof trace ids and correspondingir-vecs. The ir -vec,
which encodesinstructionsnot executedin the A-stream,is
used by the R-streamto match data flow outcomeswith
instructions.

• Data flow: Thereis an entry in the dataflow buffer for each
instructionexecutedin the A-stream.An entry containsoper-
and register names and values and load/store addresses.

2.3  IR-misprediction Detection and Recovery
An instruction-removal misprediction, or IR-misprediction,occurs
when A-streaminstructionswere removed that should not have
been.TheA-streamhasno way of detectingtheIR-misprediction,
therefore,it continuesinstructionretirementandcorruptsits archi-
tectural state. Two things are required to recover from an
IR-misprediction.First, the IR-misprediction must be detected
and,second,the corruptedstatemust be pinpointedfor efficient
recovery actions.

We breakdown IR-mispredictionsinto two types,the first type is
removal of mispredictedbranchesandthe secondtype is removal
of effectual writes.

1. Removal of mispredictedbranches. The trace predictor may
mispredicta branchand the IR-predictorremoves the branch
from the A-stream.The R-streamwill detectthis IR-mispre-
diction becausethebranchoutcomefrom thedelaybuffer will
differ from the R-stream’s computedbranchoutcome.I.e., it
appears as a branch misprediction in the R-stream.

2. Removal of effectualwrites. The IR-predictorpredictsa store
instructionis anunreferencedwrite but thestoreis actuallyref-
erencedin thefuture(or theIR-predictorpredictsthestoreis a
non-modifyingwrite but it actuallyproducesanew valueat the
location). Removing the store instruction causesdependent
loadsto loadanincorrectvalue,usesof theloadvaluewill pro-
ducemoreincorrectvalues,etc.Thefirst incorrectsourceoper-
andvaluepoppedfrom thedelaybuffer will bedetectedby the
R-streamas a value misprediction— in our implementation,
source operand value prediction is used [17].

Thiskind of IR-mispredictionmaybedetectedby theR-stream
well after thestorewasinitially removed.TheIR-detectorcan
detecttheseIR-mispredictionsmuchsoonerby comparingits
computedir -vecsagainst the correspondingpredictedir-vecs
— if they differ, computationwas removed that should not
have been.Thus,theIR-detectorservesthedual-roleof updat-
ing the IR-predictor and checking for IR-mispredictions.
Although checkingby both the R-streamand IR-detectoris
redundant,it will becomeclear why final checking by the
IR-detector isrequired when we explain recovery, below.

When an IR-mispredictionis detected,the reorderbuffer of the
R-streamis flushed.The R-streamarchitecturalstatenow repre-

sentsa precisepoint in theprogramto which all othercomponents
in the processorare re-synchronized.The tracepredictor/IR-pre-
dictor is backedup to thepreciseprogramcounter, thedelaybuffer
is flushed,andthereorderbuffer of theA-streamis flushedandits
program counter set to that of the R-stream.

All that remainsis restoringthe corruptedregister and memory
stateof theA-streamsoit is consistentwith theR-stream.Because
registerstateis finite, theentireregisterfile of theR-streamis cop-
ied to theA-streamregisterfile. Themovementof data(bothregis-
ter andmemoryvalues)occursvia thedelaybuffer, in the reverse
direction, as shown with dashed arrows in Figure1.

During normaloperation,the recovery controller receivescontrol
signalsandthe addressesof storeinstructionsfrom the A-stream,
theR-stream,andthe IR-detector, asshown in Figure1. Thecon-
trol signals indicate when to start or stop tracking a memory
address(only uniqueaddressesneedto betracked).After detecting
an IR-misprediction,storesmay either have to be “undone” or
“done” in the A-stream. These two cases are described below.

• The addressesof storesretired by the A-streambut not yet
checked/retiredby the R-streamwill needto be restoredafter
detectingan IR-misprediction.In effect, the A-streamstore
mustbe“undone”sincetheR-streamhasnotyetperformedthe
store.Thesestoresonly needto be tracked betweenthe time
they areretiredfrom theA-streamandthecompanion(redun-
dant)storesareretiredfrom theR-stream,asshown in Figure4
(“store 1”).

• Although all IR-mispredictionsareeventuallydetectableasa
value mispredictionin the R-stream,a virtually unbounded
numberof addresseswould needto betrackedby therecovery
controllerif we did not placea “time limit” on thedetectionof
IR-mispredictions.This is why the IR-detectorcomparespre-
dicted ir-vecsagainstcomputedir-vecs. The recovery control-
ler tracks addressesof stores retired in the R-streamand
skippedin theA-stream,only until theIR-detectorverifiesthat
the storesare truly ineffectual, as shown in Figure4 (“store
2”). Whenan IR-mispredictionis detected,all unverified,pre-
dicted-ineffectualstoresare“done” in theA-streamby copying
data from the redundant locations in the R-stream.

3.  TRANSIENT FAULT TOLERANCE
A formal analysisof thefault toleranceof slipstreamprocessorsis
left for futurework. For now, we informally analyzethreekey sce-
narios,shown in Figure5, to betterunderstandpotential fault tol-
erance.In Figure5, the horizontal lines representthe dynamic
instruction streamsof the A-stream and R-stream,with older
instructionson theleft. For this simpleanalysis,we assumeonly a
singlefault occursandthat thefault is ultimatelymanifestedasan
erroneousvalue. A single fault can affect instructions in both
streamssimultaneously. This is not a problem becausethe two
redundantly-executedcopiesof an instructionexecuteat different
times(time redundancy) [24], therefore,a singlefault that affects
bothstreamswill affect differentinstructions.Sinceonly onecopy
of an instructionis affectedby a fault, we arbitrarily choosethe
R-streamcopy, indicatedwith X’s in Figure5. An X indicatesthe
first erroneous instruction in program order.

Scenario#1 in Figure5 shows theA-streamandR-streamexecut-
ing redundantly, i.e., all instructionsoverlap and have the same
dataflow. The fault is detectablebecausetheoperandsof thefirst



erroneousinstruction differ between A-stream and R-stream.
Without moreinformation,however, the fault is indistinguishable
from an IR-misprediction. Underthecircumstances,the processor
must assumean IR-mispredictionsincemisspeculationis by far
the commoncase.We point out threesuccessively strongerfault
tolerance claims.

1. If we assumea fault cannotflip bits in theR-stream’s architec-
tural state,thenit doesnotmatterthatfaultsandIR-mispredic-
tions are indistinguishable.Recovery succeedsusing the
R-streamstate.Under this model, faults in the pipeline are
transparentlyrecoverable.Faultsthat hit the R-streamregister
file anddatacacheareunrecoverable,andworse,undetectable
as a fault.

2. If all IR-predictionsprior the first erroneousinstructionhave
beenverified, thenthe sourceof error is known to be a fault.
Softwareis invokedto diagnosethesystemandperformrecov-
ery operations(e.g.,restart).But we default backto (1) if there
are prior unresolved IR-predictions.

3. ECCcanbeusedto protecttheR-streamregisterfile anddata
cache,in which caseall transientfaultswithin scenario#1 are
transparently recoverable.

Scenario#2 in Figure5 shows a region of the programthat is not
executedredundantly(the A-streambypassedtheseinstructions).
A transientfault in the R-streamis undetectablebecausethereis
nothingto comparethe erroneousvalueswith. Although an error
may be detectedin later, redundantly-executedinstructions,the
R-streamarchitecturalstateis alreadycorruptedandthesystemis
unaware of this fact.

Scenario#3 shows theA-streamdiverging from theR-streamdue
to anIR-misprediction,anda transientfault occursafter thediver-
gentpoint. The IR-mispredictionis detectedandsubsequenterro-
neous instructions are flushed before the fault can do damage.

In summary, slipstreamprocessorspotentially improve the fault
toleranceof thechip.Thesystemtransparentlyrecoversfrom tran-
sient faults affecting redundantly-executed instructions.

4.  SIMULATION ENVIRONMENT
Wedevelopedadetailedexecution-drivensimulatorof aslipstream
processor. The simulator faithfully models the architecture
depictedin Figure1 andoutlinedin Section2: the A-streampro-
ducesreal, possibly incorrect values/addressesand branch out-
comes, the R-streamand IR-detector check the A-stream and
initiate recovery actions, A-stream state is recovered from the
R-streamstate,etc. The simulator itself is validatedvia a func-
tional simulatorrun independentlyandin parallelwith thedetailed
timing simulator [33]. The functional simulator checks retired
R-stream control flow and data flow outcomes.

TheSimplescalar[3] compilerandISA areused.Binariesarecom-
piled with -O3 level optimization.The Simplescalarcompiler is
gcc-basedandtheISA is MIPS-based;asaresult,programsinherit
any inefficienciesof thegnucompilerandMIPS ISA. We usedthe
SPEC95integer benchmarks,shown in Table1, for evaluation.
Benchmarks were run to completion.

Microarchitectureparametersareenumeratedin Table2. TheCMP
is composedof two conventional 4-way superscalarprocessors,
eachwith privateinstructionanddatacachesanda 64-entryROB
(a sharedlevel-two cachealwayshits). A large IR-predictor/trace
predictoris usedfor accurateinstructionremoval. For all experi-
ments,the IR-predictor/tracepredictoruseslength-32tracesanda
resetting-counterconfidencethresholdof 32.TheIR-detectorhasa
scopeof 8 length-32traces.Thedelaybuffer lengthis 256instruc-
tions. The recovery controller tracks any number of store
addresses,although we observe not too many outstanding
addressesin practice.The recovery latency (after the IR-mispre-

ROB of A-stream Delay Buffer ROB of R-stream IR-detector

recovery controller

(possible store-undo)
add store 2

(possible store-do)
remove store 1add store 1

remove store 2

store 1: executed in A-stream
store 2: skipped in A-stream

Figure 4: Tracking memory addresses for potential recovery.

Scenario #2

XR-stream

A-stream

X

Scenario #3

X

Scenario #1

Figure 5: Transient fault scenarios.

Table 1: Benchmarks.

benchmark input dataset instr. count

compress 40000 e 2231 248 million
gcc -O3 genrecog.i -o genrecog.s 117 million
go 9 9 133 million
jpeg vigo.ppm 166 million
li test.lsp (queens 7) 202 million
m88ksim -c < ctl.in (dcrand.big) 121 million
perl scrabble.pl< scrabble.in(dictionary) 108 million
vortex vortex.in (persons.250, bendian.*) 101 million



diction is detected)is 5 cyclesto startuptherecovery pipeline,fol-
lowedby 4 registerrestorespercycle,andlastly4 memoryrestores
per cycle. As there are 64 generalpurposeinteger and floating
point registers,the minimum recovery latency is 21 cycles (5 +
64/4) if no memory locations are restored.

5.  RESULTS
The performance of three models is presented.

• SS(64x4)— A singlecopy of theprogramis run on onecon-
ventional 4-way superscalar processor with 64 ROB entries.

• SS(128x8)— A singlecopy of theprogramis run on onecon-
ventional 8-way superscalar processor with 128 ROB entries.

• CMP(2x64x4)— This is a slipstreamprocessorusinga CMP
composed of two SS(64x4) cores.

For fair anddirect comparisons,the sametracepredictor is used
for accurate and high-bandwidthcontrol flow prediction in all
three processormodels. Of course,only CMP(2x64x4)usesan
IR-predictorontopof thetracepredictor. Performanceis measured
in retiredinstructionspercycle (IPC). IPC for theslipstreampro-
cessoris computedasthenumberof retiredR-streaminstructions
(i.e., the full program,countedonly once)divided by the number
of cycles for both the A-streamand R-streamto complete(total
execution time).

The graph in Figure6 shows the IPC improvement of
CMP(2x64x4)with respectto SS(64x4).(For a point of reference,
the IPC of SS(64x4), our base model, is given in Table3.)
CMP(2x64x4)improvesperformanceby 7% on average.The IPC
of half of thebenchmarksimprove by morethan7% — li , vortex,
perl, and m88ksimimprove by 7%, 7%, 16%, and 20%, respec-
tively — while gcc improvesby 4% andtheotherthreeshow little
or no improvement.Thesignificanceof this resultis thata second,
otherwise unusedprocessoron the chip can be exploited for
improving single-program performance.

The performanceimprovementdue to doubling the window size
and issue bandwidth of the superscalarprocessoris shown in
Figure7. On average,SS(128x8)improvesperformanceby 28%.
We feel the slipstream paradigm has competitive potential.

1. With the initial and relatively unexplored slipstreamimple-
mentation,we achieve one-fourththe IPC-performancegains
of the larger superscalarprocessor. And if superscalarcom-
plexity is considered,then a CMP composedof two small
superscalarprocessorswill potentiallyhave a fastercycle time
than one large superscalar processor.

2. A CMP with slipstreamingprovides more functionality and
flexibility than a single superscalarprocessor. For example,
dependingon theloadof themachine,theextra processormay
beusedto run anotherjob or cooperatewith theotherproces-
sor on a single job.

3. The peak bandwidthof CMP(2x64x4)is only 4 IPC, hence
thereis lessroomfor improvementthanwith SS(128x8).This
suggestsimplementinga slipstreamprocessorusingan8-wide
SMT processor, which we leave for future work.

Figure6: Performanceof CMP(2x64x4)(slipstreamprocessor)
with r espect to SS(64x4).

Table 2: Microarchitecture configuration.

single processor

instruction
cache

fetch bandwidth:

• 2-way interleaved to fetch full cache block

• fetch past multiplenot-taken branches in single cycle

size/assoc/repl = 64kB/4-way/LRU

line size = 16 instructions

miss penalty = 12 cycles

data cache

size/assoc/repl = 64kB/4-way/LRU

line size = 64 bytes

miss penalty = 14 cycles

superscalar
core

reorder buffer (default): 64 entries

dispatch/issue/retire bandwidth (default): 4-way

n fully-symmetric function units (n = issue bandwidth)

n loads/stores per cycle (n = issue bandwidth)

execution
latencies

address generation = 1 cycle

memory access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

slipstream components

IR-pr edictor

trace predictor (hybrid):

• 216-entry path-based pred.: 8 traces in path history

• 216-entry simple pred.: 1 trace in path history

resetting-counter confidence threshold = 32

IR-detector
trace length (R-DFG size) = 32 instructions

scope = 8 traces/256 instructions

delay buffer
data flow buffer: 256 instruction entries

control flow buffer: 128 {trace-id, ir-vec} pairs

recovery
controller

number of outstanding store addresses = unconstrained

recovery latency (after IR-misprediction detection):

• 5 cycles to start up recovery pipeline

• 4 register restores per cycle (64 regs performed first)

• 4 memory restores per cycle (mem performed second)

• ∴ minimum latency (no memory) = 21 cycles
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Figure 7: Performance of SS(128x8) with respect to SS(64x4).

The uppermostgraphin Figure8 shows the fraction of dynamic
instructionsremoved from the A-streamfor eachof the bench-
marks. Each bar is broken down into the sourcesof instruc-
tion-removal.

• BR: branch instruction.

• WW: A write followedby awrite to thesamelocation,with no
intervening reference.

• SV: Writing thesamevalue to a location.

• P:{BR | WW | SV}: Instructionsthat were removed due to
back-propagation from other removed instructions. These
instructionsinherit any combinationof BR, WW, andSV sta-
tus.

Thenumberof removedinstructionscorrelatescloselywith perfor-
manceimprovement.Nearly 50% of m88ksim’s instructionswere
removed and it hasthe largestperformanceimprovement(20%).
Successively fewer instructionswere removed in perl, vortex, li ,
and gcc — 20%, 16%, 10%, and 8% of all instructionswere
removed, respectively — andperformancereflectsthis. On aver-
age,the threelargestsourcesof instructionremoval areBR (33%
of theremovedinstructions), SV (30%),andP:BR(27%).Wehave
observedthatWW andSV tendto occursimultaneouslyandprior-
ity is given to SV when accounting.

The lowermostgraphin Figure8 shows what happenswhenonly
branchinstructions(BR) andtheir computationchains(P: BR) are
candidatesfor removal, i.e., ineffectual writes are not removed.
This is relevant becausebranchpredictabilityis morelikely to be
influencedby algorithm than by compiler, whereasthe compiler
may have more influenceon ineffectual writes. Interestingly, the
fraction of removed instructions increasessubstantiallyfor all
benchmarksexcept m88ksim, whosefraction drops from half to
one-quarter. The resultsarecounterintuitive becausethereis less
opportunityfor instruction-removal whenineffectualwritesarenot
considered.Diluted confidence, discussedin Section2.1.3, may
explain theresults.With fewer candidateinstructionsfor removal,
thereis alsolesschancethatunrelatedinstructionsdilute theconfi-
denceof consistently-removable branches.Overall confidenceis

higherandmoreinstructionsareremoved in practice,despiteless
total opportunity. The average IPC improvement with only
branch-removal remainsat 7%, but per-benchmarkIPCs change:
perl (16%),li  (11%),m88ksim (11%),vortex (7%), andgcc (5%).

Figure 8: Breakdown of removed A-stream instructions.

Branchmispredictionsper1000instructionsfor eachbenchmarkis
provided in Table3. A key observation is that instruction-removal
is mostsuccessfulfor highly-branch-predictablebenchmarks.The
gccbenchmarkis an interestingcase.Althoughits branchmispre-
diction rateis similar to li ’s, IR-predictionis moresuccessfulwith
li . Unstabletraces, discussedin Section2.1.3,mayexplain thedis-
crepancy. We hypothesize gcc, more than li , has consis-
tently-removable branchesand unpredictablebranchesgrouped
together in traces. The traces are unstable and the consis-
tently-removable branchesare not removed in practice.Using a
non-trace-based IR-predictor could fix the problem.

Thetracepredictor’s updatelatency (which is accuratelymodeled)
increaseswith slipstreaming.Comparingthesecondandthird rows
of Table3, the effect on branch misprediction rate is not too
severe, in fact, delayedupdatesreducethe rate slightly for li ,
m88ksim, andperl. Theconfidencethresholdof 32 resultsin fewer
than0.05 IR-mispredictionsper 1000 instructions.And the aver-
ageIR-mispredictionpenaltyis atmost26cycles,closeto themin-
imum of 21 cycles, which implies only a handful of memory
locations need to be restored after an IR-misprediction.
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6.  RELATED WORK
Advanced-stream/Redundant-streamSimultaneousMultithreading
(AR-SMT) [24] is basedon the realizationthat microarchitecture
performancetrendsand fault toleranceare related.Time redun-
dancy — runninga programtwice to detecttransientfaults— is
cheaperthanhardwareredundancy but it doublesexecutiontime.
AR-SMT runsthe two programssimultaneously[37] but delayed
(via thedelaybuffer), reducingtheperformanceoverheadof time
redundancy. Resultsare comparedby communicatingall retired
A-streamresultsto the R-stream,and the R-streamperformsthe
checks.Here,theR-streamleveragesspeculationconcepts[17] —
theA-streamresultscanbeusedasidealpredictions.TheR-stream
fetches/executeswith maximum efficiency, further reducing the
performanceoverheadof time redundancy. And the methodfor
comparingtheA-streamandtheR-streamis convenientlyin place,
in the form of misprediction-detectionhardware. In summary,
AR-SMT leveragesthe underlying microarchitectureto achieve
broadcoverageof transientfaultswith low overhead,bothin terms
of performance and changes to the existing design.

DIVA [2] and SRT [22] are two other examplesof fault-tolerant
architecturesdesignedfor commodityhigh-performancemicropro-
cessors.DIVA detectsa variety of faults, including designfaults,
by usinga verifiedchecker to validatecomputationof thecomplex
processorcore.DIVA leveragesanAR-SMT technique— thesim-
plechecker is ableto keeppacewith thecoreby usingthevaluesit
is checkingaspredictions.SRT improveson AR-SMT in a variety
of ways, including a formal and systematictreatmentof SMT
applied to fault tolerance (e.g.,spheres of replication).

Researchershave demonstrateda significant amount of redun-
dancy, repetition,and predictability in generalpurposeprograms
[6,9,10,17,18,19,30,32].This prior researchforms a basisfor cre-
ating the shorterprogramin slipstreamprocessors.A technical
report [25] showed 1) it is possibleto ideally constructsignifi-
cantly reducedprogramsthat producecorrectfinal output,and2)
AR-SMT is a convenient execution model to exploit this property.

Tullsen et. al. [36,37] and Yamamotoand Nemirovsky [39] pro-
posed simultaneous multithreading for flexibly exploiting
thread-level andinstruction-level parallelism.Olukotunet.al. [20]
motivate using single-chip multiprocessors.

Farcy et.al. [8] proposedresolvingbranchmispredictionsearlyby
extracting the computationleading to branches.Zilles and Sohi
[41] similarly studiedthe computationchainsleadingto mispre-
dictedbranchesand loadsthat miss in the level-two cache.They
suggestidentifying a difficult subsetof theprogramfor pre-execu-
tion [27,28], potentiallyprefetchingbranchpredictionsandcache
lines that would otherwisebe mispredictionsand cachemisses.
Pre-execution typically involves pruning a small kernel from a
larger programregion and running it as a prefetchengine[26].
RothandSohi[28] developeda new paradigmcalledData-Driven
SpeculativeMultithreadingthat implementspre-execution.Rather

thanspawn many specializedkernelson-the-fly, our approachuses
a single, bona fide program(A-stream).That is, the A-stream’s
context is persistentandredundantwith theR-stream,with several
key advantages.First, we avoid the conceptualand possiblyreal
complexity of forking privatecontexts, within which the special-
izedkernelsmustrun.Second,Zilles pointsout theremaybediffi-
culty in binding prefetchedpredictionsto fetchedbranches[41],
whereas the one-to-one correspondencebetween redundant
instructionsin the A-stream and R-streamavoids this problem
entirely. Third, redundantprogramscanbe exploited for transient
fault tolerance.

Speculative multithreading architectures [e.g.,1,7,21,33,34,35]
speedupasingleprogramby dividing it into speculatively-parallel
threads.Thespeculationmodelusesonearchitectural context and
future threadsare spawned within temporary, private contexts,
eachinheritedfrom the precedingthread’s context. Futurethread
contexts aremergedinto thearchitecturalcontext asthreadscom-
plete.Ourspeculationmodelusesredundantarchitecturalcontexts,
so no forking or merging is needed.And strictly speaking,there
are no dependencesbetween the architecturally-independent
threads,rather, outcomesare communicatedas predictionsvia a
simple FIFO queue.Register and memory mechanismsof the
underlying processorare relatively unchangedby slipstreaming
(particularly if thereis an existing interfacefor consumingvalue
predictionsat the renamestage).In contrast,speculative multi-
threading often requires elaborateinter-thread register/memory
dependencemechanisms.Besidesperformance,using redundant
contexts addsothervalueto the chip, i.e., fault tolerance.We are
not advocating one kind of multithreadingmodel over another,
rather, we are proposinganotheralternative and pointing out its
novel implications.

Runningbackgroundthreadsto performsomefunction on behalf
of theprimaryprogramis increasingin popularity. SSMT[5] is a
genericapproachin which a subordinatethreadmonitorseventsin
the primary thread(e.g., mispredictionsand cachemisses)and
adjustshardwarecomponentsto compensateandoptimizeperfor-
mance.Subordinatethreadsalsoallow exceptionhandlingto pro-
ceed in parallel with code after the excepting instruction [40].

TheDataScalarparadigm[4] runsredundantprogramsonmultiple
processor-and-memorycoresto eliminatememoryreadrequests.
DataScalartrades relatively inexpensive computing power for
reduced memory traffic.

7.  CONCLUSIONS AND FUTURE WORK
Making effective useof a billion transistorsis a major challenge.
Simultaneousmultithreadingandchipmultiprocessingpayoff sub-
stantially in this regard, becauseexisting parallelism can be
migratedfrom the systemlevel to the chip level relativelyeasily.
Even largerpayoffs arepossibleif thesametransistorsarereused
for single-programperformanceand functionsnormally reserved

Table 3: Misprediction measurements.

comp gcc go jpeg li m88k perl vortex

SS(64x4)
IPC 1.72 2.69 2.15 3.24 2.88 2.82 3.08 3.24

branch misp./1000 instr. 16 6.4 11 4.1 6.5 1.9 2.0 1.1

CMP(2x64x4)

branch misp./1000 instr. 16 6.6 11 4.2 6.2 1.8 1.9 1.1

IR-mispredictions/1000 instr. 0.03 0.03 0.02 0.01 0.02 0.03 0.02 0.05

avg. IR-misprediction penalty22 23 22 22 23 24 24 26



for nichecomputers.Theslipstreamparadigmallows theoperating
systemto flexibly chooseamongmultiple operatingmodesbased
on systemanduserrequirements.The requirementsmay include:
high job throughputand parallel-programperformance(conven-
tional SMT/CMP), improved single-programperformanceand
reliability (slipstreaming),or fully-reliable operationwith little or
no impact on single-program performance (AR-SMT / SRT).

A slipstreamprocessorsimultaneouslyrunstwo copiesof thepro-
gram.Oneof theprograms(A-stream)alwaysrunsslightly ahead
of theother(R-stream).TheR-streamis monitoredfor ineffectual
andbranch-predictablecomputation,and the information learned
is usedto speculatively but accuratelyreducethe A-stream.Out-
comesfrom theA-streamarecommunicatedto theR-stream.The
R-streamusestheoutcomesto executemoreefficiently and,at the
sametime, validatethe speculative A-stream.The two programs
combinedfinishsoonerthaneitherwouldalone.A detailedbut rel-
atively-unexplored implementationdemonstratessubstantialper-
formance improvements are possible, 7% on average.

The shorterprogramis a subsetof the full programandthis par-
tial-redundancy is transparentlyleveragedfor detectingandrecov-
ering from transienthardwarefaults.The importanceof providing
reliability with low overhead— both in termsof designchanges
and performance— cannotbe overstated.For example,a recent
conferencepanel [11] debatedthe problemof using commercial
off-the-shelfcomponents(COTS) in reliable applications.Com-
modity componentsareinexpensive andhigh-performance,in part
becausethey lack fault tolerance— therein lies the quandary.
While software is currently the larger problem,future chips are
susceptible due to technology and microarchitecture trends.

Thereare many future researchtopics for slipstreamprocessors.
Below, we discuss some of the more pressing topics.

• We needa betterunderstandingof slipstreamperformanceto
identify bottlenecksand ultimately produce more effective
A-streams.A highpriority is determiningtheamountandqual-
ity of instruction-removal neededto improveperformance,and
then developing effective IR-predictors based on the results.

• Basicmicroarchitectureresearchis neededto develop mecha-
nismsfor eachof thenew slipstreamcomponents,explore the
designspace,andoptimizethe componentsfor both practical
implementationandgoodperformance.We alsowant to dem-
onstratethenew componentsinterfaceto a conventionalpipe-
line without fundamentally reorganizing it.

• Slipstreamingneedsto be implementedon an SMT coreand,
in general,we shouldevaluatemultiple CMP/SMT configura-
tions.SMT introducesnew problems,suchascompetitionfor
resources.Adaptively turning on/off slipstreamingmay be
needed,so performanceis not degradedwhentheA-streamis
only slightly reduced.Adaptivity is also useful in a CMP, to
determinewhetheror not thesecondPEshouldinsteadbeused
for an independent program.

• For reliability, we needto formally analyzefault coverageand
also improve coverage under partial-redundancy constraints.

• The currentslipstreammodel,due to processreplication,has
many system-level issuesthatneedto beaddressed(coherence
andconsistency, O/S support,interrupts,I/O, etc.).For exam-
ple, we are looking at ways of reducingmemory overhead
while retaining the simplicity of software memory renaming.
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