A Study of Slipstream Processors

Zach Purser

Karthik Sundaramoorth

Eric Rotenbeay

North Caolina State Univesity
Department of Electrical and Computer Engineering
Engineering Gaduate Reseah CenterCampus Box 7914, Raleigh, NC 27695
{zrpurser ksundarericro}@ecencsu.edu, wwinker.ncsu.edu/eriay/slipsteam

Abstract

A slipstreamprocessorreduceghelengthof a running
program by dynamicallyskippingcomputatiomon-essen-
tial for correctforward progress.The shortenedprogram
runs fasteras a result,but it is speculativeSoa second,
unreducedcopy of the program is run concuriently with
andslightly behindthe reducedcopy— leveraging a chip
multiprocessor (CMP) or simultaneousmultithreading
(SMT).Theshortprogrampassests control anddataflow
outcomesto the full program for chedking. And as it
cheds the short program, the full program fetches and
executesnore efficientlydueto havingan accutate picture
of the future. Both programsare spedup: combinedthey
outperform comentional non-edundant gecution.

We study slipstaming with the followingey results.

1. A 12% average performancamprovements achieved
by harnessingan otherwiseunusedadditional proces-
sorin a CMP Slipsteamingusingtwo smallsupesca-
lar coresoftenachievessimilar instructions-percycle
as one large supescalar core, but with a potentially
faster clo& and a moe fleible architecture.

2. A majority of the bendmarksshowsignificantreduc-
tion in the short program (about50%). Slipsteaming
usingan 8-way SMT processofimprovestheir perfor-
mance fom 10% to 20%.

3. For some bendmarks, including gcc performance
improvementis due to the short program resolving
brandh mispedictions in advance Others benefit
largely due to value predictionsfrom the short pro-
gram,andtheeffectis not alwaysreproducibleby con-
ventional value pdiction tables.

4. As execution bandwidth is increased, slipstreaming
provides less of a performanceadvantgie — unless
instructionsare removed in the short programbefore
they arefetched A simpleprogramsequencingneda-
nism is deeloped to bypass instruction feicg.

1. Introduction

The slipstreamparadigm[21,27] proposesnly a frac-
tion of thedynamicinstructionstreamis neededor a pro-
gramto make full, correct,forwardprogressFor example,
some instruction sequenceshave no obsenable effect.
They produceresultsthatarenot subsequentlyeferenced,
or resultsthatdo not changethe stateof the machine And
then there are instruction sequencesvhose effects are
obsenable, but the effects are invariably predictable.
Computationinfluencingcontrol flow is the mostnotable
example.

Ineffectualand branch-predictableomputationcanbe
exploited to reducethe length of a running program,
speedingt up. Unfortunately we cannotknow for certain
what instructionscan be validly skipped.Constructinga
shorterprogramis speculatie and, ultimately, it mustbe
checled againstthe full programto verify it produceshe
same wverall efect.

Therefore,a slipstream processorconcurrently runs
two copiesof the program leveragingeithera single-chip
multiprocesso(CMP) [17] or a simultaneousnultithread-
ing processo(SMT) [28,31] (theuserprogramis instanti-
atedtwice by the operatingsystemand eachcopy hasits
own contet). Oneprogramalwaysrunsslightly aheadof
the other: the leading programis called the advanced
stream or A-stream,andthetrailing programis calledthe
redundantstream or R-stream.Hardware monitors the
R-streamand detectsl) instructionsthat repeatedlyand
predictablyhave no obsenrable effect (e.g., unreferenced
writes, non-modifyingwrites) and2) branchesvhoseout-
comes are consistently predicted correctly Future
instancesof the ineffectual instructions,branchinstruc-
tions, andthe computationchainsleadingup to themare
speculatrely removedin the A-stream— but only if there
is high confidencecorrectforward progresscan still be
made, in spite of renming the instructions.

The reducedA-stream fetches, executes,and retires
fewer instructionsthanit would otherwise resultingin a

fasterprogram.To verify thatthe A-streammakescorrect

forward progressall control and dataflow outcomesof

the A-streamare passedio the R-stream.The R-stream
checksthe outcomesagninstits own and,if a deviationis
detected,the R-streanms architectural state is used to
selectvely repair the A-streams corruptedarchitectural
state (an infrequenvent).

A key point is the R-streamusesthe outcomesit is
checking as predictions [20]. This haotadwantages.

* First, the R-streamfetchesand executesmore effi-
ciently dueto having nearideal predictionsfrom the
A-stream. Thus, although the unreducedR-stream
retires more instructions, it keeps pace with the
A-stream and the two programs combined finish
soonerthana single copy of the programwould. The
slipstreamprocessos approachof speedingup a sin-
gle programvia redundang is analogousto “slip-
streaming” in car racing, where two cars race
nose-to-tail to increase the speedothcars [19].

¢ Second,by using A-streamoutcomesas predictions,
the R-steam leverages existing speculationmeda-
nismsfor chedking the A-stream Corventionalproces-
sors typically have mechanismsin place to check
control flow speculation,and future processoramay
incorporatevalue predictionandmechanismso check
data flav speculation.

Anotherbenefitof slipstreamings improvedreliability.
Transientfaults that affect redundantly-gecutedinstruc-
tionsaretransparentlydetectableandrecoverable[20,27].
Fault detection/receery is transparenbecauseransient
faultsareindistinguishabldrom prediction-inducedlevi-
ations.

1.1. Contributions

This paperis afollow-up studyof our recentslipstream
proposal [27] and mads four ne contritutions.

1. Understanding slipsttaming

Slipstreamingcanbe explainedandunderstoodn sev-

eralways.We describetwo differentinterpretationof

slipstreaming,qualitatvely explain where its perfor-

manceimprovementis derived from, and exposeits

limitations. Insightinto thelimitationsof slipstreaming
allows us to focus efforts on areasthat are likely to

payof.

More comprehensie experimental results provide

importantinsight and confirm the expectationsof our

qualitatve arguments.Multiple CMP configurations
are explored — examining multiple CMP configura-
tions is relevant becauseconclusionschangeas the

processor cores scale.

2. Slipsteaming using SMT pcessos.

Slipstreamingwas not previously implementedon an
SMT processarlnsufficient reductionin the A-stream
made SMT-basedslipstreamingless viable. Artif acts
of our previous instruction-remwal mechanismhave
beenaddressedqseenext item belav), so SMT-based
slipstreamingis now viable and this paperprovides
results.

3. More efective instructione€moval.

Previously, removal-confidencewas measuredfor a
groupof instructionsasawhole,i.e.,for atrace[27]. A
trace-basedpproactensuregproducelinstructionsare
not removed from the A-streamunlesscorresponding
consumeinstructionsarealsoremoved.Not enforcing
this constraintleadsto spuriousinstruction-remwal
mispredictions.

Trace-basedemoval has severe limitations, however
[27]. Frequently-arying removal patternswithin a
trace causethe overall confidenceto be low, despite
stablepatternsamongcertaindependencehains.As a
result,no instructionsin the traceareremoved even if
mary are removable. And although traces ensure
dependencehains are removed together chainsare
confined to the same trace.

Our new approachmeasuresconfidencefor instruc-
tions individually, so unrelatedinstructions do not
dilute confidence.Yet dependencehainsstill tendto
be removed together and chains are not confined
within a small rgion.

4. Bypassing instruction feting.

The A-streamis mosteffective whenboth the number
of instructions fetched and executed are reduced.
Reducingthe numberof fetchedinstructionsrequiresa
different sequencingmodel than cornventional branch
predictorscurrently provide. A conventional branch
predictoris modified in a novel and simple way to
bypass fetching of large, dynamic instruction
sequences.

1.2. Paper outline

The paperis organizedasfollows. Section2 develops
modelsfor understandinglipstreamingand examinesits
fundamental limits. Section3 reviews the slipstream
microarchitecture and introduces the new instruc-
tion-remaval mechanismdn sections4 and>5, the simula-
tion ernvironmentand resultsare presentedrespectiely.
Relatedwork is discussedn Section6 andconclusionsn
Section?.

2. Understanding dlipstreaming

We presenttwo differentinterpretationf slipstream-
ing to betterunderstandhe paradigm.In subsectior?.1,
the A-streamis interpretedasthe “main” threadandthe
R-stream“assists”the A-stream.In subsectior2.2, roles
are reversed:the R-streamis the “main” threadand the
A-stream“assists” the R-stream.Actually, the two pro-
gramsin aslipstreanprocessoarefunctionallyequivalent
and mutually beneficial, so either interpretationaldv

We next examine limits of the paradigmto motivate
remaoving instructionsfrom the A-streambeforethey are
fetched.Finally, we considerotherways of reducingthe
A-streamto highlight the conceptualsimplicity of our
chosen approach.

2.1. R-stream: afast checker

The A-streamdoes not explicitly derive ary perfor-
mancebenefitfrom the R-stream.Rather the R-stream
checks(and occasionallyredirects)the A-streamwithout
slowing it down. This is possible becausecheding is
inherently parallel [13,20]. As depictedin Figurel, the
R-steam is a fast cheding assist to the A-stream
[20,21,2].

A-stream

s

! Checker

| R-stream’

Lo ——-

FIGURE 1. A fast checking assist to the A-stream.

2.2. A-stream: a program-based predictor

Alternatively, the A-streamis a program-basecredic-
tor for the R-steam [7,23,33,5]. For example, the
A-stream assiststhe performanceof the R-streamby
improving its branchpredictionaccurag. Dynamicbranch
predictionsare classifiedinto two groups,confidentand
unconfiden{10], asshavn in Figure2. Confidentbranch
predictionsare more likely to be correctand the corre-
spondingbranchesand computationfeedingthe branches
are removed from the A-stream. Confident predictions
representhe mostaccuratepredictions therefore remov-
ing the computatiomeededo verify themis sound,andit
allows the A-streamto focusinsteadon verifying unconfi-
dentbranchpredictions As a result,manybranch mispie-
dictionsare resolvedby the A-streamin advanceof when
the R-steam eades the same point

The A-streamalsosenesasanaccuratevaluepredictor
[13] for the R-stream.Although only the results of
A-stream-a&ecutedinstructionsare available, the predic-
tionsarepotentiallymoreaccuratehanthoseprovided by
corventionalvalue predictors:A-stream“predictions” are

producedby programcomputationas opposedto being
history-basedPerhapghereis someoverlapin whatthe
A-streamprovidesandwhat a corventionalvalue predic-
tor could provide. Initial investicationsin Section5.3indi-

cate somebenchmarkge.g.,gcg benefitprimarily from

the short program resolving branch mispredictionsin

adwance; othersbenefitlargely due to value predictions
from the A-stream,andthe effect is not alwaysreproduc-
ible by cornventional value prediction tables. However,

comprehensie comparisons are left for futurek.

confident i !
predictions unverified
H A _ctroam -
Predictor unconfident 7+ SHeaM —ariieg R-stream
predictions

FIGURE 2. A combined predictor/pr ogram for
impr oving R-stream branc h prediction accurac .

2.3. Importance of bypassing instruction fetch

Prior researchhas shaovn that in the absenceof ary
resourceconstraintsperformances generallydictatedby
mispredictedorancheg$30,11]. Thatis, in anidealproces-
sor with unconstrainedetch and execution bandwidth,
mispredictedranchesndtheirdependencehainstendto
dominatethe critical path of the program.The A-stream
cannotreducethis critical path becausehe dependence
chainsof mispredictedbranchesare not safelyremovable
from the A-stream— only correctly predictedbranches
aresafelyremovable. The A-streamlike a full versionof
the program, encountersthe same mispredictionsand
resohesthemin programorder Therefore slipstreaming
is not likely to provide performanceadwantagesf fetch
and &ecution bandwidth are unconstrained.

Understandinglipstreamings limitationsenablesisto
focusresearchefforts on areasthat are likely to pay off.
For example,we canreasonaboutthe relative importance
of bypassinginstruction fetch and execution in the
A-stream.Consider slipstreanprocessothatreduceghe
numberof instructionsexecutedin the A-stream,but not
the numberof instructionsfetched The A-streamrunson
onecoreof aCMP andthe R-streanon a seconccore(for
example).As raw execution bandwidthof both coresis
increasedthe A-streamstartsto loseits edgewith respect
to the R-stream.Instructionfetching becomeshe bottle-
neckand,from a practicalstandpointthe A-streamis not
truly reducedif the numberof fetchedinstructionsis not
reduced.

Fortunately it is possibleto bypasseven instruction
fetching in the A-stream. The A-stream has a distinct
adwantagein this regard becauseraw instruction fetch
bandwidthcannotbe as easily extendedasraw execution
bandwidth,e.g.,dueto takenbranchesaindbranchpredic-
tor bandwidth.

2.4. Other ways of reducing the A-stream

One methodfor reducingthe A-streamis removing
branch-predictablecomputation. Another possibility is
remo/ing value-predictable computation. As was
describedn Figure2 in the context of branchprediction,
anoverall bettervaluepredictormay be possibleby com-
bining a corventionalvalue predictorwith the A-stream:
the value predictor identifies and removes highly
value-predictable&eomputation,and the A-streamfocuses
insteadon hard-to-predicvalues.The R-streanpbsenesa
streamof accuratevalues comprisedof both unverified
confident alues and computedhues.

This approacrcomplicategshe mechanisnfor reducing
the A-stream,however. For the A-streamto malke correct
forward progressthe effects of removed, value-predict-
able computationmustbe emulatedby updatingthe state
of the A-stream with values directly, similar to
block/trace/computatiorreuse [9,8,6] but without the
reusetest. This is why we focusedinitially on the special
casesof ineffectual and branch-predictableomputation:
this computationcan be literally removed (i.e., replaced
with nothing),andonly the programcounterneedsto be
updated to skip instructions.

3. Microarchitecture description

A slipstreamprocessorequirestwo architecturalcon-
texts, onefor eachof the A-streamandR-streamandnewn
hardwarefor directinginstruction-remwal in the A-stream
and communicating state between the threads. A
high-level block diagramof a slipstreamprocessoimple-
mentedon top of a two-way chip multiprocessois shovn
in Figure3, althoughan SMT processomight also be
used.Theshadedoxesshawv the original processorsom-
prising the multiprocessarEachis a corventionalsuper-
scalar/VLIW processor with a branch predictor
instructionand datacachesand an executionengine—
includingtheregisterfile andeitheranin-orderpipelineor
out-of-order pipeline with reordeuffer.

Slipstreaming requires four wecomponents.

1. Theinstruction-emaoval predictor, or IR-predictor is a
modified branch predictor It generateghe program
counter(PC) of the next block of instructionsto be
fetchedin the A-stream.Unlike a corventionalbranch
predictor however, the predictednext PC may reflect
skippingpastany numberof dynamicinstructionsthat
a corventional processormwould otherwisefetch and
execute. Also, the IR-predictor indicates which
instructionswithin a fetched block can be removed
after the instruction fetch stage and before the
decode/dispatch stage.

2. Theinstruction-emaal detector or IR-detectoy mon-
itors the R-streamand detectsinstructionsthat could
have beenremoved from the program,and might pos-
sibly be removed in the future. The IR-detectorcon-
veys to the IR-predictor that particular instructions
should potentially be skippedby the A-streamwhen
they arenext encounteredRepeatedndicationsby the
IR-detectorbuild up confidencein the IR-predictor
andthepredictorwill remove futureinstancedrom the
A-stream.

3. The delay buffer is usedto communicatecontrol and
data flav outcomes from A-stream to R-stream [20].

4. The recovery contoller maintainsthe addressesof
memorylocationsthat are potentially corruptedin the
A-streamcontext. A-streamcontet is corruptedwhen
the IR-predictor removes instructionsthat should not
have beenremoved.Uniqueaddresseareaddedo and
removedfrom therecovery controllerasstoresarepro-
cessed by the A-stream, the R-stream, and the
IR-detectorThecurrentlist of memorylocationsin the
recovery controller is sufficient to recover the
A-streammemory contet from the R-streanms mem-
ory context. Theregisterfile is repairedby copying all
values from the R-streamitaister file.

A-stream from IR-detector R-stream

Branch Branch|

Pred. —— I-cache=<= IR-predictor Fcache«\ Pred.

T
by
Execute ' . |Execut
Core -1 | Delay Buffel Core
Reorder

LU] = ¢ [Reord:
""" .
Controller

IR-detector

D-cache

D-cache

Reorder
Buffer

to IR-predictor

FIGURE 3. Slipstream processor using atwo-way
chip m ultipr ocessor [27].

The diagramin Figure3 shaws the A-streamon the
leftmostcoreandthe R-streanon therightmostcore. This
is arbitraryanddoesnotreflectspecializingthe two cores.
A real designwould have one corethat flexibly supports
either the A-streamor R-stream.In ary case,thereis a
clearsymmetrythatmakesdesigninga singlecorenatural.
In both cores,thereis an interfaceto the fetch unit that
overrides the corventional branch predictor indicated
symbolically with an openswitch and a secondinterface
to the fetch unit. Likewise, both coresshav symmetric
interfaces to and from thexecution pipeline.

3.1. Creating the shorter program

3.1.1. BaselR-predictor. The IR-predictor resemblesa

conventionalbranchpredictor In this paperthelR-predic-

toris indexedidenticallyto agshae predictor[15], i.e.,an
index is formedby XORing the PC andthe globalbranch

history bits. Eachtable entry containsinformation for a

single dynamic basic block.

* Tag: Thisis the startPC of the basicblock andis used
to determinewhetheror not the entry containsinfor-
mation for the desired block.

¢ 2-bitcounter If theblockendsin aconditionalbranch,
the 2-bit counter predicts its direction.

* Confidencecountes. Thereis a resettingconfidence
counter[10] for eachinstruction in the block. The
countersare updatedby the IR-detector:a counteris
incremented if the corresponding instruction is
detectedhsremovable,otherwisethe counteris resetto
zero.If a counteris saturatedthenthe corresponding
instructionwill beremovedfrom the A-streamwhenit
is next encountered.

Every fetch cycle, the IR-predictor suppliesa branch
prediction and an instruction-emaal bit vector to the
A-stream fetch unit. The branch prediction is usedto
selecta PC for the next fetch cycle; potentialtarget PCs
arestoredwithin existing structuref the processare.g.,
pre-decodedargetsin the instructioncacheor branchtar-
get huffer.

The instruction-remwal bit vector reflectsthe stateof
the confidencecountersfor the basicblock beingfetched.
A bit is setin the vectorif the correspondingonfidence
counteris saturated,and this directs the fetch unit to
remove the correspondingnstructionfrom the A-stream.
Thus, although all instructionsin the basic block are
fetched,potentiallymary instructionsareremoved before
the decode stage of the pipeline.

In Figure3, the IR-predictoris shavn asa new compo-
nentoutsidethe processorcorethat overridesthe corven-
tional branch predictor Alternatively, since the
IR-predictoris built on top of a conventionalbranchpre-
dictor, the core’s predictorand the IR-predictor may be
integrated.

3.1.2. Improved IR-predictor: bypassing instruction
fetch. With the base IR-predictor described in
Section3.1.1,the A-streamis not reducedn termsof the
number of instructions fetched Only the number of
instructionsexecuteds reduced|f executionbandwidthis
relatively unconstrainedthen the A-streamwill not be
effectively reduced.

The A-streamis moreeffective if fewer fetch cyclesare
expendedon it thanon the full program.In Figure4, we

shav an exampleof how the numberof fetch cyclescan
potentially be reduced. Four basic blocks, labeled A

through D, are to be predictedand fetched. The corre-
sponding table entries in the IR-predictor are shown;

shadedentriesindicatethatall of the confidencecounters
are saturatedand the entire basic block is predictedfor

removal. The base IR-predictor predicts each block in

sequence requiring four cycles. During two of these
cycles,the instructioncachefetchesinstructionsandthen
throws themall away (basicblocksB andC). Clearly, only

two fetch cycles are required, but it is not known in

advancethatinstructionfetchingof blocksB andC canbe
bypassed.

base IR-predictor improved IR-predictor

o & H

o BB [

FIGURE 4. Reducing fetch cycles in the A-stream.

Interestingly the effect we wantto produce— bypass-
ing basicblocks— is the sameeffect producedby taken
branches. The improved IR-predictor shovn on the
right-hand side of Figure4 exploits the analogy The
improved predictor “converts” the branch terminating
block A into a taken branchwhosetaget is block D.
Below, we considertwo possiblewaysto implementthis
corversion.
¢ Two additional piecesof information are storedin

block As tableentry First, the predicteddirectionsof

ary bypassedbranchesnustbe stored,in this casethe
predicteddirectionsof the branchesn blocksB andC.

The reasonis all control flow information must be

pushedonto the delay buffer to be consumedby the

R-stream,in spite of partially bypassinginstruction

fetchingin the A-stream.Secondatargetaddressnust

be stored,in this casethestartPCof block D. Thetar-
get addressoverridesthe next PC computationper-
formed by the fetch unit. The additionalinformation

(bypassed predictions and corresponding target

address)is accumulatedfor block As entry as the

IR-detectorsequentiallyupdatesthe entriesof blocks

B, C, andD.

* Effectively, the branchterminatingblock A is now a
multi-way branch.It hasmorepotentialtargetsthanits
original takenandfall-throughtargetsbecausét inher-
its the tamgets of skipped blocks. The processos
branchtamet buffer may be modifiedto storemultiple
targets per branch. Now, dynamically-createdarget
addressedo not have to be storedin the IR-predictor

The bypassedredictionsstill needto be storedand,
cornveniently this path information is sufiicient to
selectthe appropriatetarget addressrom the branch
target huffer.

3.1.3. IR-detector. The IR-detector consumes retired
R-streaminstructions,addressesandvalues.The instruc-
tions are buffered and, basedon data dependences;ir-
cuitry amongthe buffers is dynamically configuredto
establishconnectiondrom consumeto producerinstruc-
tions.In otherwords,areversedataflav graph(R-DFG)is
constructed.The graph is finite in size, so the oldest
instructions exit the graph to make room for newer
instructions.Remaval informationfor exiting instructions
are used to update the IR-predictor

As new instructionsare meiged into the R-DFG, the
IR-detectorwatchesfor ary of threetriggeringconditions
for instructionremoval. Triggeringconditionsareunrefer-
encedwrites (awrite followedby awrite to the sameloca-
tion, with no intervening read), non-modifying writes
[12,14,16,29](writing the samevalue to a location as
already exists at that location), and correctly-predicted
branch instructions. When a triggering condition is
obsened, the correspondinginstruction is selectedfor
removal. Then, the circuits forming the R-DFG
back-propagtethe selectionstatusto predecessanstruc-
tions. Predecessommay alsobe selectedf certaincriteria
(described later) are met.

The IR-detectoris shavn in Figure5. A singleR-DFG
is shavn, however, the buffering could be partitionedinto
multiple smallerR-DFGs.Thelatterapproachreduceshe
size/complgity of eachindividual R-DFG but still allows
alargeanalysisscopefor killing values(observinganother
write to the same location).

OPERAND| Merge instruction

New Instr| cename Linto R-DFG | R-DFG
TABLE ‘

- select non-modifying writes and

unreferenced writes for removal
update
IR-predictor

VALID - kill instructions

BIT

FIGURE 5. IR-detector .

The operandrenametable in Figure5 is similar to a
register renamerbut it cantrack both memoryaddresses
andregisters A singleentryof theoperandenameableis
shavn in Figure5. To mege an instruction into the
R-DFG, eachsourceoperandis checled in the rename
tableto getthe mostrecentproducerof the value (check
thevalid bit andproducerfield). The instructionusesthis
information to establishconnectionswith its producer
instructions,.e., setup the back-propagtionlogic (if the
buffering is partitionedinto smallerR-DFGs,connections
cannotbe madeacrosgpartitionboundaries)Therefbit is
set for each sourceoperandindicating the values have

REF
BIT

VALUE PRODUCER|

been used. If the instruction writes a register/memory
location,the correspondingperandrenametableentry is

checledto detectnon-modifying/unreferencedrites and

to kill values, as folls.

1. If thevalid bit is set,andthe currentinstructionpro-
ducedthe samevalue as indicatedin the value field,
thenthe currentinstructionis a non-modifyingwrite.
The currentinstructionis selectedor removal asit is
memedinto the R-DFG. No fields are updatedin the
renametable entry since the old producerremains
“live” in this case.

2. If thevalid bit is setandthe new andold valuesdo not
match,theold produceiindicatedby the producerfield
is killed. Furthermorejf the ref bit is not set,thenthe
old produceris an unreferencedvrite andis selected
for removal. Finally, all fieldsin therenameaableentry
are updated to reflect them@roducer

Correctlypredictedbranchinstructionsareselectedor
removal when thg are meged into the R-DFG.

Finally, ary other instruction x may be selectedfor
removal via the R-DFG back-propagtion circuitry, if
three conditions are met.

1. All of X's dependeninstructionsmustbe known, i.e.,
X' s production(smustbekilled by otherproduction(s).

2. All of x's dependentnstructionsmustbe selectedor
removal.

3. All of x’'s dependentinstructions must have been
remoed by the IR-m@dictor this time asund

Whena basicblock becomeghe oldestbasicblock in
the analysisscope,the appropriateentry for that basic
block is updatedin the IR-predictor i.e., confidence
countersare incrementedfor selectedinstructions and
reset for non-selected instructions.

The third (highlighted) condition above is the major
innovation with respect to our previous instruc-
tion-remaval mechanismPreviously, this constraintwas
not neededbecausalependencehainswereconfinedto a
traceanda single confidencecounterwas maintainedfor
the entire trace; this ensuredproducersand consumers
wereremoved togetheror not at all, but it alsoresultedin
unrelatedchainsdiluting overall confidenceThe dilution
problemis fixed by maintainingconfidencefor instruc-
tions individually; however, this canleadto partial-chain
removal and the specificallybad situationof removing a
producerbut not the consumerThethird constraintabore
ensuresa producers countersaturateonly after all con-
sumers’ counterssaturate.The end result: 1) our new
approachmeasuresconfidencefor instructionsindividu-
ally, sounrelatednstructionsdo not dilute confidenceyet
2) dependencehainsstill tendto be remaved as a unit,
and chainsare not confinedwithin a small region other
than to reduce R-DFG complgy.

3.2. Delay buffer

Thedelaybuffer is asimpleFIFO queuethatallows the
A-streamto communicatecontrol flow anddataflow out-
comesto the R-streamThe A-streampushesboth a com-
plete history of branchoutcomesanda partial history of
operandvaluesonto the delay buffer. This is shavn in
Figure3 with a solid arrow from the reorderbuffer of the
A-stream(left-most processor}o the delay buffer. Value
history is partial becausenly a subsetof the programis
executedby the A-stream.Complete control history is
available, however, becausethe IR-predictor predictsall
brancheseven though the A-stream may not fetch all
instructions (Sectio.1.2).

The R-streampopscontrol and dataflow information
from the delaybuffer. Thisis shovn in Figure3 with solid
arrovs from delaybuffer to the instructioncacheandexe-
cutioncoreof the R-strean(right-mostprocessor)Branch
outcomedrom the delay buffer are routedto the instruc-
tion cacheto direct instructionfetching. Sourceoperand
valuesandload/storeaddressefrom the delay buffer are
mergedwith their respectie instructionsafterthe instruc-
tions have beenfetched/renamedndbeforethey enterthe
execution engine. To know which values/addressego
with which instructions, the delay buffer also includes
informationaboutwhich instructionswere skippedby the
A-stream (for which there is no data flow information
available).

3.3. IR-misprediction recovery

An instruction-emawal mispediction or IR-mispre-
diction, occurswhenA-streaminstructionswereremoved
that should not have been.The A-streamhasno way of
detecting the IR-misprediction, therefore, it continues
instructionretirementand corruptsits architecturalstate.
Two thingsarerequiredto recover from an IR-mispredic-
tion. First,theIR-mispredictiormustbedetectedand,sec-
ond, the corruptedstatemust be pinpointedfor efficient
recovery actions.

IR-mispredictions are detectable by the R-stream
becauseitherthe control or dataflow outcomesrom the
delaybuffer will not matchits redundantlycomputedout-
comes.In otherwords, IR-mispredictionsusually surface
as branch oralue mispredictions in the R-stream.

SomelR-mispredictiongake awhile to causeary visi-
ble symptomsin the A-stream.For example,a storemay
beremovedincorrectlyandthe next loadto the sameloca-
tion may not occurfor a very long time. The IR-detector
candetecttheselR-mispredictionanuch soonerby com-
paringits computedremoval information againstthe cor-
responding predicted removal information — if they
differ, computationwas removed that should not have

been.Thus,the IR-detectorsenesthe dual-roleof updat-
ing the IR-predictoand checking for IR-mispredictions.

When an IR-mispredictionis detected,the reorder

buffer of the R-streamis flushed.The R-streamarchitec-
tural statenow represents precisepointin the programto
which all other componentsn the processorare re-syn-
chronized.The IR-predictoris bacled up to the precise
programcounter the delay buffer is flushed,the reorder
buffer of the A-streamis flushed,andthe A-streams pro-
gram counter is set to that of the R-stream.

All thatremainsis restoringthe corruptedregisterand

memorystateof the A-streamsoiit is consistentwith the
R-streamBecauseegisterstateis finite, theentireregister
file of the R-streamis copiedto the A-streamregisterfile.
The movementof data(both registerandmemoryvalues)
occursvia the delay buffer, in the reversedirection, as
showvn with dashed arwes in Figure3.

Therecoverycontmoller recevescontrolsignalsandthe

addressesf store instructionsfrom the A-stream, the
R-stream andthe IR-detector asshown in Figure3. The
control signalsindicate when to startor stop tracking a
memory address(only unique addressesneed to be
tracked). After detectingan IR-misprediction,storesmay
either hae to be “undone” or “done” in the A-stream.

The recovery controller tracks addressesof stores
retired in the A-stream but not yet retired in the
R-stream.After detectingan IR-misprediction,these
A-streamstoresmustbe “undone” sincethe R-stream
has not yet performed the companion, redundant store.
The recovery controller tracks addressesof stores
retired in the R-streamand skippedin the A-stream,
only until the IR-detectorverifies that the storesare
truly ineffectual. When an IR-misprediction is
detectedall unverified, predicted-inefectualstoresare
“done” in the A-stream by copying data from the
redundant locations in the R-stream.

4. Simulation environment

We developeda detailedexecution-drven simulatorof

aslipstreanprocessofThesimulatorfaithfully modelsthe
architecturedepictedn Figure3 andoutlinedin Section3:
the A-stream produces real, possibly incorrect val-
ues/addresseand branch outcomes,the R-streamand
IR-detector check the A-stream and initiate recovery
actions, A-stream state is recovered from the R-stream
state,etc. The simulatoritself is validatedvia a functional
simulator run independentlyand in parallel with the
detailedtiming simulator [26]. The functional simulator
checksretired R-streamcontrol flow and dataflow out-
comes.

The Simplescalaf3] compilerand ISA are used.We
use the SPEC95integer benchmarkg-O3 optimization)
run to completion (@blel).

TABLE 1. Benc hmarks.

benchmark input dataset instr. count
compress |40000 e 2231 124 million
gcc ccep.i -0 ccep.s 265 million
go 99 133 million
ipeg vigo.ppm 166 million
li test.Isp (queens 7) 202 million
m88ksim -c < ctl.in (dcrand.big) 121 million
perl scrabble.pl < scrabble.in 108 million
vortex vortex.in (persons.250) 101 million

TABLE 2. Micr oarchitecture configuration.

single processor core

size/assoc/repl = 64kB/4ay/LRU

line size = 16 instructions

2-way interlezed

miss penalty = 12ycles
size/assoc/repl = 64kB/4ay/LRU

line size = 64 bytes

miss penalty = 14ycles

reorder biffer: 64, 128, or 256 entries

instruction
cache

data cache

superscalar |dispatch/issue/retire bandwidth: 4-/8-/16yw
core n fully-symmetric function unitsn(= issue b/w)
n loads/stores pewycle (n = issue b/w)
address generation = §ate
execution |memory access = 3cles (hit)
latencies |integer ALU ops = 1 ycle

comple ops = MIPS R10000 latencies
new componentsfor dipstreaming

220¢entries
gshae-indexed (16 bits of global branch history)

IR-predictor [block size = 16
16 confidence counters per entry

confidence threshold = 32
R-DFG = 256 instructions, unpartitioned
data flav buffer: 256 instruction entries
control flov buffer: 4K branch predictions
of outstanding store addr unconstrained
recovery lateny (after IR-misp. detected):
recovery |® 5 gycles to start up revery pipeline
controller |e 4 rey. restoresixle (64 rgs performed 1st
® 4 mem. restoresycle (mem performed 2nd)
® [min. lateng (no memory) = 21yxles
Microarchitecturgparametersirelistedin Table2. The
top half of thetablelists parameter$or individual proces-
sorswithin a CMP or, alternatvely, a single SMT proces-
sor The bottom half describesthe four slipstream
componentsA large IR-predictor is used for accurate

| R-detector

delay buffer

instructionremoval. The removal confidencethresholdis
32.ThelR-detectohasa scopeof 256instructionsandthe
R-DFG is unpartitioned. The delay buffer stores 256
instructions(dataflow buffer) and4K branchpredictions
(control flow buffer). The recovery controller tracks ary

numberof store addressesalthoughwe obsere not too
mary outstandingaddressesn practice. The recovery
lateng (after the IR-mispredictionis detected)s 5 cycles
to startupthe recovery pipeline, followed by 4 register
restores perycle, and lastly 4 memory restores pgcle.

5. Results
5.1. Slipstream performanceresults

In this section,we comparethe performanceof eight
models. Three are superscalaconfigurations(SS). Four
are chip-multiprocessorconfigurations(CMP) with slip-
streaming Oneis a simultaneousnultithreadingconfigu-
ration (SMT) with slipstreaming.

* SS(64x4): A single 4-way superscalaprocessomwith

64 ROB entries.

* S5(128x8): A single8-way superscalaprocessowith

128 ROB entries.

* SS(256x16): A single 16-way superscalaiprocessor
with 256 RFOB entries.

* CMP(2x64x4): Slipstreamingon a CMP composeaf
two SS(64x4) cores.

¢ CMP(2x64x4)/byp: Sameas previous, but A-stream
can bypass instruction fetching.

* CMP(2x128x8): Slipstreamingon a CMP composed
of two SS(128x8) cores.

* CMP(2x128x8)/byp: Sameas previous, but A-stream
can bypass instruction fetching.

* SMT(128x8)/byp: Slipstreamingon SMT, wherethe

SMT is kuilt on top of SS(128x8).

For consistentcomparisonsthe same(gshae-based)
IR-predictorprovidesbranchpredictionsin all of the pro-
cessomodels,andthe basesuperscalaprocessomodels
ignore the instruction-remwal information. Performance
is measuredin retired instructions-pecycle (IPC). For
slipstreammodels, IPC is computedas the number of
retired R-stream instructions (i.e., the full program,
counted only once) divided by the number of cycles
requiredfor both the A-streamand R-streamto complete
(total execution time).

IPC performanceof the eight modelsis shavn in
Figure6. Thefirst conclusioris aslipstreanprocessocan
exploit a second potherwiseunusedprocessoto dramati-
cally improve single-program performance. From
Figure7, CMP(2x64x4)performson averagel2% better

than using only a single SS(64x4) processar And
CMP(2x128x8)performson average’% betterthanusing
only a single SS(128x8) processar Slipstreaming
degrades performancein jpeg, by 1% and 5% for
CMP(2x64x4) and CMP(2x128x8), respectiely. Jpeay's
A-streamis not reducedmuch and jpeg is alreadyquite
parallel; IR-mispredictions cause avecall dgyradation.

0SS (64x4)

B SS (128x8)
5 1| OSS (256x16) N
O CMP(2x64x4)
B CMP(2x64x4)/byp n

B CMP(2x128x8) _ | L
4 1 mcMP(2x128x8)byp [1
0 SMT(128x8)/byp | A o

03 B N (-

O T T T T T T
comp gcc go ireg li m88k perl
FIGURE 6. IPC results.

vortex

35%

O CMP(2x64x4) vs. SS(64x4)

B CMP(2x64x4)/byp vs. SS(64x4)
DOCMP(2x128x8) vs. SS(128x8)
O CMP(2x128x8)/byp vs. SS(128x8)

30%

25% +

N}
Q
X

15% A

,_\
S}
X

5% -

% IPC improvement

0% -

m88k perl vortex AVG

comp gcc go jp li

-5% -~

-10%
FIGURE 7. Performance improvement using a
second pr ocessor f or slipstreaming.

The secondconclusionis the benefitof slipstreaming
decreaseasmoreexecutionbandwidthis madeavailable.
This is evident from the first and third barsof Figure?.
For all except m88ksimand vortex, the performance
improvementof CMP(2x128x8)over SS(128x8)is less
than the improvementof CMP(2x64x4)over SS(64x4).
For example perl dropsfrom a 30%improvementdown to
a 15% improvementas the window size and issueband-
width of the processorcoreis doubled.This is evidence
for the aguments made in Secti@3.

The above result motivates reducing the number of
instructionsfetched in the A-stream,using the improved

IR-predictor (Section3.1.2). From Figure7,
CMP(2x64x4)/bypon averageperforms13% betterthan
SS(64x4), a modest change from CMP(2x64x4). As
expected|t is moreimportantto bypassnstructionfetch-
ing for larger processorcores. CMP(2x128x8)/bypon
average performs 10% better than SS(128x8),whereas
CMP(2x128x8)performs 7% better With the improved
IR-predictor slipstream performance improvement
increase$rom 8%to 16%for gcc from 8% to 14%for i,
from 17%to 21%for m88ksimfrom 15%to 19%for perl,
and from 15% to 20% forortex.

In Figure8, we comparethe performanceof slip-
streamingon two smallprocessor$o the performancef a
larger processarThe larger processohasthe sametotal
numberof ROB entriesand issuebandwidthas the two
smallerprocessorgombined.For half of the benchmarks
(perl, gcg li, m88ksinm, CMP(2x64x4)/bypactually per-
forms from 4% to 8% better than SS(128x8).Overall,
CMP(2x64x4)/bymperformscomparablyto themorecom-
plex, lessflexible SS(128x8)processor— within 5% on
average. The results are more pronounced for
CMP(2x128x8)/bypwhich on averageperforms7% bet-
ter than SS(256x16).

25%

T CMP(2x64x4)/byp vs. SS(128x8)
%
B CMP(2x128x8)/byp vs. SS(256x16)

% IPC difference

-35%

FIGURE 8. Perf. of slipstreaming on two small
processor s vs. perf . of a single lar ge processor .

Finally, we examinethe performanceof slipstreaming
on an SMT processarThe performancamprovementof
SMT(128x8)/bypover SS(128x8)is shavn in Figure9.
For half of the benchmarksperformanceimproves by
more than 10%. Gcg li, perl, and m88ksimimprove by
12%, 13%, 16%, and 19%, respecttrely. Performancds
degradedbetweenl% and4% for compess go, andvor-
tex, andover 25%for jpeg. Compessshaveda smallloss
evenfor the CMP(2x128x8)model,so one would expect
thesamefor SMT(128x8)/bypThereasons the A-stream
is less effective for compess and IR-mispredictions
degrade performance.Go was also borderline in the

CMP(2x128x8) case. Vortex and jpeg utilize the
SS(128x8)processowell — in fact, they exceedhalf of
the peaklPC — andthe A-streamstealsuseful processor
bandwidth from the R-stream.The effect is more pro-
nouncedor jpeg thanfor vortex becausépeg exhibits lit-
tle reduction in its A-stream (Figud®).

20%

(@ SMT(128x8)/byp vs. SS(128x8) |

15% 4

10%
5% 4

0% T
ch gcc

-5% -

J |

|g—e] jpe li m88k perl vortex

-10%
-15% -

% IPC Improvement

-20%

-25%

-30%

FIGURE 9. Performance impr ovement of
SMT(128x8)/byp over SS(128x8).

5.2. Instruction removal

Figure1l0 shavs the fraction of original dynamic
instructionsremoved from the A-stream.Nearly half of
the programis removed for gcg li, perl, andvortex, and
abouttwo-thirds of m88ksimis removed. About 20% of
compessis remwed, and only 10% fogo andjpeg.

100%

M prop writes/branches
90% + O prop writes

0 Owrites

80% 7 g prop branches

70% -_@branches

60% -

50%
40% -
30% -

20% -
o = =
0% T T T T

comp gcc go jpeg li m88k perl

fraction of dynamic instructions

vortex

FIGURE 10. Breakdo wn of instruction remo val.

Remwing only 10% of the programsimply doesnot
buffer the R-streanfrom mary branchmispredictionsBut
20% removal in compessis significant,andit is surpris-
ing slipstreamperformanceamprovementsare not higher
The problemwith compessis three-fold: there are fre-
guentbranchmispredictionstheir dependencehainsare
quite long, and the chainshave long-lateng arithmetic
operations.Remwing 20% of compess can perhaps
buffer the R-streamagainstary oneof thesethree,but not
two or three combined.

Figure10 alsobreaksdown the reasondor instruction
removal. On average branchesarethe primary source at
just over athird of the removedinstructions(“branches”).
Ineffectualwritesareaboutathird of removedinstructions
(“writes”). Amonginstructionsemoveddueto back-prop-
agation (“prop —"), most are in dependencehains of
removed branches (“prop branches”).

5.3. Prediction

In Figurell, we shav the performancamprovement
of three modelswith respectto SS(64x4).The first is
SS(64x4)with corventional value prediction added. A
large context-basedvalue predictor (CVP) [24] is used

(218 and 22° entriesin the first andsecondevels, respec-
tively). Theseconds CMP(2x64x4)/byphut the R-stream
doesnot useA-streamvaluesspeculatiely (“no valuepre-
diction”). The third is CMP(2x64x4)/byp.

We only considerbenchmarksthat shov reasonably
large improvementswith ary of the models(eliminating
compess go, jpeg). For gccandli, betterbranchpredic-
tion is the largestbenefitdue to slipstreamingnot value
prediction(we cantell becausehe secondandthird bars
areclose).Also, CVP providesonly minor improvements
for thesebenchmarksFor m88ksim value predictionis
thedominantfactorandCVP is superior For perl andvor-
tex, valuepredictionis thelargerbenefitdueto slipstream-
ing, however, CVP doesnot provide the same benefit.
Perhapsn perl, betterbranchpredictionis neededo bet-
ter exploit value predictions.

350 4| O3 SS(64x4) + context-based value prediction
B CMP(2x64x4)/byp -- no value prediction
30% + O CMP(2x64x4)/byp

25% -

20%

15% -

10% -

5% 1

% IPC improvement over SS(64x4)

0% -

comp gcc go jPeg li m88k perl vortex

-5%

FIGURE 11. Measuring the relative impor tance of
branc h and v alue prediction benefits.

6. Related work

Advanced-stam/Redundant-gam Simultaneous
Multithreading(AR-SMT) [20] is basedon therealization
that microarchitecturgerformancearendsandfault toler-
ancearerelated.Time redundang — runninga program
twice to detecttiransienfaults— is cheapethanhardware
redundang but it doublesexecutiontime. AR-SMT runs
thetwo programssimultaneously28] but delayed(via the

delaybuffer), reducingthe performanceoverheadof time
redundang. Resultsare comparedby communicatingall
retired A-streamresultsto the R-streamandthe R-stream
performsthe checks Here,the R-streamleveragesspecu-
lation conceptg13] — the A-streamresultscanbe usedas
ideal predictions. The R-stream fetches/gecutes with
maximum efficiengy, further reducing the performance
overheadf timeredundang. And themethodfor compar-
ing the A-stream and the R-streamis corveniently in
place,in the form of misprediction-detectiohardware.In
summary AR-SMT leverageghe underlyingmicroarchi-
tectureto achieve broadcoverageof transientfaults with
low overheadpothin termsof performanceand changes
to the &isting design.

DIVA [2] and SRT [18] are two other examplesof
fault-tolerant architectures designed for commodity
high-performancemicroprocessorsDIVA detectsa vari-
ety of faults, including designfaults, by usinga verified
checler to validatecomputationof the complex processor
core.DIVA leveragesan AR-SMT technique— the sim-
ple checleris ableto keeppacewith the coreby usingthe
valuesit is checkingas predictions.SRT improves on
AR-SMT in avariety of ways,includinga formal andsys-
tematictreatmentof SMT appliedto fault tolerance(e.g.,
sphees of eplication).

Researchersave demonstratea significantamountof
redundanyg, repetition,and predictability in generalpur-
pose programs[6,8,9,12,13,14,16,24,25,29]his prior
researctforms a basisfor creatingthe shorterprogramin
slipstreanprocessorsA technicalreport[21] shovedl) it
is possibleto ideally constructsignificantly reducedpro-
gramsthatproducecorrectfinal output,and2) AR-SMT is
a cowenient gecution model toxloit this property

Tullsen et. al. [28] and Yamamotoand Nemirovsky
[31] proposedsimultaneousmultithreading for flexibly
exploiting thread-l@el and instruction-level parallelism.
Olukotun et. al. [17] motiate using chip multiprocessors.

Fargy et. al. [7] proposedesolvingbranchmispredic-
tions early by extracting the computation leading to
branchesZilles and Sohi[33] similarly studiedthe com-
putation chains leading to mispredicted branchesand
loadsthat missin the level-two cache.They suggestden-
tifying a difficult subsetof the programfor pre-execution
[22,23], potentially prefetching branch predictions and
cachelines that would otherwisebe mispredictionsand
cachemisses.Pre-eecutiontypically involves pruning a
small kernelfrom a larger programregion andrunningit
asa prefetchengine[22]. Rothand Sohi[23] developeda
newv paradigm called Speculative Data-Driven Multi-
threadingthatimplementre-executiongenerally Rather
than spavn mary specialized kernels on-the-fly our
approachusesa single,functionally complete andpersis-
tent program (A-stream). Slipstreamingavoids the con-

ceptualand possibly real compleity of forking private
contets, within which the specializedknels must run.

Speculatre multithreadingarchitecturede.g.,1,17,26]
speedup a single programby dividing it into specula-
tively-parallel threads.The speculationmodel usesone
architectural context and future threads are spavned
within temporaryprivatecontexts, eachinheritedfrom the
precedingthreads contect. Future thread contets are
mergedinto the architecturakontet asthreadscomplete.
Our speculationmodel usesredundantarchitecturalcon-
texts, so no forking or memging is needed.And strictly
speakingthereareno dependenceletweenthe architec-
turally-independenthreadsyather outcomesarecommu-
nicatedas predictionsvia a simple FIFO queue.Re&gister
and memorymechanismf the underlyingprocessorre
relatively unchangedby slipstreaming (particularly if
thereis an existing interfacefor consumingvalue predic-
tions at the renamestage).In contrast,speculatre multi-
threading often requires elaborate interthread
register/memory dependence mechanisms.

SSMT [5] runs microthreadssimultaneouslywith an
applicationto optimizeits performanceMicrothreadsare
small routinesdesignedin conjunctionwith applications
and the processarFor example, microthreadsmay per-
form cacheprefetching,improve branchpredictionaccu-
ragy [5], or optimize &ception handling [32].

The DataScalaparadigm[4] runsredundanprograms
on multiple processeaand-memorycores to eliminate
memory read requests.

7. Summary and conclusions

Integrating multiple architecturalcontexts on a single
chipis animportanttrend,andit is difficult to conceve of
moreeffective usesor abillion transistorsTheslipstream
paradigmextractsmorefunctionalityfrom a CMP or SMT
processar without fundamentally reoiganizing it. The
operating system may flexibly chooseamong multiple
operatingmodesbasedon systemand userrequirements:
high job throughputand parallel-programperformance
(corventional SMT/CMP), improved single-progranper-
formanceand reliability (slipstreaming)or fully-reliable
operationwith low impacton single-progranperformance
(AR-SMT / SHI).

In this paper we developeda new and more effective
instruction-remgal mechanismfor creatingthe shorter
program.lt measuresemoval-confidencen aperinstruc-
tion basis,eliminatingmary flaws of the prior trace-based
approachand leveragingcornventional branchpredictors.
The new approachreducesthe A-stream significantly
(often by 50%), bt also accurately

We alsodevelopeda newx andsimplesequencingnech-
anism that enablesthe A-stream to skip over large
dynamic sequences of instructions.

Finally, we reasonedaboutthe sourcesof slipstream
performanceandits limitations. This focusedour explora-
tion of the architecture and led us to soreg fesults.

* A 12%averageperformancémprovementis achieved
by harnessingn otherwiseunusedadditionalproces-
sorin a CMP. Slipstreamingusingtwo small supersca-
lar cores often achieves similar IPC as one large
superscalacore,but with a potentiallyfasterclock and
a moreflexible architecture For programswith suffi-
ciently reducedA-streams slipstreamingon an 8-way
SMT processoimprovesperformancdrom 10%-20%.

* For someprograms performancamprovementis due
to the A-stream resolving branch mispredictionsin
adwance.Othersbenefitlargely from A-streamvalue
predictions,and the effect is not always reproducible
using comentional \alue prediction tables.

* As more executionbandwidthis madeavailable, slip-
streaming provides less performanceimprovement.
But if the A-streamis ableto bypassnstructionfetch-
ing, slipstreamingretains its edge — becauseraw
instructionfetchbandwidthis not aseasilyextendedas
raw execution bandwidth.

References

[1] H.Akkary and M. Driscoll. A Dynamic Multithreading
Processor31st Int'l Symp. on Miaarch., Dec 1998.

[2] T. Austin.DIVA: A ReliableSubstratdor DeepSubmicron
MicroarchitectureDesign.32ndInt’l Symp.on Microarch.,
Nov. 1999.

[3] D.Burger, T.Austin, and S.Bennett. Evaluating Future
Microprocessors:The SimplescalarToolset. Tech. Rep.
CS-TR-96-1308, CS Dept., Uniof Wisconsin, July 1996.

[4] D. Burger, S. Kaxiras,andJ. GoodmanDataScalaArchi-
tectures24th Int'l Symp. on Comp. ér., June 1997.

[5] R. Chappell,J. Stark, S. Kim, S. Reinhardt,and Y. Patt.
SimultaneousSubordinateMicrothreading (SSMT). 26th
Int'l Symp. on Comp. &h., May 1999.

[6] D. ConnorsandW.-M. Hwu. CompilerDirectedDynamic
ComputationReuse:Rationaleand Initial Results.32nd
Int'l Symp. on Micoarch., Nov. 1999.

[7] A. Farg, O. Temam,R. Espasaand T. Juan. Dataflov
Analysis of Branch Mispredictionsand its Application to
Early Resolutionof BranchOutcomes31stint'l Symp.on
Microarch., Dec. 1998.

[8] A. Gonzélez,).Tubella,andC. Molina. Trace-Lerel Reuse.
Int’l Conf. on Rarallel ProcessingSep. 1999.

[9] J.HuangandD. Lilja. Exploiting BasicBlock ValueLocal-
ity with Block Reuse5th Int'l Symp.on High-Perf. Comp.
Arch., Jan. 1999.

[10] E. JacobsenE. Rotenbeg, andJ. Smith. AssigningConfi-
denceto ConditionalBranchPredictions29th Int'l Symp.
on Microarch., Dec. 1996.

[11] M. LamandR. Wilson. Limits of ControlFlow on Parallel-
ism.19th Int'l Symp. on Comp. ér,, May 1992.

[12] K. Lepakand M. Lipasti. On the Value Locality of Store
Instructions27th Int'l Symp. on Comp. ér., June 2000.

[13] M. Lipasti. ValueLocality andSpeculatie Execution.PhD
Thesis, Carrgie Mellon Unversity, April 1997.

[14] M. Martin, A. Roth,andC. Fischer Exploiting DeadValue
Information.30th Int'l. Symp. on Mi@arch., Dec 1997.

[15] S. McFarling. Combining Branch Predictors.Tech. Rep.
TN-36, WRL, June 1993.

[16] C.Molina, A. GonzalezandJ. Tubella.ReducingMemory
Traffic via Redundant Store Instructiom$PCN 1999.

[17] K. Olukotun, B. Nayfeh, L. Hammond,K. Wilson, and
K.-Y. Chang.The Casefor a Single-ChipMultiprocessor
ASPLOS-VIIOct. 1996.

[18] S. Reinhardtand S. Mukherjee.TransientFault Detection
via SimultaneousMultithreading. 27th Int'l Symp. on
Comp. Ach., June 2000.

[19] D. Ronfeldt. Social Scienceat 190 MPH on NASCAR's
BiggestSuperspeedays. First Monday Journal (on-line),
Vol. 5 No. 2, Feb7, 2000.

[20] E.Rotenbeg. AR-SMT: A MicroarchitecturalApproachto
Fault Tolerancein Microprocessors29th Int'l Symp.on
Fault-Tolerant ComputingJune 1999.

[21] E. Rotenbeg. Exploiting Large Ineffectual Instruction
Sequences.€ch. Rep., ECE Dept., NC State, MN$999.

[22] A. Roth, A. Moshovos, and G. Sohi. DependencéBased
Prefetchingor Linked DataStructuresASPLOS-VII] Oct.
1998.

[23] A. RothandG. Sohi.Speculatie Data-DrivenMultithread-
ing. Tech.Rep.CS-TR-2000-1414CS Dept.,Univ. of Wis-
consin, April 2000.

[24] Y. SazeideandJ.E. Smith.ModelingProgramPredictabil-
ity. 25th Int'l Symp. on Comp. ér., June 1998.

[25] A. SodaniandG. S. Sohi.DynamiclnstructionReuse24th
Int'l Symp. on Comp. A&h., June 1997.

[26] G. Sohi,S.BreachandT. N. Vijaykumar MultiscalarPro-
cessors22nd Intl. Symp. on Comp. e, June 1995.

[27] K. Sundaramoorty Z. Purser and E. Rotenbeg. Slip-
streamProcessorsimproving both Performanceand Fault
Tolerance ASPLOS-IXNov. 2000.

[28] D. Tullsen, S. Eggers,J. Emer H. Levy, J. Lo, and R.
Stamm.Exploiting Choice:InstructionFetchand Issueon
an ImplementableSimultaneousMultithreadingProcessor
23rd Int'l Symp. on Comp. &hn., May 1996.

[29] D. TullsenandJ. Seng.Storageles¥aluePredictionUsing
Prior Register Values.26th Int'l Symp.on Comp. Arch.,
May 1999.

[30] D. Wall. Limits of Instructional-Leel Parallelism. ASP-
LOS-IV April 1991.

[31] W. YamamotoandM. Nemirovsky. IncreasingSuperscalar
Performancethrough Multistreaming. Parallel Architec-
tures and Compilationethniques June 1995.

[32] C. Zilles, J. Emer andG. Sohi. The Useof Multithreading
for ExceptionHandling. 32nd Int'l Symp.on Microarch.,
Nov. 1999.

[33] C. Zilles and G. Sohi. Understandindhe Backward Slices
of Performanc®egradinginstructions27thInt’'l Symp.on
Comp. Ach., June 2000.

