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ABSTRACT

Processorsxecutethe full dynamicinstructionstreamto arrive at
the final output of a program,yet there exist shorterinstruction
streamghat producethe sameoverall effect. We proposecreating
a shorterbut otherwiseequivalentversionof the original program
by remaving ineffectual computationand computationrelatedto
highly-predictablecontrolflow. The shortenegrogramis run con-
currentlywith thefull programon a chip multiprocessopor simul-
taneous multithreaded processaith two key adwantages:

1) Improved single-program performance. The shorter program
speculatrely runsaheadof the full programand suppliesthe full

programwith control and dataflow outcomes.The full program
executesefficiently due to the communicatedoutcomes,at the
sametime validating the speculatie, shorter program.The two
programscombinedrun fasterthan the original programalone.
Detailedsimulationsof anexampleimplementatiorshav an aver-
age impreement of 7% for the SPEC95 igar benchmarks.

2) Fault tolerance. The shorterprogramis a subsebf the full pro-
gram and this partial-redundangc is transparentlyleveragedfor
detecting and recering from transient hardave fults.

1. INTRODUCTION

A corventional processorexecutesthe full dynamic instruction
streamto arrive at the final outputof the program.The dlipstream

paradigm proposesthat only a subsetof the original dynamic
instructionstreams neededo make full, correct,forwardprogress
[25]. Unfortunately we cannotknow for certain what dynamic
instructionscanbe validly skipped.Creatinga shorter equivalent
programis speculatre — ultimately, it mustbe checled against
the full program to erify it produces the sameerall efect.

Therefore the operatingsystemcreateswo redundaniprocesses,
i.e.,theuserprogramis instantiatedwice andeachinstancehasits

own context. Thetwo redundanprogramsexecutesimultaneously
on a single-chipmultiprocesso(CMP) [20] or on a simultaneous
multithreadedprocesso(SMT) [37]. Oneof the programsalways
runsslightly aheadof the other The leadingprogramis calledthe
advanced stream, or A-stream,andthe trailing programis called
theredundant stream, or R-streamHardwaremonitorsthe trailing
R-streamand detectsl) dynamicinstructionsthat repeatedlyand
predictablyhave no obsenable effect (e.g., unreferencednrites,
non-modifyingwrites) and 2) dynamicbranchesvhoseoutcomes
are consistentlypredictedcorrectly Futuredynamicinstancesof
the ineffectualinstructions branchinstructions,andthe computa-
tion chainsleadingup to them are speculatiely bypassedn the
leading A-stream— but only if thereis high confidencecorrect
forward progresscan still be made, in spite of bypassingthe
instructions.

The much-reducedA-streamis spedup becausdt fetches,exe-

cutes,andretiresfewer instructionsthanit would otherwise Also,

all valuesandbranchoutcomesproducedn the leadingA-stream
arecommunicatedo thetrailing R-streamAlthoughthe R-stream
is not reducedin termsof retired instructions,it hasan accurate
pictureof the future andfetches/gecutesmoreefficiently. In sum-
mary, the A-streamis sped up becauseit is shorter and the
R-streamis spedup becauset recevesaccuratepredictionsfrom

the A-stream.The two redundant programs combined run faster

than either can alone.

The A-streams outcomesareusedonly aspredictions to speedup
the R-streamBut ultimately, the sameinformationis redundantly
and independentlycomputedby the R-stream.This is crucial
becausethe A-stream occasionally (but infrequently) bypasses
computationthat shouldnot have beenbypassedandit no longer
malkes correctforward progress.The R-streamcan detectdevia-
tions becausets redundantly-computedutcomediffer from the
A-streams outcomesAnd the checksare alreadyin placeif the
existing designimplementscornventionalbranchandvalue predic-
tion [24]. Whenthe A-streamdeviates thearchitecturaktateof the
R-streamis usedto selectvely recover the corruptedarchitectural
state of the A-stream.

An analogyto theslipstreanparadigm(andthe sourceof its name)
is “slipstreaming”in stock-carracing (e.g., NASCAR) [23]. At
speedsn excessof 190m.p.h.,high air pressurdormsat the front
of a racecar and a partial vacuumforms behindit. This creates
dragandlimits thecar’stop speedA secondcarcanpositionitself
closebehindthefirst (a processcalled slipstreaming or drafting).
This fills the vacuumbehindthe lead car, reducingits drag. And
thetrailing carnow haslesswind resistancén front (andby some



accountsthe vacuumbehindthe lead car actually helpspull the
trailing car). As aresult,both carsspeedup by severalm.p.h.:the
two combined godster than either can alone.

Similarly, the A-stream and R-stream mutually improve one
anothers performance.The A-stream could not be accurately
reducedwithout the trailing R-stream And the R-streamis helped
alongin the slipstream(control and dataflow outcomes)of the

A-stream.Theuserpercevesanoverall speedugecausdothpro-

gramsfinish earlier (the R-streanfinishesjust after the A-stream,
sothe R-streandeterminesvhenthe users programis done).The

amountof performanceamprovementdependson the natureand

amountof reductionin the A-stream.Slipstreamingalsorelieson

properresourceallocationbetweenthe two programs(e.g., dedi-

catedprocessorén a CMP or carefulfetch/issueschedulingn an

SMT processor).

In additionto potentialperformancemprovementsslipstreaming
providesfault-tolerantcapabilities.The trendsof very high clock

speedsandvery small transistoramay make the entire chip prone
to transientfaults[29], andthereis renavedinterestin fault-toler-

ant architecturesor commodity high-performancemicroproces-
sors [24,2,22].

Slipstreanprocessorprovide substantiabut incompletefault cov-

erage specifically faultsthat affect redundantly-gecutedinstruc-
tions are detectableand recoverable. Not all instructions are
redundantly-gecuted becausethe A-streamis a subsetof the
R-stream,and this opensup opportunitiesfor dynamically and
flexibly tradingperformanceandfault coverage A transientfault,

whetherit affectsthe A-stream,the R-stream or both streamsijs

transparentlydetectedas a “misprediction” by the R-stream
becausahe communicateccontrol and dataflow outcomesfrom

the A-streamwill differ from the correspondingutcomesin the
R-streamFault detection/receery is transparenbecauséransient
faults are indistinguishable from prediction-inducedatéons.

In summarythis paper mads the folleving contritutions.

®* We suggestspeculatiely creating a shorter but otherwise
equialentversionof the program,exploiting 1) computation
that repeatedlyand predictablyhasno effect on the final pro-
gramoutputand2) computatiorthatinfluenceshighly-predict-
able branches.

® Theshortenegrogramis runin parallelwith thefull program
on a single-chipmultiprocessoor simultaneousnultithreaded
processornd,by communicatingnformationfrom the short-
enedprogramto the full program,single-programexecution
time s potentiallyimprovedandsubstantiatransientault cov-
erage is achied.

® This work is part of a larger effort using multiple on-chip,
architecturalkcontets in new ways. CMP/SMT processorgre
stratgjic becausehey effectively utilize billion-transistorchips
with relativeeasejntegratingparallelismthatalreadyexists at
thesystem-lgel ontoasingledie. Our goalis threefold:1) pro-
vide more functionality in the sameCMP/SMT processor—
not just throughput-orientegarallelism,but also fault toler-
anceandimprovedsingle-progranperformancéfor example),
2) provide the new functionsin anon-intrusve way, by placing
hardware“around” the existing componentsandleveraging,as
much as possible, the existing design, and 3) enable the
user/operatingystento flexibly anddynamicallychooserom

amongseveralmodesof operationge.g.,throughputmode,sin-
gle-program-speedup mode, or reliable mode.

2. SLIPSTREAM MICROARCHITECTURE

A slipstreanprocessorequirestwo architecturacontets, onefor
eachof the A-streamand R-streamandnew hardwarefor direct-
ing instruction-remwal in the A-streamand communicatingstate
betweenthe threads.A high-level block diagramof a slipstream
processoimplementecdn top of a two-way chip multiprocessors
shavn in Figurel (an SMT processocould be usedinstead).The
shadedboxes shawv the original processorgomprisingthe multi-
processar Each is a corventional superscalar/VLIWprocessor
with a branchpredictor instructionanddatacachesandan execu-
tion engine— including the register file and either an in-order
pipeline or out-of-orderpipeline with reorderbuffer (we assume
the latter in the rest of the paper).

There are four v components to support slipstream processing.

1. Theinstruction-emaoval predictor, or IR-predictor is a modi-
fied branchpredictor It generateshe programcounter(PC) of
the next block of instructionsto be fetchedin the A-stream.
Unlike a corventionalbranchpredictor however, the predicted
next PC may reflect skipping past any number of dynamic
instructions that a corventional processorwould otherwise
fetchandexecute.In this paperthe IR-predictoris built ontop
of aconventionaltracepredictor[13] but otherdesignsarepos-
sible (e.g., using caentional single-branch predictors).

2. Theinstruction-emaoal detector or IR-detector monitorsthe
R-stream and detects instructions that could have been
removed from the program. The IR-detectorcorveys to the
IR-predictorthat particularinstructionsshould potentially be
skipped by the A-stream when they are next encountered.
Repeatedndicationsby the IR-detectorbuild up confidencen
thelR-predictor andthe predictorwill remove futureinstances
from the A-stream.

3. Thedelaybuffer is usedto communicatecontrolanddataflow
outcomes from A-stream to R-stream (the R-stream is
“delayed” with respect to the A-stream [24]).

4. The recovery contoller maintainsthe addresse®f memory
locationsthatarepotentiallycorruptedn the A-streamcontext.
A-streamcontext is corruptedwhenthe IR-predictorremoves
instructions that should not have been removed. Unique
addresseareaddedio andremovedfrom therecovery control-
ler asstoresare processedy the A-stream,the R-streamand
the IR-detector The currentlist of memorylocationsin the
recovery controlleris sufficient to recover the A-streammem-
ory contet from the R-stream$ memorycontext. Theregister
file is repairedby copying all valuesfrom the R-streams regis-
ter file.

Notethattwo kinds of speculatioroccurin the A-stream.Corven-
tional speculationoccurs when branchesare predictedand the
branch-relatedcomputation has not been removed from the
A-stream.Mispredictionsresultingfrom corventionalspeculation
aredetectabldyy the A-stream,do not corruptthe A-streamcon-
text, and do not imolve the receery controller

The secondtype of speculationoccurs when the IR-predictor
removes instructionsequence$rom the A-stream.The A-stream
hasno way of detectingwhetheror not remaving the instructions
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Figure 1. Slipstream Processor using a two-way chip multiprocessor.

was correct. Therefore,an incorrectdecisionby the IR-predictor
canresultin corruptedA-streamstate.In the remainderof the
paper we refer to mispredictionsby the IR-predictorasinstruc-
tion-remwal mispredictions or IR-mispredictions distinguishing
this type of misprediction from A-stream-detectable ones.

In Section2.1 through2.3, we describethe abose componentsn
more detail and elaborateon Figure 1. Section2.1 describeshow
the IR-detectorand IR-predictorwork to createthe shorterpro-
gram. Section2.2 describeghe delay buffer andits interfacesto
the A-streamand R-stream.Section2.3 explains how IR-mispre-
dictions are detectedby either the R-streamor IR-detector and
how the A-streamcontext is recoreredfrom the R-streamcontext
with relatively low lateng.

2.1 Creating the Shorter Program

The IR-detector monitors past run-time behaior and detects
instructionsthat could have beenremoved, and might possiblybe
removedin the future. This informationis corveyedto the IR-pre-
dictor, andafter sufficient repeatedndicationsby the IR-detector
the IR-predictor remees future instances of the instructions.

2.1.1 IR-pedictor

In this paperthelR-predictoris built ontop of acorventionaltrace
predictor[13]. A tracepredictordivides the dynamicinstruction
streaminto traces— large dynamicinstructionsequenceée.g.,16
to 32 instructions)typically containing multiple taken/not-talken
branch instructions. The next trace in the dynamic instruction
stream is predicted using a path history of past traces.

A corventionaltrace predictorworks as follows [13]. A traceis
uniquelyidentified by a startingPC andbranchoutcomesndicat-
ing the paththroughthetrace,andthe combinationof startPCplus
branchoutcomess called a trace id. An index into a correlated

prediction table is formed from the sequenceof pasttraceids,

using a hashfunction that favors bits from more recenttraceids
over lessrecenttraceids. Eachentry in the correlatedprediction
table containsa traceid anda 2-bit counterfor replacementThe
predictoris augmentedvith a secondtable that is indexed with

only the mostrecenttraceid. The secondtable requiresa shorter
learningtime andsufferslessfrom aliasingpressureTogetherthe
two tablesform a hybrid predictorthat outputsthe predictedtrace
id of the nat trace.

To form an IR-predictor threepiecesof informationareaddedto
each table entry

1. Instruction-emaal bit vector (ir-veq. This bit vector indi-
cateswhich instructionsin the predictedtraceto remove from
the A-stream.An instructionis removed if its corresponding
bit in their-vecis set.

2. Intermediateprogram countervalues To fetch a tracefrom a
corventionalinstruction cache,the traceis decomposednto
multiple sequentiafetch blocks (fetch blocksare separatedby
taken branches)A traceid only specifiesthe PC of the first
fetch block anda seriesof embeddedranchpredictions.PCs
of embeddedetch blocks are not available. Corventionally
embeddedetch block PCs are producedusing pre-decoded
branchesdn the branchtamget buffer (BTB) and/orinstruction
cache.If this approachis used unmodified,the number of
dynamicinstructionsfetchedin the A-streamis not reduced.
Their-vecitself is only usefulfor remaving instructionsafter
fetch and before decode.To remove A-stream instructions
before they are fetched eachpredictorentry containsinterme-
diate programcountervaluesneededby the instructionfetch
unit to skip @er chunks of the trace.

3. Confidencamehanism A singleresettingconfidencecounter
[12] limits instruction-remwal to casesvhereit is likely to be



correct. The counteris incrementedvhen a newly-generated
{trace-id, ir-vec} pair from the IR-detectormatchesthe old

{trace-id, ir-vec} pair at the entry being updated.If the nev

pair doesnot matchthe old pair, the counteris resetto zero.
Whenthe confidencecounterhasreacheda certainthreshold,
their-vec andintermediatédPCsareusedto remove instructions
from the A-stream.Otherwise,the instruction-remwal infor-

mation is ignored and all instructions in the trace are
fetched/gecuted.

Figure2 shavs an example of A-streaminstruction fetching. A
singlelength-32dynamictraceis shawvn. Thetraceis decomposed
into five fetch blocks separatedy taken (T) branchesNot-taken
(NT) branchesareembeddeadvithin fetchblocks.Thefetchblocks
are labeledwith PCs A through E. Each box is an individual
instruction, and shaded boxes indicate predicted-remeable
instructionsIn theexample theinstructioncachecansupplyup to
16 sequential instructions perote.

® Cornventionalfetching:Thetracepredictorstoresonly thetrace
id {A, NT-T-T-NT-T-T}. PCsB, C, D, and E are produced
using the BTB/instruction cacheand multiple branchpredic-
tions. Five fetch cycles areexpendedanda total of 32 instruc-
tions are fetched, decoded, axé@uted.

® Fetchingusingthe IR-predictor: The trace predictoraddition-
ally storesanir-vec {0011...} andintermediatePCsX and .
Pre-decodedtamgets from the BTB/instruction cache are
ignored.Only three fetch cycles areexpended cycle for each
of the blocksstartingat PCA, PC X, andPCY. 18 instructions
arefetched(block A: 8, block X: 7, block Y: 3). Amongthese,
the ir-vec is usedto collapse the number of instructions
decoded/eecuted davn to 12 instructions.

Note thata compressedersionof their-vec is storedin place
of thefull ir-vec, in orderto properlyline up removal bits with
corresponding instructions in thewnéetch blocks 4, X, Y}.

NT T T NT T T

X Y

Figure 2: A-stream instruction fetching example.

2.1.2 |IR-detector

Therearepotentiallymary waysof speculatiely creatinga shorter
program.Here,we considertwo casef ineffectual computation
— writesthatareneverreferenceqddynamicdeadcode)andwrites
that do not modify the stateof a location[14,15,18,19,38}— as
well as branch-predictable computation.

® Someinstructionswrite a valueto a registeror memoryloca-
tion andthe valueis overwrittenbeforeever beingused.Such
instructions,and the computationchainsleading up to these
instructions, hee no efect on final program state.

® Someinstructionswrite the samevalueinto aregisteror mem-
ory location as alreadyexists at that location. Suchinstruc-
tions, andthe computationchainsleadingup to them,have no
effectonfinal programstatebecausé¢heir writeswerenottruly
modifications.

® Certaincontrolflow in the programmay be so predictablethat
it appears deterministic.With a high level of confidencewe
may chooseto remorve the branchesdnvolved, along with the
computation chains feeding the branches.

To detectcandidatenstructionsfor removal, the R-streanis moni-

toredasit retiresinstructions.Retiredinstructionsand valuesare
usedto 1) constructa small reversedataflav graph(R-DFG) and
2) detectary of the three triggering conditions for instruction
removal, i.e., unreferencedwrites, non-modifying writes, and
branchinstructions.When a triggering conditionis obsered, the
correspondingnstructionis selectedfor removal. Then, the cir-

cuits forming the R-DFG back-propagte the selectionstatusto

predecessanstructions A predecessadnstructionis alsoselected
for removal if all of its dependeninstructionsareknown andthey

have beenselectedfor removal. All dependeninstructionsare
known when the consumedvalue is killed, i.e., when there is

another write to the samegister/memory location.

The IR-detectoris shawvn in Figure3. The sizeof the R-DFGis a
single trace (32 instructionsin this paper),resultingin practical
back-propagtion circuitry. Although the scopeof back-propag-
tion is limited to a single trace, the IR-detectortracks multiple
traces Maintainingmultiple tracesatthe sametime allows a much
largerscopefor killing values(observinganothemvrite to thesame
location)withoutincreasinghe size/complgity of eachindividual
R-DFG.

The operandrenametable in Figure3 is similar to a register
renamerbut it cantrack both memoryaddressesnd registers.It

performsdatadependenceheckingfor meging new instructions
into the R-DFG and also detects unreferencedwrites and
non-modifying writes. Memory entries are invalidated and
reclaimed,and register entriessimply invalidated,when the last
producerof thelocationis no longerwithin the analysisscope(the
producer field facilitates this).

A singleentry of the operandrenametableis shovn in Figure3,

for demonstrationTo merge an instructioninto its R-DFG, each
sourceoperandis checled in the renametable to get the most
recentproducerof the value (checkthe valid bit and producer

field). The consumeiinstructionusesthis informationto establish
connections with its producer instructions, i.e., set up the
back-propagtionlogic. If the produceris notin the sametrace,no
connectioris made.Theref hit is setfor eachsourceoperandndi-

cating the alues hae been used.

Whenan instructionwrites a register/memorylocation, the corre-
sponding operand rename table entry is checled to detect
non-modifying/unreferenced writes and to kéllves, as follws.

1. If thevalid hit is set,andthe currentinstructionproducecdthe
samevalue as indicatedin the value field, then the current
instructionis a non-modifyingwrite. The currentinstructionis
selected for rema@l as it is meged into the R-DFG.

2. If thevalid bit is setandthe new andold valuesdo not match,
the old producerindicatedby the producer field is killed. Fur-
thermore,if the ref bit is not set, thenthe old produceris an
unreferenced write and is selected for reato

After thesechecksare performed,all fields are updatedto reflect
the new producerinstructionunlessit is a non-modifying write
(the old producer remains V" in this case).



All branchinstructionsare selectedfor removal when they are

memged into the R-DFG. This meansall branchesare candidates
for removal, andthe confidencecounterassociateavith eachtrace
prediction (Section2.1.1) makes the actual decisionto remove

branches.

Finally, ary otherinstructionmay be selectedor removal if it has
beenkilled, all of its consumeiinstructionsarein the sametrace,
and all consumersare selected for removal. The R-DFG
back-propagtion circuitry handles this case.

When a trace becomesghe oldesttracein the analysisscope,an
instruction-remwal bit vector (ir-veq is formed basedon the
selectedinstructionswithin the trace.IntermediatePCsfor skip-
ping chunksof the traceare also computed.The traceid, ir-veg
and intermediate PCs are loaded into the IR-predictor
(Section2.1.1) and the R-DFG circuitry is reclaimedfor a new
trace.

2.1.3 Discussion ofrice-Based Instruction-Renl

Instruction-remwal in this paperis trace-basedneaningl) confi-

denceis measuredfor a trace as a whole (single confidence
counter),and?2) back-propagtionis confinedto atrace.Both con-

ditions guarantealependencehainsare removed as a whole, or

not at all. Doing otherwiserisks remaoving a producerinstruction
but not the correspondingonsumeinstruction.Evenif both pro-

ducerandconsumeiarealwaysremovable,in practicethe IR-pre-

dictor could remove one and not the otherif separateconfidence
countersare maintained(e.g.,table aliasingcandisplacethe con-

sumers counter). This scenario results in mary spurious
IR-mispredictionslt is explicitly avoidedby maintaininga single

confidencecounterper traceand confining back-propagtionto a

trace.

Trace-based instruction-reval has serious dnbacks, hwever.

1. Often,therearestableandunstableremoval patternswithin a
trace.Thestablepatternscorrespondo dependencehainsthat
areconsistentlyremovable.Unrelated unstablepatterndilute
overall confidence ando instructions are renved as a result.

2. Tracesthemseles are unstableif they embedunpredictable
branchesWhen a traceis unstable,its confidencecounteris
rarely saturatedThus,removableinstructionsbeforeand after
the difficult branchare not removed in practice. Terminating
tracesat difficult branchesanreducethe numberof unstable
traces.But accuratetrace prediction relies on a consistent
(static) trace selection pojic

OPERAND | Mergeinstruction

3. Confining back-propagtion to a trace limits the amountof
instruction-remeal.

We believe diluted confidenceand unstabletraces are largely
responsibldor modestA-streamreductionin someof our bench-
marks (Section5). We are currently developing a more effective
instruction-remgal mechanismpot available in this paper:1) it
measuresconfidencefor instructionsindividually, so unrelated
instructionsdo not dilute confidence;2) tracesare not used,so
tracestability is not anissue;3) chainsare not confinedwithin a
small region, exceptto reduceR-DFG compl«ity if needed)
dependencechains tend to be removed together even though
perinstruction confidence counters are used.

2.2 Delay Buffer

The delaybuffer is a simple FIFO queuethat allows the A-stream
to communicatecontrol flow and data flow outcomesto the
R-stream.During nhormal operation,the A-streampushesboth a
completehistory of branchoutcomesanda partial history of oper-
andvaluesonto the delaybuffer. This is shavn in Figurel with a
solid arrav from the reorderbuffer of the A-stream(left-mostpro-
cessor)o the delaybuffer. Valuehistory is partial becausenly a
subsebf the programis executedby the A-stream.Completecon-
trol history is available, however, becausehe instruction-remwal
processnvolvespredictingall control flow first andthenmodify-
ing it so that the A-streammay skip instructions(the job of the
combined IR-predictor/trace predictdescribed in Sectioh1.1).

The R-streampops control and data flow information from the
delay buffer. This is shovn in Figurel with solid arrovs from
delay buffer to the instruction cacheand execution core of the
R-stream(right-mostprocessor)Branchoutcomedrom the delay
buffer areroutedto theinstructioncacheto directinstructionfetch-
ing. Sourceoperandraluesandload/storeaddressefom thedelay
buffer are meiged with their respectie instructions after the
instructionshave beenfetched/renamednd beforethey enterthe
executionengine.To know which values/addresseg with which
instructions, the delay buffer also includes information about
which instructionswere skippedby the A-stream(for which there
is no data flav information aailable).

Notice that neitherthe A-streamnor the R-streamusethe corven-
tional branchpredictorsin their respectie processorsThis is indi-
catedwith an open-switchsymbolbetweenbranchpredictorsand
instructioncachesn Figurel. As alreadymentionedthe IR-pre-
dictor/trace predictor provides all branch predictions to the
A-stream.For branch-relateccomputationthat is executedin the
A-stream,the correspondingoranchpredictionsare validated—
althoughvalidation itself may be speculatie due to removal of

trace
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other presumed-inééctualcomputation For branch-relate¢om-
putationthatis bypassedhranchpredictionsarepresumedorrect.
Via the delay buffer, the R-streamseesa completebranchhistory
asdeterminedby the A-stream— whetherit is corrector not —
and the coventional branch predictor is not used.

The delay bffer contents can be summarized as fofio

® Contol flow: Control flow outcomesare encodedas the
sequenceof traceids and correspondingr-vecs The ir-veg
which encodesnstructionsnot executedin the A-stream,is
used by the R-streamto match data flow outcomeswith
instructions.

® Data flow: Thereis anentryin the dataflow buffer for each
instructionexecutedin the A-stream.An entry containsoper-
and rgister names anchlues and load/store addresses.

2.3 IR-misprediction Detection and Recovery

An instruction-emaval misprediction or IR-mispredictionoccurs
when A-streaminstructionswere removed that should not have

been.The A-streamhasno way of detectingthe IR-misprediction,
thereforejt continuesnstructionretirementandcorruptsits archi-

tectural state. Two things are required to recover from an

IR-misprediction. First, the IR-misprediction must be detected
and, second the corruptedstatemust be pinpointedfor efficient

recovery actions.

We breakdown IR-mispredictiondnto two types,the first typeis
removal of mispredictecbranchesandthe secondtype is removal
of effectual writes.

1. Remeal of mispedictedbrandhes The trace predictor may
mispredicta branchand the IR-predictorremovesthe branch
from the A-stream.The R-streamwill detectthis IR-mispre-
diction becausehe branchoutcomefrom the delaybuffer will
differ from the R-streams computedbranchoutcome.l.e., it
appears as a branch misprediction in the R-stream.

2. Remaeal of effectualwrites. The IR-predictorpredictsa store
instructionis anunreferenceavrite but thestoreis actuallyref-
erencedn thefuture (or the IR-predictorpredictsthe storeis a
non-modifyingwrite butit actuallyproducesnew valueatthe
location). Remwing the store instruction causesdependent
loadsto loadanincorrectvalue,usesof theloadvaluewill pro-
ducemoreincorrectvalues etc. Thefirst incorrectsourceoper-
andvaluepoppedrom thedelaybuffer will bedetectedby the
R-streamas a value misprediction— in our implementation,
source operandalue prediction is used [17].

Thiskind of IR-mispredictiormaybedetectedy the R-stream
well afterthe storewasinitially removed. The IR-detectorcan
detecttheselR-mispredictionamuch soonerby comparingits

computedir-vecsagainst the correspondingoredictedir-vecs
— if they differ, computationwas removed that should not

have been.Thus,the IR-detectorsenesthe dual-roleof updat-
ing the IR-predictor and checking for IR-mispredictions.
Although checkingby both the R-streamand IR-detectoris

redundant,it will becomeclear why final checkingby the

IR-detector igequirrdwhen we gplain recaery, below.

When an IR-mispredictionis detected the reorderbuffer of the
R-streamis flushed.The R-streamarchitecturalstatenow repre-

sentsa precisepointin the programto which all othercomponents
in the processomare re-synchronizedThe trace predictor/IR-pre-
dictoris bacledupto the preciseprogramcounter the delaybuffer
is flushed,andthereorderbuffer of the A-streamis flushedandits
program counter set to that of the R-stream.

All that remainsis restoringthe corruptedregister and memory
stateof the A-streamsoit is consistentvith the R-streamBecause
registerstateis finite, the entireregisterfile of the R-streamis cop-
iedto the A-streamregisterfile. Themovementof data(bothregis-
ter andmemoryvalues)occursvia the delaybuffer, in the reverse
direction, as shen with dashed arwes in Figurel.

During normal operation the recovery contwoller recevescontrol
signalsandthe addressesf storeinstructionsfrom the A-stream,
the R-streamandthe IR-detectorasshavn in Figurel. The con-
trol signalsindicate when to start or stop tracking a memory
addresgonly uniqueaddresseseedto betracked).After detecting
an IR-misprediction,storesmay either have to be “undone” or
“done” in the A-stream. These twcases are described helo

®* The addressesf storesretired by the A-streambut not yet
checled/retiredby the R-streamwill needto be restoredafter
detectingan IR-misprediction.In effect, the A-stream store
mustbe“undone”sincethe R-streanhasnotyet performedhe
store. Thesestoresonly needto be tracked betweenthe time
they areretiredfrom the A-streamandthe companion(redun-
dant)storesareretiredfrom the R-streamasshavn in Figure4
(“store 17).

* Althoughall IR-mispredictionsare eventuallydetectableasa
value mispredictionin the R-stream,a virtually unbounded
numberof addressewould needto be tracked by therecovery
controllerif we did not placea “time limit” onthe detectionof
IR-mispredictionsThis is why the IR-detectorcomparegpre-
dictedir-vecsagainstcomputedr-vecs The recovery control-
ler tracks addresse®f storesretired in the R-streamand
skippedin the A-stream only until the IR-detectowverifiesthat
the storesare truly ineffectual, as shovn in Figure4 (“store
2"). Whenan IR-mispredictionis detectedall urverified, pre-
dicted-inefectualstoresare“done” in the A-streamby copying
data from the redundant locations in the R-stream.

3. TRANSIENT FAULT TOLERANCE

A formal analysisof thefault toleranceof slipstreanmprocessorss
left for futurework. For now, we informally analyzethreekey sce-
narios,shavn in Figureb5, to betterunderstangotentialfault tol-
erance.Iln Figure5, the horizontal lines representthe dynamic
instruction streamsof the A-stream and R-stream,with older
instructionson theleft. For this simpleanalysiswe assumenly a
singlefault occursandthatthefaultis ultimately manifestedasan
erroneousvalue. A single fault can affect instructionsin both
streamssimultaneously This is not a problem becausethe two
redundantly-recutedcopiesof aninstructionexecuteat different
times (time redundancy[24], therefore,a single fault that affects
bothstreamswill affect differentinstructions Sinceonly onecopy
of aninstructionis affectedby a fault, we arbitrarily choosethe
R-streamcopy, indicatedwith X’sin Figure5. An X indicatesthe
first erroneous instruction in program order

Scenaric#l in Figure5 shavs the A-streamand R-streamexecut-
ing redundantlyi.e., all instructionsoverlap and have the same
dataflow. The fault is detectablébecausehe operandof the first



store 1: executed in A-stream
store 2: skipped in A-stream

U

ROB of A-stream ——=

add store 1
(possible store-undo)

recovery controller

Delay Buffer —— ROB of R-stream ———=

R —

IR-detector

add store 2
(possible store-do)

remove store 1

remove store 2

Figure 4: Tracking memory addresses for potential recovery.

erroneousinstruction differ between A-stream and R-stream.
Without moreinformation, however, the fault is indistinguishable
from an IR-misprediction. Underthe circumstancesthe processor
must assumean IR-mispredictionsince misspeculatioris by far
the commoncase.We point out three successiely strongerfault
tolerance claims.

1. If weassumefaultcannofflip bitsin the R-streans architec-
tural state thenit doesnot matterthatfaultsandIR-mispredic-
tions are indistinguishable.Recorery succeedsusing the
R-streamstate. Under this model, faults in the pipeline are
transparentlyrecorerable.Faultsthat hit the R-streanregister
file anddatacacheareunrecwerable,andworse,undetectable
as a ault.

2. If all IR-predictionsprior the first erroneousnstructionhave
beenverified, thenthe sourceof erroris known to be a fault.
Softwareis invokedto diagnosehe systemandperformrecov-
ery operationge.g.,restart) But we default backto (1) if there
are prior unresokd IR-predictions.

3. ECCcanbeusedto protectthe R-streanregisterfile anddata
cache,n which caseall transientfaultswithin scenario#1 are
transparently reaerable.

Scenario#2 in Figure5 shavs a region of the programthatis not

executedredundantly(the A-streambypassedheseinstructions).
A transientfaultin the R-streamis undetectabldecausehereis

nothingto comparethe erroneousralueswith. Although an error
may be detectedin later, redundantly-gecutedinstructions,the
R-streamarchitecturaktateis alreadycorruptedandthe systemis

unavare of this &ct.

Scenario#3 shavs the A-streamdiverging from the R-streamdue
to anIR-misprediction anda transienffault occursafterthe diver-
gentpoint. The IR-mispredictionis detectedand subsequengrro-
neous instructions are flushed before thétfcan do damage.

In summary slipstreamprocessorgotentially improve the fault
toleranceof thechip. The systemtransparentlyecoversfrom tran-
sient faults afecting redundantlyseecuted instructions.

4. SIMULATION ENVIRONMENT

We developeda detailedexecution-drvensimulatorof aslipstream
processar The simulator faithfully models the architecture
depictedin Figurel andoutlinedin Section2: the A-streampro-
ducesreal, possibly incorrect values/addresseand branch out-
comes, the R-streamand IR-detector check the A-stream and
initiate recovery actions, A-stream state is recovered from the
R-streamstate,etc. The simulatoritself is validatedvia a func-
tional simulatorrun independentlyandin parallelwith the detailed
timing simulator [33]. The functional simulator checksretired
R-stream control flw and data flew outcomes.

The Simplescalaf3] compilerandISA areused Binariesarecom-
piled with -O3 level optimization. The Simplescalarcompiler is
gcc-basedndthelSA is MIPS-basedasaresult,programsnherit
ary inefficienciesof thegnucompilerandMIPS ISA. We usedthe
SPEC95integer benchmarksshavn in Tablel, for evaluation.
Benchmarks were run to completion.

Table 1: Benchmarks.

benchmark input dataset instr. count
compress [40000 e 2231 248 million
gcc -O3 genrecog.i -0 genrecog.s 117 million
go 99 133 million
jpeg vigo.ppm 166 million
li test.Isp (queens 7) 202 million
m88ksim  [-c < ctl.in (dcrand.big) 121 million
perl scrabble.pk scrabble.in(dictionary) 108 million
vortex vortex.in (persons.250, bendian.*)| 101 million

Microarchitecturgparameterareenumerateéh Table2. TheCMP
is composedof two corventional 4-way superscalaprocessors,
eachwith privateinstructionanddatacachesanda 64-entryROB
(a sharedevel-two cachealwayshits). A large IR-predictor/trace
predictoris usedfor accurateinstructionremoval. For all experi-
ments the IR-predictor/traceredictoruseslength-32tracesanda
resetting-counteconfidencehresholdof 32. ThelR-detectoihasa
scopeof 8 length-32traces The delaybuffer lengthis 256instruc-
tions. The recovery controller tracks ary number of store
addresses,although we obsere not too mary outstanding
addressein practice.The recovery lateny (after the IR-mispre-

Scenario #1 Scenario #2 Scenario #3
A-gream — PO
R-stream X X X

Figure5: Transient fault scenarios.



dictionis detected)s 5 cyclesto startuptherecovery pipeline,fol- For fair and direct comparisonsthe sametrace predictor is used
lowedby 4 registerrestorepercycle,andlastly 4 memoryrestores for accurate and high-bandwidthcontrol flow prediction in all

per cycle. As there are 64 generalpurposeinteger and floating three processormodels Of course,only CMP(2x64x4)usesan
point registers,the minimum recovery lateny is 21 cycles (5 + IR-predictorontop of thetracepredictor Performancés measured
64/4) if no memory locations are restored. in retiredinstructionsper cycle (IPC). IPC for the slipstreanmpro-
_ _ ] _ cessolis computedasthe numberof retired R-streaminstructions

Table 2: Microarchitecture configuration. (i.e., thefull program,countedonly once)divided by the number

single processor of cyclesfor both the A-streamand R-streamto complete(total

fetch bandwidth: execution time).
¢ 2-way interleaed to fetch full cache block The graph in Figure6 shaws the IPC improvement of
instruction |® fetch past multipleot-talenbranches in singleycle CMP(2x64x4)with respecto SS(64x4)(For a point of reference,

the IPC of SS(64x4), our base model, is given in Table3.)

cache ; -
sizefassoc/repl = 64kB/4ay/L RU CMP(2x64x4)improves performanceby 7% on average.The IPC

line size = 16 instructions

of half of the benchmarksmprove by morethan7% — Ii, vortex,

miss penalty = 12ycles perl, and m88ksimimprove by 7%, 7%, 16%, and 20%, respec-
size/assoc/repl = 64kB/4ay/LRU tively — while gccimprovesby 4% andthe otherthreeshaw little

data cache |[line size = 64 bytes or noimprovement.The significanceof this resultis thata second,

otherwise unused processoron the chip can be exploited for

miss penalty = 14ycles . . .
improving single-program performance.

reorder liffer (defwlt): 64 entries

superscalar |dispatch/issue/retire bandwidth (eleft): 4-way The performanceémprovementdue to doubling the window size
core n fully-symmetric function unitsn(= issue bandwidth) and issue bandwidth of the superscalaprocessoris shovn in
n loads/stores petycle (n = issue bandwidth) Figure7. On average,SS(128x8)improves performancedby 28%.

address generation = §ae We feel the slipstream paradigm has competitiotential.

execution |memory access = ¥cles (hit)

1. With the initial and relatively unexplored slipstreamimple-

latencies  |integer ALU ops = 1 ycle mentation,we achiere one-fourththe IPC-performancegains
comples ops = MIPS R10000 latencies of the larger superscalaprocessarAnd if superscalacom-
slipstream components plexity is consideredthen a CMP composedof two small

superscalaprocessorsvill potentiallyhave afastercycle time
than one lage superscalar processor

trace predictor (ybrid):
e 216 entry path-based pred.: 8 traces in path histor

IR- i . . . . . .
predictor | 216.entry simple pred.: 1 trace in path history 2. A CMP with slipstreamingprovides more functionality and
resetiing-counter confidence threshold = 32 flexibility than a single superscalaprocessarFor example,
——— i dependingn theload of the machine the extra processomay
IR-detector | 2C€ length (R-DFG size) = 32 instructions be usedto run anotherjob or cooperatewith the otherproces-
scope = 8 traces/256 instructions sor on a single jab
data flav buffer: 256 instruction entries
delay buffer e frace-d ir-veg pairs 3. The peakbandwidthof CMP(2x64x4)is only 4 IPC, hence
number of outstanding store addresses = unconstrajined thereis I(_essroomfo_r |mpr9vementthanW|th SS.(128X8)'T.h|S
_ _ i suggestsmplementinga slipstreanprocessousingan 8-wide
recovery latenyg (after IR-misprediction detection): SMT processomwhich we lese for future vork.
recosery ® 5 gycles to start up regery pipeline
controller | ® 4 register restores peycle (64 rgs performed first)
4 d f d d 20%
memory restores peyde (mem performed second) < CMP(2x64x4)
® [0 minimum lateng (no memory) = 21ycles g
2 15% ]
5. RESULTS 5
>
The performance of three models is presented. 2
EE) 10% —
® SS(64x4)>— A singlecopy of the programis run on onecon- 2
ventional 4-vay superscalar processor with 6@BRentries. g_
E 5% — —
® SS(128x8)— A singlecopy of the programis run on onecon- Q
ventional 8-vay superscalar processor with 128MBRentries. <
. . . . 0% T T T T T T T 1
®* CMP(2x64x4)— This is a slipstreamprocessousinga CMP comp gcc  go jpeg li  m88K perl vortex

composed of tw SS(64x4) cores.

Figure 6: Performanceof CMP(2x64x4)(slipstreamprocessor)
with r espect to SS(64x4).
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Figure 7: Performance of SS(128x8) with respect to SS(64x4).

The uppermostgraphin Figure8 shaws the fraction of dynamic
instructionsremoved from the A-streamfor eachof the bench-
marks. Each bar is broken down into the sourcesof instruc-
tion-removal.

* BR:branch instruction.

*  WW: A write followedby awrite to thesameocation,with no
intervening reference.

® SV Writing thesamevalue to a location.

* P:i{BR | WW | SV} Instructionsthat were removed due to
backpropagtion from other removed instructions. These
instructionsinherit ary combinationof BR, WW, andSV sta-
tus.

Thenumberof remoredinstructionscorrelatesloselywith perfor-
manceimpravement.Nearly 50% of m88ksin's instructionswere
removed andit hasthe largestperformancemprovement(20%).
Successiely fewer instructionswere removed in perl, vortex, i,
and gcc — 20%, 16%, 10%, and 8% of all instructionswere
removed, respectiely — and performancereflectsthis. On aver-
age,thethreelargestsourcesf instructionremoval are BR (33%
of theremwedinstructiong, SV (30%),andP:BR(27%).We have
obsenedthatWW andSV tendto occursimultaneoushandprior-
ity is given to SV when accounting.

The lowermostgraphin Figure8 shons what happensvhenonly
branchinstructions(BR) andtheir computatiorchains(P: BR) are
candidatedor removal, i.e., ineffectual writes are not removed.
This is relevant becauséranchpredictabilityis morelikely to be
influencedby algorithm than by compilet whereasthe compiler
may have more influenceon ineffectual writes. Interestingly the
fraction of removed instructions increasessubstantiallyfor all
benchmarksxcept m88ksim whosefraction drops from half to
one-quarterThe resultsare counterintuitve becausehereis less
opportunityfor instruction-remwal whenineffectualwritesarenot
consideredDiluted confidence discussedn Section2.1.3, may
explain the results.With fewer candidatenstructionsfor removal,
thereis alsolesschancehatunrelatednstructiongdilute the confi-
denceof consistently-remeable branchesOverall confidenceis

higherandmoreinstructionsareremovedin practice,despiteless
total opportunity The average IPC improvement with only
branch-remweal remainsat 7%, but perbenchmarkPCs change:
perl (16%),li (11%),m88ksim(11%),vortex (7%), andycc (5%).

branches and ineffectual writes removed

50%

4506 | ®P: SV.WW,BR -
HP: SV,WW ||

40% 7. p: sv,BR

35% +HmP: SV

30% P: WW,BR

HP: WW

0f

25% P: BR

20% 1 gy

15% +EBWW -___ @ = =

10% 4 ¥ BR I WE—

5% 1 —

fraction of dynamic instructions

0% T T T T T T T !
comp gcc go jpeg li
only branches removed

m88K perl vortex
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Figure 8: Breakdown of removed A-stream instructions.

Branchmispredictionger1000instructionsfor eachbenchmarks
providedin Table3. A key obsenationis thatinstruction-remwal
is mostsuccessfufor highly-branch-predictablbenchmarksThe
gccbenchmarks aninterestingcase Althoughits branchmispre-
diction rateis similarto li’s, IR-predictionis moresuccessfulvith
li. Unstabletraces discussedh Section2.1.3,mayexplainthedis-
crepanyg. We hypothesize gc, more than li, has consis-
tently-remwable branchesand unpredictablebranchesgrouped
together in traces. The traces are unstable and the consis-
tently-remwable branchesare not removed in practice.Using a
non-trace-based IR-predictor could fix the problem.

Thetracepredictors updateateng (whichis accuratelynodeled)
increasesvith slipstreamingComparinghe secondandthird rows
of Table3, the effect on branch mispredictionrate is not too
severe, in fact, delayedupdatesreducethe rate slightly for i,
m88ksimandperl. The confidencehresholdof 32 resultsin fewer
than 0.05 IR-mispredictiongper 1000 instructions.And the aver-
agelR-mispredictiorpenaltyis atmost26 cycles,closeto themin-
imum of 21 cycles, which implies only a handful of memory
locations need to be restored after an IR-misprediction.



Table 3: Misprediction measurements.

comp gce go jpeg li m88k perl vortex
SS(64x4) . II?C 1.72 2.69 2.15 3.24 2.88 2.82 3.08 3.24
branch misp./1000 ins}r16 6.4 11 4.1 6.5 1.9 2.0 11
branch misp./1000 insfr16 6.6 11 4.2 6.2 1.8 1.9 11
CMP(2x64x4)|  IR-mispredictions/1000 ins{r0.03 0.03 0.02 0.01 0.02 0.03 0.02 0.05
avg. IR-misprediction penalfy22 23 22 22 23 24 24 26

6. RELATED WORK

Advanced-stram/Redundant-&am Simultaneoudviultithreading
(AR-SMT) [24] is basedon the realizationthat microarchitecture
performancetrendsand fault toleranceare related. Time redun-
dany — runninga programtwice to detecttransientfaults— is
cheapeithan hardware redundang but it doublesexecutiontime.
AR-SMT runsthe two programssimultaneoush37] but delayed
(via the delaybuffer), reducingthe performanceoverheadof time
redundanyg. Resultsare comparedby communicatingall retired
A-streamresultsto the R-stream,and the R-streamperformsthe
checksHere,the R-streameveragesspeculatiorconcept§17] —
the A-streanresultscanbeusedasideal predictionsThe R-stream
fetches/gecuteswith maximum efficiengy, further reducingthe
performanceoverheadof time redundang. And the methodfor
comparingthe A-streamandthe R-streanis corvenientlyin place,
in the form of misprediction-detectiorhardware. In summary
AR-SMT leveragesthe underlying microarchitectureto achieve
broadcoverageof transienfaultswith low overheadbothin terms
of performance and changes to tikestng design.

DIVA [2] and SRT [22] aretwo other examplesof fault-tolerant
architectureslesignedor commodityhigh-performancenicropro-
cessorsDIVA detectsa variety of faults,including designfaults,

by usinga verified checler to validatecomputatiorof the comple

processocore.DIVA leveragesan AR-SMT technique— thesim-

ple checleris ableto keeppacewith the coreby usingthevaluesit

is checkingaspredictions SRT improveson AR-SMT in avariety
of ways, including a formal and systematictreatmentof SMT

applied to &ult tolerance (e.gsphees of eplication).

Researcherhave demonstrateda significant amountof redun-
dang, repetition,and predictability in generalpurposeprograms
[6,9,10,17,18,19,30,32T his prior researciforms a basisfor cre-
ating the shorterprogramin slipstreamprocessorsA technical
report[25] shaved 1) it is possibleto ideally constructsignifi-
cantly reducedprogramsthat producecorrectfinal output,and?2)
AR-SMT is a comenient gecution model toxloit this property

Tullsenet. al. [36,37] and Yamamotoand Nemirovsky [39] pro-
posed simultaneous multithreading for flexibly exploiting
thread-l@el andinstruction-level parallelism.Olukotunet. al. [20]
motivate using single-chip multiprocessors.

Fargy et. al. [8] proposedesolvingbranchmispredictionsarly by
extracting the computationleadingto branchesZilles and Sohi
[41] similarly studiedthe computationchainsleadingto mispre-
dicted branchesand loadsthat missin the level-two cache.They

suggestdentifying a difficult subsebf the programfor pre-execu-
tion [27,28], potentially prefetchingbranchpredictionsand cache
lines that would otherwisebe mispredictionsand cachemisses.
Pre-eecution typically involves pruning a small kernel from a
larger programregion and running it as a prefetchengine[26].

RothandSohi[28] developeda new paradigmcalledData-Driven
SpeculativeMultithreadingthatimplementspre-eecution.Rather

thanspavn mary specializedkernelson-the-fly our approactuses
a single, bona fide program (A-stream).That is, the A-streams
contet is persistenindredundantvith the R-streamywith several
key adwantagesFirst, we avoid the conceptualand possiblyreal
compleity of forking private contexts, within which the special-
izedkernelsmustrun. SecondZilles pointsout theremay be diffi-
culty in binding prefetchedpredictionsto fetchedbrancheq41],
whereas the one-to-one correspondencebetween redundant
instructionsin the A-stream and R-streamavoids this problem
entirely Third, redundanprogramscanbe exploited for transient
fault tolerance.

Speculatre multithreading architectures [e.g.,1,7,21,33,34,35]
speedup asingleprogramby dividing it into speculatrely-parallel
threadsThe speculatiormodelusesonearchitectural context and
future threadsare spavned within temporary private contets,
eachinheritedfrom the precedingthreads context. Futurethread
contets aremeigedinto the architecturakontect asthreadscom-
plete.Our speculatiomodelusesedundanarchitecturatontexts,
so no forking or memging is needed And strictly speakingthere
are no dependencesbetween the architecturally-independent
threads rather outcomesare communicatechs predictionsvia a
simple FIFO queue.Register and memory mechanismsof the
underlying processorare relatively unchangedby slipstreaming
(particularlyif thereis an existing interfacefor consumingvalue
predictionsat the renamestage).In contrast,speculatre multi-
threading often requires elaborateinter-thread register/memory
dependencenechanismsBesidesperformance using redundant
contets addsothervalueto the chip, i.e., fault tolerance We are
not adwcating one kind of multithreadingmodel over another
rather we are proposinganotheralternatve and pointing out its
novel implications.

Runningbackgrounadhreadsto performsomefunction on behalf
of the primary programis increasingn popularity SSMT[5] is a
genericapproachn which a subordinatehreadmonitorseventsin
the primary thread (e.g., mispredictionsand cache misses)and
adjustshardware component¢o compensateandoptimize perfor-
mance.Subordinatehreadsalsoallow exceptionhandlingto pro-
ceed in parallel with code after thecepting instruction [40].

TheDataScalaparadigm{4] runsredundanprogramson multiple
processoeand-memorycoresto eliminate memoryreadrequests.
DataScalartrades relatively inexpensve computing power for
reduced memory tré€.

7. CONCLUSIONSAND FUTURE WORK

Making effective useof a billion transistordgs a major challenge.
Simultaneousnultithreadingandchip multiprocessingayof sub-
stantially in this regard, becauseexisting parallelism can be
migratedfrom the systemlevel to the chip level relatively easily
Even larger payofs arepossibleif the sametransistorsarereused
for single-progranperformanceand functionsnormally resered



for nichecomputersTheslipstreanparadigmallows the operating
systemto flexibly chooseamongmultiple operatingmodesbased
on systemand userrequirementsThe requirementsnay include:
high job throughputand parallel-programperformance(corven-

tional SMT/CMP), improved single-programperformanceand
reliability (slipstreaming)pr fully-reliable operationwith little or

no impact on single-program performance (AR-SMT TBER

A slipstreanmprocessosimultaneouslyunstwo copiesof the pro-

gram.Oneof the programgA-stream)alwaysrunsslightly ahead
of the other(R-stream)The R-streamis monitoredfor ineffectual

and branch-predictableomputation,and the information learned
is usedto speculatiely but accuratelyreducethe A-stream.Out-

comesfrom the A-streamare communicatedo the R-streamThe

R-streamusesthe outcomedo executemoreefficiently and,at the

sametime, validatethe speculatie A-stream.The two programs
combinedinish soonetthaneitherwould alone.A detailedbut rel-

atively-uneplored implementationdemonstratesubstantialper-

formance impreements are possible, 7% oreeage.

The shorterprogramis a subsetof the full programandthis par-
tial-redundany is transparentlyeveragedor detectingandrecov-
ering from transienthardwarefaults. The importanceof providing
reliability with low overhead— bothin termsof designchanges
and performance— cannotbe overstated For example,a recent
conferencepanel[11] debatedthe problem of using commecial
off-the-shelfcomponentgCOTS) in reliable applications.Com-
modity componentgreinexpensve andhigh-performancein part
becausethey lack fault tolerance— therein lies the quandary
While software is currently the larger problem, future chips are
susceptible due to technology and microarchitecture trends.

Thereare mary future researchopics for slipstreamprocessors.
Below, we discuss some of the more pressing topics.

® We needa betterunderstandingf slipstreamperformanceo
identify bottlenecksand ultimately produce more effective
A-streamsA high priority is determiningheamountandqual-
ity of instruction-remwal neededo improve performanceand
then deeloping efective IR-predictors based on the results.

® Basicmicroarchitecturgesearchs neededo develop mecha-
nismsfor eachof the new slipstreamcomponentsexplore the
designspace,and optimize the componentdor both practical
implementatiorand good performanceWe alsowantto dem-
onstratethe new componentsnterfaceto a corventionalpipe-
line without fundamentally reganizing it.

® Slipstreamingneedsto be implementedon an SMT coreand,
in generalwe shouldevaluatemultiple CMP/SMT configura-
tions. SMT introducesnew problems,suchascompetitionfor
resources.Adaptively turning on/off slipstreamingmay be
neededso performances not degradedwhenthe A-streamis
only slightly reduced.Adaptiity is alsousefulin a CMP, to
determinewhetheror notthe secondPE shouldinsteadbeused
for an independent program.

® For reliability, we needto formally analyzefault coverageand
also improe coverage under partial-redundgnmonstraints.

® The currentslipstreammodel,dueto processeplication,has
mary system-lgel issueghatneedto beaddressefcoherence
andconsisteny, O/S support,interrupts,l/O, etc.). For exam-
ple, we are looking at ways of reducing memory overhead
while retaining the simplicity of softare memory renaming.
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