
A Study of Slipstream Processors

Abstract

A slipstreamprocessorreducesthe lengthof a running
programby dynamicallyskippingcomputationnon-essen-
tial for correct forward progress.Theshortenedprogram
runs fasteras a result,but it is speculative. Soa second,
unreducedcopy of the program is run concurrently with
andslightly behindthereducedcopy— leveraging a chip
multiprocessor (CMP) or simultaneousmultithreading
(SMT).Theshortprogrampassesits control anddataflow
outcomesto the full program for checking. And as it
checks the short program, the full program fetches and
executesmoreefficientlydueto havinganaccuratepicture
of the future. Both programsare spedup: combined,they
outperform conventional non-redundant execution.

We study slipstreaming with the following key results.

1. A 12% average performanceimprovementis achieved
by harnessingan otherwiseunused,additionalproces-
sor in a CMP. Slipstreamingusingtwo smallsupersca-
lar coresoftenachievessimilar instructions-per-cycle
as one large superscalar core, but with a potentially
faster clock and a more flexible architecture.

2. A majority of the benchmarksshowsignificantreduc-
tion in the short program (about50%). Slipstreaming
usingan 8-waySMTprocessorimprovestheir perfor-
mance from 10% to 20%.

3. For some benchmarks, including gcc, performance
improvementis due to the short program resolving
branch mispredictions in advance. Others benefit
largely due to value predictionsfrom the short pro-
gram,andtheeffectis notalwaysreproduciblebycon-
ventional value prediction tables.

4. As execution bandwidth is increased,slipstreaming
provides less of a performanceadvantage — unless
instructionsare removed in the short programbefore
they arefetched. A simpleprogramsequencingmecha-
nism is developed to bypass instruction fetching.

1.  Introduction

Theslipstreamparadigm[21,27] proposesonly a frac-
tion of thedynamicinstructionstreamis neededfor a pro-
gramto make full, correct,forwardprogress.For example,
some instruction sequenceshave no observable effect.
They produceresultsthatarenot subsequentlyreferenced,
or resultsthatdo not changethestateof themachine.And
then there are instruction sequenceswhose effects are
observable, but the effects are invariably predictable.
Computationinfluencingcontrol flow is the mostnotable
example.

Ineffectualandbranch-predictablecomputationcanbe
exploited to reduce the length of a running program,
speedingit up. Unfortunately, we cannotknow for certain
what instructionscan be validly skipped.Constructinga
shorterprogramis speculative and,ultimately, it mustbe
checkedagainstthe full programto verify it producesthe
same overall effect.

Therefore,a slipstreamprocessorconcurrently runs
two copiesof theprogram,leveragingeithera single-chip
multiprocessor(CMP) [17] or asimultaneousmultithread-
ing processor(SMT) [28,31] (theuserprogramis instanti-
atedtwice by the operatingsystemandeachcopy hasits
own context). Oneprogramalwaysrunsslightly aheadof
the other: the leading program is called the advanced
stream, or A-stream,andthetrailing programis calledthe
redundantstream, or R-stream.Hardware monitors the
R-streamand detects1) instructionsthat repeatedlyand
predictablyhave no observable effect (e.g.,unreferenced
writes,non-modifyingwrites)and2) brancheswhoseout-
comes are consistently predicted correctly. Future
instancesof the ineffectual instructions,branchinstruc-
tions,andthe computationchainsleadingup to themare
speculatively removedin theA-stream— but only if there
is high confidencecorrect forward progresscan still be
made, in spite of removing the instructions.

The reducedA-stream fetches,executes,and retires
fewer instructionsthan it would otherwise,resultingin a

Zach Purser Karthik Sundaramoorthy Eric Rotenberg

North Carolina State University

Department of Electrical and Computer Engineering

Engineering Graduate Research Center, Campus Box 7914, Raleigh, NC 27695

{zrpurser, ksundar, ericro}@ece.ncsu.edu, www.tinker.ncsu.edu/ericro/slipstream



fasterprogram.To verify that theA-streammakescorrect
forward progress,all control and dataflow outcomesof
the A-streamare passedto the R-stream.The R-stream
checkstheoutcomesagainstits own and,if a deviation is
detected,the R-stream’s architectural state is used to
selectively repair the A-stream’s corruptedarchitectural
state (an infrequent event).

A key point is the R-streamusesthe outcomesit is
checking as predictions [20]. This has two advantages.
• First, the R-streamfetchesand executesmore effi-

ciently due to having near-ideal predictionsfrom the
A-stream. Thus, although the unreducedR-stream
retires more instructions, it keeps pace with the
A-stream and the two programs combined finish
soonerthana singlecopy of the programwould. The
slipstreamprocessor’s approachof speedingup a sin-
gle program via redundancy is analogousto “slip-
streaming” in car racing, where two cars race
nose-to-tail to increase the speed ofboth cars [19].

• Second,by using A-streamoutcomesas predictions,
the R-stream leverages existing speculationmecha-
nismsfor checking theA-stream. Conventionalproces-
sors typically have mechanismsin place to check
control flow speculation,and future processorsmay
incorporatevaluepredictionandmechanismsto check
data flow speculation.

Anotherbenefitof slipstreamingis improvedreliability.
Transientfaults that affect redundantly-executedinstruc-
tionsaretransparentlydetectableandrecoverable[20,27].
Fault detection/recovery is transparentbecausetransient
faultsareindistinguishablefrom prediction-induceddevi-
ations.

1.1.  Contributions

Thispaperis a follow-upstudyof our recentslipstream
proposal [27] and makes four new contributions.

1. Understanding slipstreaming.

Slipstreamingcanbeexplainedandunderstoodin sev-
eralways.We describetwo differentinterpretationsof
slipstreaming,qualitatively explain where its perfor-
manceimprovement is derived from, and exposeits
limitations.Insightinto thelimitationsof slipstreaming
allows us to focus efforts on areasthat are likely to
payoff.

More comprehensive experimental results provide
importantinsight andconfirm the expectationsof our
qualitative arguments.Multiple CMP configurations
are explored — examining multiple CMP configura-
tions is relevant becauseconclusionschangeas the
processor cores scale.

2. Slipstreaming using SMT processors.

Slipstreamingwas not previously implementedon an
SMT processor. Insufficient reductionin the A-stream
madeSMT-basedslipstreamingless viable. Artif acts
of our previous instruction-removal mechanismhave
beenaddressed(seenext item below), so SMT-based
slipstreamingis now viable and this paperprovides
results.

3. More effective instruction-removal.

Previously, removal-confidencewas measuredfor a
groupof instructionsasawhole,i.e., for a trace[27]. A
trace-basedapproachensuresproducerinstructionsare
not removed from the A-streamunlesscorresponding
consumerinstructionsarealsoremoved.Not enforcing
this constraint leads to spurious instruction-removal
mispredictions.

Trace-basedremoval has severe limitations, however
[27]. Frequently-varying removal patterns within a
tracecausethe overall confidenceto be low, despite
stablepatternsamongcertaindependencechains.As a
result,no instructionsin the traceareremovedeven if
many are removable. And although traces ensure
dependencechainsare removed together, chainsare
confined to the same trace.

Our new approachmeasuresconfidencefor instruc-
tions individually, so unrelated instructions do not
dilute confidence.Yet dependencechainsstill tend to
be removed together and chains are not confined
within a small region.

4. Bypassing instruction fetching.

TheA-streamis mosteffective whenboth thenumber
of instructions fetched and executed are reduced.
Reducingthenumberof fetchedinstructionsrequiresa
different sequencingmodel than conventionalbranch
predictorscurrently provide. A conventional branch
predictor is modified in a novel and simple way to
bypass fetching of large, dynamic instruction
sequences.

1.2.  Paper outline

The paperis organizedas follows. Section2 develops
modelsfor understandingslipstreamingandexaminesits
fundamental limits. Section3 reviews the slipstream
microarchitecture and introduces the new instruc-
tion-removal mechanisms.In sections4 and5, thesimula-
tion environmentand resultsare presented,respectively.
Relatedwork is discussedin Section6 andconclusionsin
Section7.



2.  Understanding slipstreaming

We presenttwo different interpretationsof slipstream-
ing to betterunderstandthe paradigm.In subsection2.1,
the A-streamis interpretedas the “main” threadand the
R-stream“assists”the A-stream.In subsection2.2, roles
are reversed:the R-streamis the “main” threadand the
A-stream“assists” the R-stream.Actually, the two pro-
gramsin aslipstreamprocessorarefunctionallyequivalent
and mutually beneficial, so either interpretation is valid.

We next examine limits of the paradigmto motivate
removing instructionsfrom the A-streambeforethey are
fetched.Finally, we considerother ways of reducingthe
A-stream to highlight the conceptualsimplicity of our
chosen approach.

2.1.  R-stream: a fast checker
The A-streamdoesnot explicitly derive any perfor-

mancebenefit from the R-stream.Rather, the R-stream
checks(andoccasionallyredirects)the A-streamwithout
slowing it down. This is possiblebecausechecking is
inherently parallel [13,20]. As depictedin Figure1, the
R-stream is a fast checking assist to the A-stream
[20,21,2].

FIGURE 1. A fast checking assist to the A-stream.

2.2.  A-stream: a program-based predictor
Alternatively, theA-streamis a program-basedpredic-

tor for the R-stream [7,23,33,5]. For example, the
A-stream assiststhe performanceof the R-streamby
improving its branchpredictionaccuracy. Dynamicbranch
predictionsare classifiedinto two groups,confidentand
unconfident[10], asshown in Figure2. Confidentbranch
predictionsare more likely to be correct and the corre-
spondingbranchesandcomputationfeedingthe branches
are removed from the A-stream. Confident predictions
representthemostaccuratepredictions,therefore,remov-
ing thecomputationneededto verify themis sound,andit
allows theA-streamto focusinsteadon verifying unconfi-
dentbranchpredictions.As a result,manybranch mispre-
dictionsare resolvedby theA-streamin advanceof when
the R-stream reaches the same point.

TheA-streamalsoservesasanaccuratevaluepredictor
[13] for the R-stream. Although only the results of
A-stream-executedinstructionsare available, the predic-
tionsarepotentiallymoreaccuratethanthoseprovidedby
conventionalvaluepredictors:A-stream“predictions” are

producedby programcomputationas opposedto being
history-based.Perhapsthereis someoverlap in what the
A-streamprovidesandwhat a conventionalvaluepredic-
tor couldprovide.Initial investigationsin Section5.3indi-
catesomebenchmarks(e.g.,gcc) benefitprimarily from
the short program resolving branch mispredictionsin
advance;othersbenefit largely due to value predictions
from theA-stream,andtheeffect is not alwaysreproduc-
ible by conventional value prediction tables. However,
comprehensive comparisons are left for future work.

FIGURE 2. A combined predictor/pr ogram for
impr oving R-stream branc h prediction accurac y.

2.3.  Importance of bypassing instruction fetch
Prior researchhas shown that in the absenceof any

resourceconstraints,performanceis generallydictatedby
mispredictedbranches[30,11].That is, in anidealproces-
sor with unconstrainedfetch and execution bandwidth,
mispredictedbranchesandtheirdependencechainstendto
dominatethe critical path of the program.The A-stream
cannotreducethis critical path becausethe dependence
chainsof mispredictedbranchesarenot safelyremovable
from the A-stream— only correctly predictedbranches
aresafelyremovable.TheA-stream,like a full versionof
the program, encountersthe same mispredictionsand
resolves themin programorder. Therefore,slipstreaming
is not likely to provide performanceadvantagesif fetch
and execution bandwidth are unconstrained.

Understandingslipstreaming’s limitationsenablesusto
focus researchefforts on areasthat are likely to pay off.
For example,we canreasonabouttherelative importance
of bypassing instruction fetch and execution in the
A-stream.Consideraslipstreamprocessorthatreducesthe
numberof instructionsexecutedin the A-stream,but not
thenumberof instructionsfetched. TheA-streamrunson
onecoreof a CMP andtheR-streamon a secondcore(for
example).As raw executionbandwidthof both coresis
increased,theA-streamstartsto loseits edgewith respect
to the R-stream.Instructionfetchingbecomesthe bottle-
neckand,from a practicalstandpoint,theA-streamis not
truly reducedif the numberof fetchedinstructionsis not
reduced.

Fortunately, it is possibleto bypasseven instruction
fetching in the A-stream. The A-stream has a distinct
advantagein this regard becauseraw instruction fetch
bandwidthcannotbe aseasilyextendedasraw execution
bandwidth,e.g.,dueto takenbranchesandbranchpredic-
tor bandwidth.

R-stream

A-stream

Checker

unconfident

confident
predictions

predictions
R-streamA-stream verified

unverified

Predictor



2.4.  Other ways of reducing the A-stream

One method for reducing the A-stream is removing
branch-predictablecomputation. Another possibility is
removing value-predictable computation. As was
describedin Figure2 in the context of branchprediction,
anoverall bettervaluepredictormaybepossibleby com-
bining a conventionalvaluepredictorwith the A-stream:
the value predictor identifies and removes highly
value-predictablecomputation,and the A-streamfocuses
insteadonhard-to-predictvalues.TheR-streamobservesa
streamof accuratevaluescomprisedof both unverified
confident values and computed values.

Thisapproachcomplicatesthemechanismfor reducing
the A-stream,however. For the A-streamto make correct
forward progress,the effects of removed, value-predict-
ablecomputationmustbe emulatedby updatingthe state
of the A-stream with values directly, similar to
block/trace/computationreuse [9,8,6] but without the
reusetest.This is why we focusedinitially on thespecial
casesof ineffectual and branch-predictablecomputation:
this computationcan be literally removed (i.e., replaced
with nothing),andonly the programcounterneedsto be
updated to skip instructions.

3.  Microarchitecture description

A slipstreamprocessorrequirestwo architecturalcon-
texts,onefor eachof theA-streamandR-stream,andnew
hardwarefor directinginstruction-removal in theA-stream
and communicating state between the threads. A
high-level block diagramof a slipstreamprocessorimple-
mentedon top of a two-way chip multiprocessoris shown
in Figure3, althoughan SMT processormight also be
used.Theshadedboxesshow theoriginalprocessorscom-
prising the multiprocessor. Eachis a conventionalsuper-
scalar/VLIW processor with a branch predictor,
instructionand datacaches,and an executionengine—
includingtheregisterfile andeitheranin-orderpipelineor
out-of-order pipeline with reorder buffer.

Slipstreaming requires four new components.

1. The instruction-removal predictor, or IR-predictor, is a
modified branch predictor. It generatesthe program
counter(PC) of the next block of instructionsto be
fetchedin theA-stream.Unlike a conventionalbranch
predictor, however, the predictednext PC may reflect
skippingpastanynumberof dynamicinstructionsthat
a conventional processorwould otherwisefetch and
execute. Also, the IR-predictor indicates which
instructionswithin a fetched block can be removed
after the instruction fetch stage and before the
decode/dispatch stage.

2. The instruction-removal detector, or IR-detector, mon-
itors the R-streamand detectsinstructionsthat could
have beenremoved from the program,andmight pos-
sibly be removed in the future. The IR-detectorcon-
veys to the IR-predictor that particular instructions
shouldpotentially be skippedby the A-streamwhen
they arenext encountered.Repeatedindicationsby the
IR-detectorbuild up confidencein the IR-predictor,
andthepredictorwill remove futureinstancesfrom the
A-stream.

3. The delay buffer is usedto communicatecontrol and
data flow outcomes from A-stream to R-stream [20].

4. The recovery controller maintains the addressesof
memorylocationsthat arepotentiallycorruptedin the
A-streamcontext. A-streamcontext is corruptedwhen
the IR-predictor removes instructionsthat shouldnot
havebeenremoved.Uniqueaddressesareaddedto and
removedfrom therecoverycontrollerasstoresarepro-
cessed by the A-stream, the R-stream, and the
IR-detector. Thecurrentlist of memorylocationsin the
recovery controller is sufficient to recover the
A-streammemorycontext from the R-stream’s mem-
ory context. Theregisterfile is repairedby copying all
values from the R-stream’s register file.

FIGURE 3. Slipstream processor using a two-way
chip m ultipr ocessor [27].

The diagramin Figure3 shows the A-streamon the
leftmostcoreandtheR-streamon therightmostcore.This
is arbitraryanddoesnot reflectspecializingthetwo cores.
A real designwould have onecore that flexibly supports
either the A-streamor R-stream.In any case,there is a
clearsymmetrythatmakesdesigningasinglecorenatural.
In both cores,thereis an interfaceto the fetch unit that
overrides the conventional branch predictor, indicated
symbolicallywith an openswitch anda secondinterface
to the fetch unit. Likewise, both coresshow symmetric
interfaces to and from the execution pipeline.

Execute
Core

Buffer
Reorder

D-cache

Branch
Pred. I-cache I-cache

Branch
Pred.

D-cache
Execute

Core

Buffer
Reorder

A-stream R-stream

Controller
Recovery

Delay Buffer

IR-predictor

IR-detector

from IR-detector

to IR-predictor



3.1.  Creating the shorter program

3.1.1.  Base IR-predictor. The IR-predictor resemblesa
conventionalbranchpredictor. In thispaper, theIR-predic-
tor is indexedidenticallyto agsharepredictor[15], i.e.,an
index is formedby XORing thePCandtheglobalbranch
history bits. Eachtable entry containsinformation for a
single dynamic basic block.
• Tag: This is thestartPCof thebasicblock andis used

to determinewhetheror not the entry containsinfor-
mation for the desired block.

• 2-bit counter: If theblockendsin aconditionalbranch,
the 2-bit counter predicts its direction.

• Confidencecounters. There is a resettingconfidence
counter [10] for each instruction in the block. The
countersare updatedby the IR-detector:a counteris
incremented if the corresponding instruction is
detectedasremovable,otherwisethecounteris resetto
zero.If a counteris saturated,thenthe corresponding
instructionwill beremovedfrom theA-streamwhenit
is next encountered.

Every fetch cycle, the IR-predictorsuppliesa branch
prediction and an instruction-removal bit vector to the
A-stream fetch unit. The branch prediction is used to
selecta PC for the next fetch cycle; potentialtarget PCs
arestoredwithin existing structuresof theprocessor, e.g.,
pre-decodedtargetsin the instructioncacheor branchtar-
get buffer.

The instruction-removal bit vector reflectsthe stateof
theconfidencecountersfor thebasicblock beingfetched.
A bit is set in the vector if the correspondingconfidence
counter is saturated,and this directs the fetch unit to
remove the correspondinginstructionfrom the A-stream.
Thus, although all instructions in the basic block are
fetched,potentiallymany instructionsareremovedbefore
the decode stage of the pipeline.

In Figure3, theIR-predictoris shown asa new compo-
nentoutsidetheprocessorcorethatoverridestheconven-
tional branch predictor. Alternatively, since the
IR-predictoris built on top of a conventionalbranchpre-
dictor, the core’s predictorand the IR-predictormay be
integrated.

3.1.2.  Improved IR-predictor: bypassing instruction
fetch. With the base IR-predictor described in
Section3.1.1,theA-streamis not reducedin termsof the
number of instructions fetched. Only the number of
instructionsexecutedis reduced.If executionbandwidthis
relatively unconstrained,then the A-streamwill not be
effectively reduced.

TheA-streamis moreeffective if fewer fetch cyclesare
expendedon it thanon the full program.In Figure4, we

show an exampleof how the numberof fetch cyclescan
potentially be reduced. Four basic blocks, labeled A
through D, are to be predictedand fetched.The corre-
sponding table entries in the IR-predictor are shown;
shadedentriesindicatethat all of the confidencecounters
are saturatedand the entire basicblock is predictedfor
removal. The baseIR-predictor predicts each block in
sequence,requiring four cycles. During two of these
cycles,the instructioncachefetchesinstructionsandthen
throws themall away(basicblocksB andC). Clearly, only
two fetch cycles are required, but it is not known in
advancethatinstructionfetchingof blocksB andC canbe
bypassed.

FIGURE 4. Reducing fetch cycles in the A-stream.

Interestingly, theeffect we want to produce— bypass-
ing basicblocks— is the sameeffect producedby taken
branches. The improved IR-predictor shown on the
right-hand side of Figure4 exploits the analogy. The
improved predictor “converts” the branch terminating
block A into a taken branch whose target is block D.
Below, we considertwo possiblewaysto implementthis
conversion.
• Two additional pieces of information are stored in

block A’s tableentry. First, the predicteddirectionsof
any bypassedbranchesmustbestored,in this case,the
predicteddirectionsof thebranchesin blocksB andC.
The reasonis all control flow information must be
pushedonto the delay buffer to be consumedby the
R-stream,in spite of partially bypassinginstruction
fetchingin theA-stream.Second,a targetaddressmust
bestored,in this case,thestartPCof blockD. Thetar-
get addressoverrides the next PC computationper-
formed by the fetch unit. The additional information
(bypassed predictions and corresponding target
address)is accumulatedfor block A’s entry as the
IR-detectorsequentiallyupdatesthe entriesof blocks
B, C, andD.

• Effectively, the branchterminatingblock A is now a
multi-way branch.It hasmorepotentialtargetsthanits
original takenandfall-throughtargetsbecauseit inher-
its the targets of skipped blocks. The processor’s
branchtargetbuffer maybemodifiedto storemultiple
targets per branch. Now, dynamically-createdtarget
addressesdo not have to bestoredin the IR-predictor.

A

B

C

B

D D

C

A

base IR-predictor improved IR-predictor



The bypassedpredictionsstill needto be storedand,
conveniently, this path information is sufficient to
selectthe appropriatetarget addressfrom the branch
target buffer.

3.1.3.  IR-detector. The IR-detector consumes retired
R-streaminstructions,addresses,andvalues.The instruc-
tions are buffered and, basedon data dependences,cir-
cuitry among the buffers is dynamically configured to
establishconnectionsfrom consumerto producerinstruc-
tions.In otherwords,a reversedataflow graph(R-DFG)is
constructed.The graph is finite in size, so the oldest
instructions exit the graph to make room for newer
instructions.Removal informationfor exiting instructions
are used to update the IR-predictor.

As new instructionsare merged into the R-DFG, the
IR-detectorwatchesfor any of threetriggeringconditions
for instructionremoval. Triggeringconditionsareunrefer-
encedwrites(awrite followedby awrite to thesameloca-
tion, with no intervening read), non-modifying writes
[12,14,16,29](writing the samevalue to a location as
already exists at that location), and correctly-predicted
branch instructions. When a triggering condition is
observed, the correspondinginstruction is selectedfor
removal. Then, the circuits forming the R-DFG
back-propagatetheselectionstatusto predecessorinstruc-
tions.Predecessorsmayalsobeselectedif certaincriteria
(described later) are met.

TheIR-detectoris shown in Figure5. A singleR-DFG
is shown, however, thebuffering couldbepartitionedinto
multiple smallerR-DFGs.Thelatterapproachreducesthe
size/complexity of eachindividual R-DFGbut still allows
a largeanalysisscopefor killing values(observinganother
write to the same location).

FIGURE 5. IR-detector .

The operandrenametable in Figure5 is similar to a
register renamerbut it can track both memoryaddresses
andregisters.A singleentryof theoperandrenametableis
shown in Figure5. To merge an instruction into the
R-DFG, eachsourceoperandis checked in the rename
table to get the most recentproducerof the value(check
thevalid bit andproducerfield). The instructionusesthis
information to establishconnectionswith its producer
instructions,i.e., setup the back-propagation logic (if the
buffering is partitionedinto smallerR-DFGs,connections
cannotbemadeacrosspartitionboundaries).Theref bit is
set for each sourceoperandindicating the values have

been used. If the instruction writes a register/memory
location,thecorrespondingoperandrenametableentry is
checked to detectnon-modifying/unreferencedwrites and
to kill values, as follows.

1. If the valid bit is set,and the currentinstructionpro-
ducedthe samevalue as indicatedin the value field,
then the currentinstructionis a non-modifyingwrite.
The currentinstructionis selectedfor removal as it is
merged into the R-DFG. No fields areupdatedin the
renametable entry since the old producer remains
“li ve” in this case.

2. If thevalid bit is setandthenew andold valuesdo not
match,theold producerindicatedby theproducerfield
is killed. Furthermore,if the ref bit is not set,thenthe
old produceris an unreferencedwrite and is selected
for removal. Finally, all fieldsin therenametableentry
are updated to reflect the new producer.

Correctlypredictedbranchinstructionsareselectedfor
removal when they are merged into the R-DFG.

Finally, any other instruction x may be selectedfor
removal via the R-DFG back-propagation circuitry, if
three conditions are met.

1. All of x’s dependentinstructionsmustbe known, i.e.,
x’sproduction(s)mustbekilled by otherproduction(s).

2. All of x’s dependentinstructionsmustbe selectedfor
removal.

3. All of x’s dependentinstructions must have been
removed by the IR-predictor this time around.

Whena basicblock becomesthe oldestbasicblock in
the analysisscope,the appropriateentry for that basic
block is updated in the IR-predictor, i.e., confidence
countersare incrementedfor selectedinstructions and
reset for non-selected instructions.

The third (highlighted) condition above is the major
innovation with respect to our previous instruc-
tion-removal mechanism.Previously, this constraintwas
not neededbecausedependencechainswereconfinedto a
traceanda singleconfidencecounterwasmaintainedfor
the entire trace; this ensuredproducersand consumers
wereremovedtogetheror not at all, but it alsoresultedin
unrelatedchainsdiluting overall confidence.The dilution
problem is fixed by maintainingconfidencefor instruc-
tions individually; however, this can leadto partial-chain
removal and the specificallybad situationof removing a
producerbut not theconsumer. Thethird constraintabove
ensuresa producer’s countersaturatesonly after all con-
sumers’ counterssaturate.The end result: 1) our new
approachmeasuresconfidencefor instructionsindividu-
ally, sounrelatedinstructionsdo not dilute confidence,yet
2) dependencechainsstill tend to be removed as a unit,
and chainsare not confinedwithin a small region other
than to reduce R-DFG complexity.

OPERAND
RENAME
TABLE

VALID
BIT

REF
BIT

VALUE PRODUCER

merge instruction
into R-DFG

- select non-modifying writes and

- kill instructions update
IR-predictor

R-DFG
New Instr.

unreferenced writes for removal



3.2.  Delay buffer

Thedelaybuffer is asimpleFIFOqueuethatallows the
A-streamto communicatecontrol flow anddataflow out-
comesto theR-stream.TheA-streampushesbotha com-
pletehistory of branchoutcomesanda partial history of
operandvaluesonto the delay buffer. This is shown in
Figure3 with a solid arrow from the reorderbuffer of the
A-stream(left-mostprocessor)to the delaybuffer. Value
history is partial becauseonly a subsetof the programis
executedby the A-stream.Completecontrol history is
available, however, becausethe IR-predictorpredictsall
brancheseven though the A-stream may not fetch all
instructions (Section3.1.2).

The R-streampopscontrol and dataflow information
from thedelaybuffer. This is shown in Figure3 with solid
arrows from delaybuffer to theinstructioncacheandexe-
cutioncoreof theR-stream(right-mostprocessor).Branch
outcomesfrom the delaybuffer areroutedto the instruc-
tion cacheto direct instructionfetching.Sourceoperand
valuesandload/storeaddressesfrom the delaybuffer are
mergedwith their respective instructionsafter the instruc-
tionshave beenfetched/renamedandbeforethey enterthe
execution engine. To know which values/addressesgo
with which instructions,the delay buffer also includes
informationaboutwhich instructionswereskippedby the
A-stream (for which there is no data flow information
available).

3.3.  IR-misprediction recovery

An instruction-removal misprediction, or IR-mispre-
diction, occurswhenA-streaminstructionswereremoved
that shouldnot have been.The A-streamhasno way of
detecting the IR-misprediction, therefore, it continues
instructionretirementand corruptsits architecturalstate.
Two thingsarerequiredto recover from anIR-mispredic-
tion. First, theIR-mispredictionmustbedetectedand,sec-
ond, the corruptedstatemust be pinpointedfor efficient
recovery actions.

IR-mispredictions are detectable by the R-stream
becauseeitherthecontrolor dataflow outcomesfrom the
delaybuffer will not matchits redundantlycomputedout-
comes.In otherwords,IR-mispredictionsusuallysurface
as branch or value mispredictions in the R-stream.

SomeIR-mispredictionstake awhile to causeany visi-
ble symptomsin the A-stream.For example,a storemay
beremovedincorrectlyandthenext loadto thesameloca-
tion may not occurfor a very long time. The IR-detector
candetecttheseIR-mispredictionsmuchsoonerby com-
paringits computedremoval informationagainst the cor-
responding predicted removal information — if they
differ, computationwas removed that should not have

been.Thus,the IR-detectorservesthe dual-roleof updat-
ing the IR-predictorand checking for IR-mispredictions.

When an IR-misprediction is detected,the reorder
buffer of the R-streamis flushed.The R-streamarchitec-
tural statenow representsaprecisepoint in theprogramto
which all other componentsin the processorare re-syn-
chronized.The IR-predictor is backed up to the precise
programcounter, the delay buffer is flushed,the reorder
buffer of theA-streamis flushed,andtheA-stream’s pro-
gram counter is set to that of the R-stream.

All that remainsis restoringthe corruptedregisterand
memorystateof the A-streamso it is consistentwith the
R-stream.Becauseregisterstateis finite, theentireregister
file of theR-streamis copiedto theA-streamregisterfile.
Themovementof data(both registerandmemoryvalues)
occursvia the delay buffer, in the reversedirection, as
shown with dashed arrows in Figure3.

Therecoverycontroller receivescontrolsignalsandthe
addressesof store instructions from the A-stream, the
R-stream,andthe IR-detector, asshown in Figure3. The
control signalsindicatewhen to start or stop tracking a
memory address(only unique addressesneed to be
tracked).After detectingan IR-misprediction,storesmay
either have to be “undone” or “done” in the A-stream.
• The recovery controller tracks addressesof stores

retired in the A-stream but not yet retired in the
R-stream.After detectingan IR-misprediction,these
A-streamstoresmustbe “undone” sincethe R-stream
has not yet performed the companion, redundant store.

• The recovery controller tracks addressesof stores
retired in the R-streamand skippedin the A-stream,
only until the IR-detectorverifies that the storesare
truly ineffectual. When an IR-misprediction is
detected,all unverified,predicted-ineffectualstoresare
“done” in the A-stream by copying data from the
redundant locations in the R-stream.

4.  Simulation environment

We developeda detailedexecution-drivensimulatorof
aslipstreamprocessor. Thesimulatorfaithfully modelsthe
architecturedepictedin Figure3 andoutlinedin Section3:
the A-stream produces real, possibly incorrect val-
ues/addressesand branch outcomes,the R-streamand
IR-detector check the A-stream and initiate recovery
actions,A-streamstate is recovered from the R-stream
state,etc.Thesimulatoritself is validatedvia a functional
simulator run independentlyand in parallel with the
detailedtiming simulator [26]. The functional simulator
checksretired R-streamcontrol flow and dataflow out-
comes.



The Simplescalar[3] compiler and ISA are used.We
use the SPEC95integer benchmarks(-O3 optimization)
run to completion (Table1).

Microarchitectureparametersarelisted in Table2. The
top half of thetablelists parametersfor individual proces-
sorswithin a CMP or, alternatively, a singleSMT proces-
sor. The bottom half describes the four slipstream
components.A large IR-predictor is used for accurate

instructionremoval. The removal confidencethresholdis
32.TheIR-detectorhasascopeof 256instructionsandthe
R-DFG is unpartitioned.The delay buffer stores 256
instructions(dataflow buffer) and4K branchpredictions
(control flow buffer). The recovery controller tracksany
numberof storeaddresses,althoughwe observe not too
many outstandingaddressesin practice. The recovery
latency (after theIR-mispredictionis detected)is 5 cycles
to startup the recovery pipeline, followed by 4 register
restores per cycle, and lastly 4 memory restores per cycle.

5.  Results

5.1.  Slipstream performance results

In this section,we comparethe performanceof eight
models.Three are superscalarconfigurations(SS). Four
are chip-multiprocessorconfigurations(CMP) with slip-
streaming.Oneis a simultaneousmultithreadingconfigu-
ration (SMT) with slipstreaming.
• SS(64x4): A single 4-way superscalarprocessorwith

64 ROB entries.
• SS(128x8): A single8-way superscalarprocessorwith

128 ROB entries.
• SS(256x16): A single 16-way superscalarprocessor

with 256 ROB entries.
• CMP(2x64x4): Slipstreamingon a CMP composedof

two SS(64x4) cores.
• CMP(2x64x4)/byp: Sameas previous, but A-stream

can bypass instruction fetching.
• CMP(2x128x8): Slipstreamingon a CMP composed

of two SS(128x8) cores.
• CMP(2x128x8)/byp: Sameasprevious,but A-stream

can bypass instruction fetching.
• SMT(128x8)/byp: Slipstreamingon SMT, where the

SMT is built on top of SS(128x8).

For consistentcomparisons,the same(gshare-based)
IR-predictorprovidesbranchpredictionsin all of thepro-
cessormodels,andthebasesuperscalarprocessormodels
ignore the instruction-removal information. Performance
is measuredin retired instructions-per-cycle (IPC). For
slipstreammodels, IPC is computedas the number of
retired R-stream instructions (i.e., the full program,
counted only once) divided by the number of cycles
requiredfor both the A-streamandR-streamto complete
(total execution time).

IPC performanceof the eight models is shown in
Figure6. Thefirst conclusionis aslipstreamprocessorcan
exploit a second,otherwiseunusedprocessorto dramati-
cally improve single-program performance. From
Figure7, CMP(2x64x4)performson average12% better

TABLE 1. Benc hmarks.

benchmark input dataset instr. count
compress 40000 e 2231 124 million
gcc cccp.i -o cccp.s 265 million
go 9 9 133 million
jpeg vigo.ppm 166 million
li test.lsp (queens 7) 202 million
m88ksim -c < ctl.in (dcrand.big) 121 million
perl scrabble.pl < scrabble.in 108 million
vortex vortex.in (persons.250) 101 million

TABLE 2. Micr oarchitecture configuration.

single processor core

instruction
cache

size/assoc/repl = 64kB/4-way/LRU

line size = 16 instructions

2-way interleaved

miss penalty = 12 cycles

data cache

size/assoc/repl = 64kB/4-way/LRU

line size = 64 bytes

miss penalty = 14 cycles

superscalar
core

reorder buffer: 64, 128, or 256 entries

dispatch/issue/retire bandwidth: 4-/8-/16-way

n fully-symmetric function units (n = issue b/w)

n loads/stores per cycle (n = issue b/w)

execution
latencies

address generation = 1 cycle

memory access = 2 cycles (hit)

integer ALU ops = 1 cycle

complex ops = MIPS R10000 latencies

new components for slipstreaming

IR-predictor

220entries
gshare-indexed (16 bits of global branch history)

block size = 16
16 confidence counters per entry

confidence threshold = 32

IR-detector R-DFG = 256 instructions, unpartitioned

delay buffer
data flow buffer: 256 instruction entries

control flow buffer: 4K branch predictions

recovery
controller

# of outstanding store addr. = unconstrained

recovery latency (after IR-misp. detected):

• 5 cycles to start up recovery pipeline
• 4 reg. restores/cycle (64 regs performed 1st)
• 4 mem. restores/cycle (mem performed 2nd)
• ∴ min. latency (no memory) = 21 cycles



than using only a single SS(64x4) processor. And
CMP(2x128x8)performson average7% betterthanusing
only a single SS(128x8) processor. Slipstreaming
degrades performance in jpeg, by 1% and 5% for
CMP(2x64x4) and CMP(2x128x8), respectively. Jpeg’s
A-streamis not reducedmuch and jpeg is alreadyquite
parallel; IR-mispredictions cause an overall degradation.

FIGURE 6. IPC results.

FIGURE 7. Performance impr ovement using a
second pr ocessor f or slipstreaming.

The secondconclusionis the benefitof slipstreaming
decreasesasmoreexecutionbandwidthis madeavailable.
This is evident from the first and third barsof Figure7.
For all except m88ksim and vortex, the performance
improvementof CMP(2x128x8)over SS(128x8)is less
than the improvementof CMP(2x64x4)over SS(64x4).
For example,perl dropsfrom a30%improvementdown to
a 15% improvementas the window sizeand issueband-
width of the processorcore is doubled.This is evidence
for the arguments made in Section2.3.

The above result motivates reducing the number of
instructionsfetched in the A-stream,using the improved

IR-predictor (Section3.1.2). From Figure7,
CMP(2x64x4)/bypon averageperforms13% betterthan
SS(64x4), a modest change from CMP(2x64x4). As
expected,it is moreimportantto bypassinstructionfetch-
ing for larger processorcores. CMP(2x128x8)/bypon
averageperforms 10% better than SS(128x8),whereas
CMP(2x128x8)performs7% better. With the improved
IR-predictor, slipstream performance improvement
increasesfrom 8% to 16%for gcc, from 8% to 14%for li ,
from 17%to 21%for m88ksim, from 15%to 19%for perl,
and from 15% to 20% forvortex.

In Figure8, we compare the performanceof slip-
streamingon two smallprocessorsto theperformanceof a
larger processor. The larger processorhasthe sametotal
numberof ROB entriesand issuebandwidthas the two
smallerprocessorscombined.For half of the benchmarks
(perl, gcc, li , m88ksim), CMP(2x64x4)/bypactually per-
forms from 4% to 8% better than SS(128x8).Overall,
CMP(2x64x4)/bypperformscomparablyto themorecom-
plex, lessflexible SS(128x8)processor— within 5% on
average. The results are more pronounced for
CMP(2x128x8)/byp,which on averageperforms7% bet-
ter than SS(256x16).

FIGURE 8. Perf . of slipstreaming on two small
processor s vs. perf . of a single lar ge processor .

Finally, we examinethe performanceof slipstreaming
on an SMT processor. The performanceimprovementof
SMT(128x8)/bypover SS(128x8)is shown in Figure9.
For half of the benchmarks,performanceimproves by
more than 10%. Gcc, li , perl, and m88ksimimprove by
12%, 13%, 16%, and 19%, respectively. Performanceis
degradedbetween1% and4% for compress, go, andvor-
tex, andover 25%for jpeg. Compressshoweda small loss
even for the CMP(2x128x8)model,so onewould expect
thesamefor SMT(128x8)/byp.Thereasonis theA-stream
is less effective for compress and IR-mispredictions
degrade performance.Go was also borderline in the

0

1

2

3

4

5

6

comp gcc go jpeg li m88k perl vortex

IP
C

SS (64x4)
SS (128x8)
SS (256x16)
CMP(2x64x4)
CMP(2x64x4)/byp
CMP(2x128x8)
CMP(2x128x8)/byp
SMT(128x8)/byp

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

comp gcc go jpeg li m88k perl vortex AVG

%
 IP

C
 im

p
ro

ve
m

en
t

CMP(2x64x4)      vs. SS(64x4)
CMP(2x64x4)/byp  vs. SS(64x4)
CMP(2x128x8)     vs. SS(128x8)
CMP(2x128x8)/byp vs. SS(128x8)

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

comp gcc go jpeg li m88k perl vortex AVG

%
 IP

C
 d

if
fe

re
n

ce

CMP(2x64x4)/byp  vs. SS(128x8)

CMP(2x128x8)/byp vs. SS(256x16)



CMP(2x128x8) case. Vortex and jpeg utilize the
SS(128x8)processorwell — in fact, they exceedhalf of
the peakIPC — andthe A-streamstealsusefulprocessor
bandwidth from the R-stream.The effect is more pro-
nouncedfor jpeg thanfor vortex becausejpeg exhibits lit-
tle reduction in its A-stream (Figure10).

FIGURE 9. Performance impr ovement of
SMT(128x8)/byp o ver SS(128x8).

5.2.  Instruction removal

Figure10 shows the fraction of original dynamic
instructionsremoved from the A-stream.Nearly half of
the programis removed for gcc, li , perl, andvortex, and
about two-thirds of m88ksimis removed. About 20% of
compress is removed, and only 10% forgo andjpeg.

FIGURE 10. Breakdo wn of instruction remo val.

Removing only 10% of the programsimply doesnot
buffer theR-streamfrom many branchmispredictions.But
20% removal in compressis significant,andit is surpris-
ing slipstreamperformanceimprovementsarenot higher.
The problem with compress is three-fold: there are fre-
quentbranchmispredictions,their dependencechainsare
quite long, and the chainshave long-latency arithmetic
operations.Removing 20% of compress can perhaps
buffer theR-streamagainstany oneof thesethree,but not
two or three combined.

Figure10 alsobreaksdown the reasonsfor instruction
removal. On average,branchesarethe primary source,at
just over a third of theremoved instructions(“branches”).
Ineffectualwritesareabouta third of removedinstructions
(“writes”). Amonginstructionsremoveddueto back-prop-
agation (“prop —”), most are in dependencechainsof
removed branches (“prop branches”).

5.3.  Prediction

In Figure11, we show the performanceimprovement
of three models with respectto SS(64x4).The first is
SS(64x4)with conventional value prediction added.A
large context-basedvalue predictor (CVP) [24] is used

(218 and220 entriesin the first andsecondlevels, respec-
tively). Thesecondis CMP(2x64x4)/byp,but theR-stream
doesnotuseA-streamvaluesspeculatively (“no valuepre-
diction”). The third is CMP(2x64x4)/byp.

We only considerbenchmarksthat show reasonably
large improvementswith any of the models(eliminating
compress, go, jpeg). For gcc and li , betterbranchpredic-
tion is the largestbenefitdue to slipstreaming,not value
prediction(we cantell becausethe secondandthird bars
areclose).Also, CVP providesonly minor improvements
for thesebenchmarks.For m88ksim, value prediction is
thedominantfactorandCVPis superior. For perl andvor-
tex, valuepredictionis thelargerbenefitdueto slipstream-
ing, however, CVP does not provide the samebenefit.
Perhapsin perl, betterbranchpredictionis neededto bet-
ter exploit value predictions.

FIGURE 11. Measuring the relative impor tance of
branc h and v alue prediction benefits.

6.  Related work

Advanced-stream/Redundant-stream Simultaneous
Multithreading(AR-SMT) [20] is basedon therealization
that microarchitectureperformancetrendsandfault toler-
ancearerelated.Time redundancy — runninga program
twice to detecttransientfaults— is cheaperthanhardware
redundancy but it doublesexecutiontime. AR-SMT runs
thetwo programssimultaneously[28] but delayed(via the

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

comp gcc go jpeg li m88k perl vortex

%
 IP

C
 Im

p
ro

ve
m

en
t

SMT(128x8)/byp vs. SS(128x8)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

comp gcc go jpeg li m88k perl vortex

fr
ac

ti
o

n
 o

f 
d

yn
am

ic
 in

st
ru

ct
io

n
s

prop writes/branches
prop writes
writes
prop branches
branches

-5%

0%

5%

10%

15%

20%

25%

30%

35%

comp gcc go jpeg li m88k perl vortex

%
 IP

C
 im

p
ro

ve
m

en
t 

o
ve

r 
S

S
(6

4x
4)

SS(64x4) + context-based value prediction
CMP(2x64x4)/byp -- no value prediction
CMP(2x64x4)/byp



delaybuffer), reducingthe performanceoverheadof time
redundancy. Resultsare comparedby communicatingall
retiredA-streamresultsto theR-stream,andtheR-stream
performsthechecks.Here,theR-streamleveragesspecu-
lationconcepts[13] — theA-streamresultscanbeusedas
ideal predictions. The R-stream fetches/executes with
maximum efficiency, further reducing the performance
overheadof timeredundancy. And themethodfor compar-
ing the A-stream and the R-streamis conveniently in
place,in theform of misprediction-detectionhardware.In
summary, AR-SMT leveragesthe underlyingmicroarchi-
tectureto achieve broadcoverageof transientfaultswith
low overhead,both in termsof performanceandchanges
to the existing design.

DIVA [2] and SRT [18] are two other examplesof
fault-tolerant architectures designed for commodity
high-performancemicroprocessors.DIVA detectsa vari-
ety of faults, including designfaults, by using a verified
checker to validatecomputationof thecomplex processor
core.DIVA leveragesan AR-SMT technique— the sim-
ple checker is ableto keeppacewith thecoreby usingthe
values it is checking as predictions.SRT improves on
AR-SMT in a varietyof ways,includinga formal andsys-
tematictreatmentof SMT appliedto fault tolerance(e.g.,
spheres of replication).

Researchershave demonstrateda significantamountof
redundancy, repetition,and predictability in generalpur-
pose programs [6,8,9,12,13,14,16,24,25,29].This prior
researchformsa basisfor creatingtheshorterprogramin
slipstreamprocessors.A technicalreport[21] showed1) it
is possibleto ideally constructsignificantly reducedpro-
gramsthatproducecorrectfinal output,and2) AR-SMT is
a convenient execution model to exploit this property.

Tullsen et. al. [28] and Yamamotoand Nemirovsky
[31] proposedsimultaneousmultithreading for flexibly
exploiting thread-level and instruction-level parallelism.
Olukotun et. al. [17] motivate using chip multiprocessors.

Farcy et. al. [7] proposedresolvingbranchmispredic-
tions early by extracting the computation leading to
branches.Zilles andSohi [33] similarly studiedthe com-
putation chains leading to mispredictedbranchesand
loadsthatmissin the level-two cache.They suggestiden-
tifying a difficult subsetof the programfor pre-execution
[22,23], potentially prefetching branch predictions and
cachelines that would otherwisebe mispredictionsand
cachemisses.Pre-executiontypically involves pruning a
small kernel from a larger programregion andrunningit
asa prefetchengine[22]. RothandSohi [23] developeda
new paradigm called SpeculativeData-Driven Multi-
threadingthat implementspre-executiongenerally. Rather
than spawn many specialized kernels on-the-fly, our
approachusesa single,functionallycomplete,andpersis-
tent program(A-stream).Slipstreamingavoids the con-

ceptualand possibly real complexity of forking private
contexts, within which the specialized kernels must run.

Speculative multithreadingarchitectures[e.g.,1,17,26]
speedup a single programby dividing it into specula-
tively-parallel threads.The speculationmodel usesone
architectural context and future threads are spawned
within temporary, privatecontexts,eachinheritedfrom the
preceding thread’s context. Future thread contexts are
mergedinto thearchitecturalcontext asthreadscomplete.
Our speculationmodel usesredundantarchitecturalcon-
texts, so no forking or merging is needed.And strictly
speaking,thereareno dependencesbetweenthe architec-
turally-independentthreads,rather, outcomesarecommu-
nicatedaspredictionsvia a simpleFIFO queue.Register
andmemorymechanismsof the underlyingprocessorare
relatively unchangedby slipstreaming (particularly if
thereis an existing interfacefor consumingvaluepredic-
tions at the renamestage).In contrast,speculative multi-
threading often requires elaborate inter-thread
register/memory dependence mechanisms.

SSMT [5] runs microthreadssimultaneouslywith an
applicationto optimizeits performance.Microthreadsare
small routinesdesignedin conjunctionwith applications
and the processor. For example,microthreadsmay per-
form cacheprefetching,improve branchpredictionaccu-
racy [5], or optimize exception handling [32].

TheDataScalarparadigm[4] runsredundantprograms
on multiple processor-and-memorycores to eliminate
memory read requests.

7.  Summary and conclusions

Integrating multiple architecturalcontexts on a single
chip is animportanttrend,andit is difficult to conceive of
moreeffectiveusesfor abillion transistors.Theslipstream
paradigmextractsmorefunctionalityfrom aCMPor SMT
processor, without fundamentally reorganizing it. The
operating system may flexibly chooseamong multiple
operatingmodesbasedon systemanduserrequirements:
high job throughput and parallel-programperformance
(conventionalSMT/CMP), improved single-programper-
formanceand reliability (slipstreaming),or fully-reliable
operationwith low impactonsingle-programperformance
(AR-SMT / SRT).

In this paper, we developeda new andmoreeffective
instruction-removal mechanismfor creating the shorter
program.It measuresremoval-confidenceonaper-instruc-
tion basis,eliminatingmany flaws of theprior trace-based
approachand leveragingconventionalbranchpredictors.
The new approachreducesthe A-stream significantly
(often by 50%), but also accurately.

Wealsodevelopedanew andsimplesequencingmech-
anism that enables the A-stream to skip over large
dynamic sequences of instructions.



Finally, we reasonedabout the sourcesof slipstream
performance,andits limitations.This focusedourexplora-
tion of the architecture and led us to some key results.
• A 12%averageperformanceimprovementis achieved

by harnessinganotherwiseunused,additionalproces-
sor in a CMP. Slipstreamingusingtwo smallsupersca-
lar cores often achieves similar IPC as one large
superscalarcore,but with apotentiallyfasterclockand
a moreflexible architecture.For programswith suffi-
ciently reducedA-streams,slipstreamingon an 8-way
SMT processorimprovesperformancefrom 10%-20%.

• For someprograms,performanceimprovementis due
to the A-stream resolving branch mispredictionsin
advance.Othersbenefit largely from A-streamvalue
predictions,and the effect is not always reproducible
using conventional value prediction tables.

• As moreexecutionbandwidthis madeavailable,slip-
streaming provides less performanceimprovement.
But if theA-streamis ableto bypassinstructionfetch-
ing, slipstreamingretains its edge — becauseraw
instructionfetchbandwidthis notaseasilyextendedas
raw execution bandwidth.

References

[1] H. Akkary and M. Driscoll. A Dynamic Multithreading
Processor. 31st Int’l Symp. on Microarch., Dec 1998.

[2] T. Austin.DIVA: A ReliableSubstratefor DeepSubmicron
MicroarchitectureDesign.32ndInt’l Symp.on Microarch.,
Nov. 1999.

[3] D. Burger, T. Austin, and S.Bennett. Evaluating Future
Microprocessors:The SimplescalarToolset. Tech. Rep.
CS-TR-96-1308, CS Dept., Univ. of Wisconsin, July 1996.

[4] D. Burger, S. Kaxiras,andJ. Goodman.DataScalarArchi-
tectures.24th Int’l Symp. on Comp. Arch., June 1997.

[5] R. Chappell,J. Stark, S. Kim, S. Reinhardt,and Y. Patt.
SimultaneousSubordinateMicrothreading(SSMT). 26th
Int’l Symp. on Comp. Arch., May 1999.

[6] D. ConnorsandW.-M. Hwu. Compiler-DirectedDynamic
ComputationReuse:Rationaleand Initial Results.32nd
Int’l Symp. on Microarch., Nov. 1999.

[7] A. Farcy, O. Temam,R. Espasa,and T. Juan.Dataflow
Analysis of BranchMispredictionsand its Application to
Early Resolutionof BranchOutcomes.31stInt’l Symp.on
Microarch., Dec. 1998.

[8] A. González,J.Tubella,andC. Molina. Trace-Level Reuse.
Int’l Conf. on Parallel Processing, Sep. 1999.

[9] J.HuangandD. Lilja. ExploitingBasicBlock ValueLocal-
ity with Block Reuse.5th Int’l Symp.on High-Perf. Comp.
Arch., Jan. 1999.

[10] E. Jacobsen,E. Rotenberg, andJ. Smith.AssigningConfi-
denceto ConditionalBranchPredictions.29th Int’l Symp.
on Microarch., Dec. 1996.

[11] M. LamandR. Wilson.Limits of ControlFlow onParallel-
ism.19th Int’l Symp. on Comp. Arch., May 1992.

[12] K. Lepak and M. Lipasti. On the Value Locality of Store
Instructions.27th Int’l Symp. on Comp. Arch., June 2000.

[13] M. Lipasti.ValueLocality andSpeculative Execution.PhD
Thesis, Carnegie Mellon University, April 1997.

[14] M. Martin, A. Roth,andC. Fischer. Exploiting DeadValue
Information.30th Int’l. Symp. on Microarch., Dec 1997.

[15] S. McFarling. Combining Branch Predictors.Tech. Rep.
TN-36, WRL, June 1993.

[16] C. Molina, A. Gonzalez,andJ.Tubella.ReducingMemory
Traffic via Redundant Store Instructions.HPCN 1999.

[17] K. Olukotun, B. Nayfeh, L. Hammond,K. Wilson, and
K.-Y. Chang.The Casefor a Single-ChipMultiprocessor.
ASPLOS-VII, Oct. 1996.

[18] S. ReinhardtandS. Mukherjee.TransientFault Detection
via SimultaneousMultithreading. 27th Int’l Symp. on
Comp. Arch., June 2000.

[19] D. Ronfeldt. Social Scienceat 190 MPH on NASCAR’s
BiggestSuperspeedways.First MondayJournal (on-line),
Vol. 5 No. 2, Feb. 7, 2000.

[20] E. Rotenberg. AR-SMT: A MicroarchitecturalApproachto
Fault Tolerancein Microprocessors.29th Int’l Symp.on
Fault-Tolerant Computing, June 1999.

[21] E. Rotenberg. Exploiting Large Ineffectual Instruction
Sequences. Tech. Rep., ECE Dept., NC State, Nov. 1999.

[22] A. Roth, A. Moshovos, and G. Sohi. DependenceBased
Prefetchingfor LinkedDataStructures.ASPLOS-VIII, Oct.
1998.

[23] A. RothandG. Sohi.SpeculativeData-DrivenMultithread-
ing. Tech.Rep.CS-TR-2000-1414,CSDept.,Univ. of Wis-
consin, April 2000.

[24] Y. SazeidesandJ.E. Smith.ModelingProgramPredictabil-
ity. 25th Int’l Symp. on Comp. Arch., June 1998.

[25] A. SodaniandG. S.Sohi.DynamicInstructionReuse.24th
Int’l Symp. on Comp. Arch., June 1997.

[26] G. Sohi,S.Breach,andT. N. Vijaykumar. MultiscalarPro-
cessors.22nd Intl. Symp. on Comp. Arch., June 1995.

[27] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip-
streamProcessors:Improving both PerformanceandFault
Tolerance.ASPLOS-IX, Nov. 2000.

[28] D. Tullsen, S. Eggers,J. Emer, H. Levy, J. Lo, and R.
Stamm.Exploiting Choice:InstructionFetchandIssueon
an ImplementableSimultaneousMultithreadingProcessor.
23rd Int’l Symp. on Comp. Arch., May 1996.

[29] D. TullsenandJ.Seng.StoragelessValuePredictionUsing
Prior Register Values.26th Int’l Symp.on Comp. Arch.,
May 1999.

[30] D. Wall. Limits of Instructional-Level Parallelism. ASP-
LOS-IV, April 1991.

[31] W. YamamotoandM. Nemirovsky. IncreasingSuperscalar
Performancethrough Multistreaming. Parallel Architec-
tures and Compilation Techniques, June 1995.

[32] C. Zilles, J. Emer, andG. Sohi.TheUseof Multithreading
for ExceptionHandling.32nd Int’l Symp.on Microarch.,
Nov. 1999.

[33] C. Zilles andG. Sohi.Understandingthe Backward Slices
of PerformanceDegradingInstructions.27thInt’l Symp.on
Comp. Arch., June 2000.


