
Abstract
Registerintegration (or simplyintegration) is a mechanismfor
incorporating speculativeresults directly into a sequential
executionusingdata-dependencerelationships.In this paper,
weuseintegration to implementsquashreuse, thesalvagingof
instruction resultsthat were needlesslydiscarded during the
course of sequentialrecovery from a control- or data- mis-
speculation.

To implement integration, we first allow the results of
squashedinstructionsto remain in the physical register file
pastmis-speculationrecovery. Astheprocessorre-tracespor-
tions of the squashedpath, integration logic examineseach
instructionas it is beingrenamed. Using an auxiliary table,
this circuit searchesthe physicalregister file for the physical
register belongingto the correspondingsquashedinstanceof
the instruction. If this register is found, integration succeeds
and the squashedresult is re-validatedby a simpleupdateof
the renametable. Onceintegrated,an instructionis complete
andmaybypasstheout-of-order core of themachineentirely.
Integration reducescontention for queuing and execution
resources, collapsesdependentchains of instructions and
acceleratesthe resolutionof branches. It achievesthis using
only rename-tablemanipulations;no additional values are
read from or written to the physical registers.

Our preliminary evaluationshowsthat a minimal integration
configuration canprovideperformanceimprovementsof up to
8% when applied to current-generation micro-architectures
and up to 11.5% when applied to more aggressivemicro-
architectures. Integration alsoreducestheamountof wasteful
speculationin themachine, cuttingthenumberof instructions
executedby up to 15%andthenumberof instructionsfetched
along mis-speculated paths by as much as 6%.

1 Intr oduction

Modernmicroprocessorsrely heavily onspeculativeexecution
to achieve performance.Sequentialprocessors(onesthatexe-
cutesequentialprograms)speculateon both control anddata,
executinginstructionsbeforeall of their inputdependencesare
known with certainty. Successfulspeculationimproves per-
formanceby sparingthe speculatedinstructionsthe wait of
having their executioncontext verified. On the other hand,
unsuccessfulspeculation,or mis-speculation, hurts perfor-
manceby forcing theprocessorto recover to someprior non-
speculative stateand start over. This paperpresentsregister
integration, a mechanismfor overcomingan inherentineffi-
ciency in conventional sequential mis-speculation recovery.

The inefficiency we speakof is born of a basicantagonistic
combinationfoundin sequentialprograms.While asequential
programis composedof many locally independentcomputa-
tions, the stateof the programis only definedsequentiallyat
dynamicinstructionboundaries.Sincemis-speculationrecov-
ery is definedin termsof this sequentialstate,a mis-specula-
tion in one computationinadvertently but necessarilycauses

valid work from sequentiallyyounger computationsto be
aborted,or squashed, and re-executed. Register integration
can be usedto perform squashreuse[2, 18], to salvagethe
resultsof squashedcomputationsthat arein fact control- and
data-independentof the particularmis-speculationevent that
precipitated the recovery action.

Many processorsimplementspeculationusinga level of indi-
rection that mapsthe architecturalregister namespaceto a
larger physical register storagespace. The larger physical
spaceallows multiple versionsof eacharchitecturallocation
(all but one of which is speculative) to simultaneouslyco-
exist. Successfulspeculationinvolvesthepromotionof newer
mappingsto non-speculative status;mis-speculationrecovery
restoresprior mappingsand recycles the speculative storage.
Integration is motivatedby the observation that only restora-
tion of previousmappingsis requiredfor correctrecovery. If
thespeculativevaluesareleft intactpasta recoveryevent,then
shouldtheprocessorre-tracepartof thesquashedpathanddis-
cover that someof the instructionswereusefulafter all, only
thecorrespondingmappingswill needto be restored;theval-
uesthemselveswill alreadyexist andwill not needto be re-
computed.

Thematchingof squashedresultswith re-tracedinstructionsis
accomplishedusinga secondmappinginto thephysical regis-
ter file, the Integration Table (IT). The IT differs from the
sequentialmapping(map table) in a fundamentalway. The
maptabledescribesthe contentsof the physical registersin a
transient,sequentiallydependentway from the point of view
of thearchitecturalregisters. In contrast,the IT describesthe
contentsof the physical registersin a persistent,order-inde-
pendentway thatreflectstheoperationsanddataflow relation-
ships used to create the values they contain. While an
instructionis beingregister-renamed,the IT is usedto search
the physical registerfile for a physical register that holdsthe
resultof a previoussquashedinstanceof thesameinstruction.
If a registeris foundsuchthat its creatinginstructioninstance
hadthesamephysicalregisterinputsasthecurrentlyrenamed
instance,then the currently-renamedinstruction is “recog-
nized” ashaving beenpreviously executedandsquashed.The
instructionis integratedby settingthesequentialmappingfor
its outputto point to thephysical registerallocatedduring the
initial (squashed)execution. The integrated instruction is
completefor all intentsandpurposes;it cancommitassoonas
the retirement algorithm allows.

Integrationhasmany advantages.Obviously, it reducescon-
sumptionof and contentionfor executionresources. It also
collapsesdata-dependentchainsof instructions:a data-depen-
dentchainof dependentinstructionscannotbe executedin a
single cycle, but a completedchain of instructionsmay be
integratedin a singlecycle. Integratedbranchinstructionsare
resolved immediately, and should these be mis-predicted

Register Integration: A Simple and Efficient Implementation of Squash Reuse

Amir Roth and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison

{amir, sohi}@cs.wisc.edu

branchesthe mis-predictionpenaltyand subsequentdemand
on the fetch engineare also reduced. From an engineering
standpoint,integrationis simpleto implement. It is unambig-
uously correct,involves no explicit verification and doesnot
requireadditionaldatapathsto eitherreador write any values
into the physical registers. In general,integration involves
modificationsonly to the register renamingstagein the pro-
cessor; the rest of the pipeline is oblivious to its existence.

Our initial experimentsshow that a minimal integrationcon-
figurationcanachieve speedupsof up to 8% on a representa-
tive current-generationmicroarchitecture. We estimatethat
the speedupincreasesto up to 11.5% for more aggressive
microarchitectures. Integration also reducesthe level of
wasteful speculationin a processor, cutting the number of
instructionsfetchedalongmis-speculatedpathsby asmuchas
6% and the number of instructions executed by 15%.

Therestof thepaperis organizedasfollows. Thenext section
presentsthebasicintegrationalgorithmandarguesfor its cor-
rectnessproperties.Section3 addressessomeissuesinvolved
in theimplementationof integration. In section4 we evaluate
integrationusingcycle-level simulation. Section5 discusses
related work. Section 6 presents our conclusions.

2 Integration

In thiswork, weuseintegrationto implementsquashreuse,the
salvagingof resultsthat wereunnecessarilydiscardedduring
the processof sequentialmis-speculationrecovery. In this
section, we discuss the basic integration algorithm and
describetheprinciplesthatallow it to accomplishits goal in a
straightforward way. We specificallyaddressthe integration
of load instructions, which requires additional attention.

2.1 Basic Algorithm

During the course of processing,the program’s dataflow
graph,in the form of the resultsof its individual instructions,
is storedin thephysical registerfile. At any point in thepro-
gram,the“active” vertices(results)of this graphareavailable
through a set of mappingsthat maps architecturalregister
namesto physical register locationsand their values. New
portionsof the dataflow graphcan only be attachedto these
“active” vertices. As eachinstructionis addedto thegraph,a
physical register to hold its value is allocatedandmappedto
the architecturaloutput. Each instruction is annotatedwith
boththephysicalregisterholdingits valueandtheprior physi-
cal register mapping of the same architectural location.
Recovery entailsbacktrackingover a portion of the program,
restoringthe previous mappingof eachinstruction’s output
while recycling the storage for the squashed result.

Integration exploits the observation that mis-speculation
recovery is obligated only to restoresomeprior sequential
mappinginto thephysicalregisterfile. Thattheresultsassoci-
ated with the discardedmappingsare also recycled during
recovery is an implementationconvenience; leaving them
intactpastthemis-speculationdoesnot impactcorrectness(of
course,they must be recycled eventually lest the processor
“leak” away all physical registers). Assumingthe resultsare
kept, let us considerthe point immediatelyafter the comple-
tion of a recovery sequence.Justat this point, all squashed
instructionsare, in principle, still “attached” to the current

state(dependencegraph)of theprogramasdefinedby thereg-
istermapping. The inputsof theoldestsquashedinstructions
arefound in this mapping. The fact that the inputsarevalid
validatestheoutputs,which arethemselvesinputsof younger
squashedinstructions,andsoon. Integrationis theprocessof
transitively recognizingthisvalidity, instructionby instruction.
For every instructionsequencedby theprocessor, the integra-
tion logic looksfor theresultof asquashedinstructionthathad
the sameinput mappings. If oneis found, the corresponding
physical register is “un-squashed”or “pulled back into the
sequentialflow” simply by settingthe sequentialmappingto
point to it. This actionre-validatesthephysical registermap-
ping, andmakesthe input mappingsof squashedinstructions
thatdependon it valid, allowing themto besubsequentlyinte-
grated. Notice that this samemechanismnaturallyavoids the
re-useof instructionswhosedatainputshave beeninvalidated.
As the processorsequencesinstructionsfrom pathsdifferent
thanthe squashedone,the resultsof theseinstructionscreate
mappingsto new physical registersnot found in thesquashed
dataflow graph. Thesenew mappingseffectively “detach”
thoseportionsof the squasheddataflow graphthat dependon
the correspondingarchitecturalname,andprevent themfrom
being integrated.

Integrationof a resultrequireslocatinga squashedinstanceof
the correspondinginstruction with input physical registers
identical to thoseof the currentinstancebeing renamed. To
facilitatethissearch,integrationrelieson theIntegrationTable
(IT), an auxiliary structurethat indexes and tags squashed
resultsusing instructionidentity and input mappinginforma-
tion. Eachentry in the IT correspondsto a squashedinstruc-
tion instance and contains that instruction’s PC and the
physical registersusedfor that instance’s inputs and output.
The IT alsocontainsthreefieldswhosepurposewill bemade
clear later: Jump-Target which is meaningfulonly for control
instructions,and Memory-Addressand Memory-Value fields
which are meaningful only for loads and stores.

We illustratethe basicalgorithmusingan example. Figure1
showsashortprogramfragmentwith four variablesX,Y,Z and
W each allocatedto a different logical register. For each
dynamicinstruction,we show the instructionprecededby its
PC, the stateof the Map and IntegrationTablesimmediately
after the renamingof the instructionand descriptionsof the
actionstakingplaceduringsequentialprocessingandin theIT.
The shadedboxesandcircled markershighlight the handling
of instructionA5. The programundergoesthreeprocessing
phases.In the first, instructionsA1 throughA8 arerenamed
and executed;a new physical register is allocatedto each
newly createdresult (marker 2). The secondphasebegins
after all the instructionshave completedexecution when a
branchmis-predictionis detectedat instructionA3. Instruc-
tions A8, A7, A6, A5 andA4 are recoveredin reverseorder
and the original mappings for their output registers are
restored(marker 3). However, insteadof recycling thephysi-
cal registers,eachresultis enteredinto theIT andtaggedwith
theinstructionPCandphysicalregisterinputsusedto createit
(marker 4). Integration comesinto play in the final phase.
Having recoveredfrom themis-prediction,thesequentialpro-
cessorresumesfetchingat the re-convergentpoint beginning
at A5. We follow the renamingand potential integration of
each instruction carefully.

Intuitively, the re-tracedinstanceof A5 shouldbe integrated
sinceremoving A4 did not changethe value of Y. Indeed,

when A5 is renamedfor a secondtime Y is mappedto 51
(marker 5), the samemapping it had during A5’s original,
squashedexecution(marker 1). Properly, the IT containsan
entry for an instanceof A5 with input physical register 51
(marker 6). By comparingPC/input-register tuplesfrom the
dynamicinstructionandmaptablewith the correspondingIT
tuples(marker 7 with 8, marker 5 with 6), we determinethat
integrationcantakeplace. Theactitself consistsof settingthe
outputmappingof A5 to the physical registeroriginally allo-
catedfor it, 53 (marker9). TheIT entryis removedsothatthe
register will not be integrated by another instruction.

WhenA6 is renamedfor the secondtime, it finds its input X
mappedto register50. ChangingthepathhasremovedA4 and
changedthe value of X with respectto A6, invalidating it.
This invalidationis naturallyreflectedin theIT, asnoentryfor
A6 with aninput of 50 is found. TheA6 IT entryhas52 asits
input; 52 wascreatedby A4, which wassquashedandnot re-
traced. Withoutamatch,theinstructionis left in theIT until it
is evicted. A new physicalregister, 57, is allocatedto thecur-
rent instance of A6.

Recall,whenwe integratedA5, we enteredits output(53) into
themaptable. Thatactionsetthestagefor A7, aninstruction
thatdependson A5, to be integratednow. Thesquashedver-
sion of A7 wasexecutedwith input register53, the outputof
the squashedA5. WhenA7 is re-traced,its input is again 53
thanksto theintegrationof A5. A7 is integratedin exactly the
same manner that A5 was.

Thefinal instructionin thegroup,A8, shouldnotbeintegrated
sinceit dependson A6, which wasitself not integrated. Such
indeedis thecase. WhenA6 wasnot integrated, a new map-
ping (57) wascreatedfor X. This new mappingpreventsA8
from being integrated,muchlike the removal of A4 changed
the mapping that prevented A6 from being integrated.

In a four wide super-scalarmachine,the integrationdecision
on thesefour instructionscanbemadein parallel. How this is
doneis thesubjectof a futuresection. However, theexample
demonstratedthe four possiblecasesfor super-scalarintegra-
tion: basicintegrationof an instruction(A5), basicnon-inte-
grationof aninstruction(A6), theintegrationof aninstruction
that dependson an integratedinstruction(A7), and the non-
integrationof an instructionthat dependson a non-integrated
instruction (A8).

2.2 Integrating Loads

An integratedinstructioncanbethoughtof ashaving two exe-
cutions:a physicalexecutionwherethe instructionis actually
executedandthensquashed,andanarchitectural executionin
which the integrated instruction is supposedto executebut
doesn’t actually do so. For most types of instructions,the
algorithmwe have shown sofar is perfectlysafe. Thecombi-
nationof operationandvalid input values,denotedby PCand
physical registersrespectively, guaranteesthat the resultsof
thephysicalexecutionareidenticalto thosethatwouldbepro-
ducedin thearchitecturalexecution,allowing theformerto be
substitutedfor the latter. Loadsarethe exception. The inte-
grationof aparticularloadis notguaranteedto besafebecause
aconflictingstoremayhaveexecutedbetweentheload’sphys-
ical andarchitecturalexecutions. A loadthat is eitherblindly
integrateddespitesucha storeconflict or that experiencesa
post-integration conflict is termedmis-integrated. Mis-inte-
grations jeopardize correctness.

Loadspresenta problembecausephysical registernamesare
not sufficient to detectload/storecollisions. There are two
ways to ensurethat mis-integratedloads are not allowed to
retire. Thefirst is to re-executeall integratedloadsandtreata
changein theoutputvalueasamis-speculation.Thesecondis
to storedataaddresses(andpotentiallyvalues)with loadsin
the IT andusestoresto invalidatematchingloads. The first

Insn Action Dynamic Insn Map Table Integration Table IT Action
X Y Z W PC I1 I2 O

Rename/Alloc A1: X = 0; 50 47 48 49 No Match
Rename/Alloc A2: Y = 1; 50 51 48 49 No Match
Rename/Alloc A3: if (Z == 0) 50 51 48 49 No Match
Rename/Alloc A4: X = 1; 52 51 48 49 No Match
Rename/Alloc A5: Y++; 52 53 48 49 No Match
Rename/Alloc A6: X++; 54 53 48 49 No Match
Rename/Alloc A7: W = Y * Y; 54 53 48 55 No Match
Rename/Alloc A8: Z = X * Y; 54 53 56 55 No Match
Recover A8: Z = X * Y; 54 53 48 55 A8 54 53 56 Enter
Recover A7: W = Y * Y; 54 53 48 49 A7 53 53 55 Enter
Recover A6: X++; 52 53 48 49 A6 52 54 Enter
Recover A5: Y++; 52 51 48 49 A5 51 53 Enter
Recover A4: X = 1; 50 51 48 49 A4 50 52 Enter
Rename/Integrate A5: Y++; 50 53 48 49 A5 51 53 Match/Remove
Rename/Alloc A6: X++; 57 53 48 49 A6 52 54 No Match/Leave
Rename/Integrate A7: W = Y * Y; 57 53 48 55 A7 53 53 55 Match/Remove
Rename/Alloc A8: Z = X * Y; 57 53 58 55 A8 54 53 56 No Match/Leave

FIGURE 1. A Working Exampleof Integration. Showsthethree-phaseprocessingof a seriesof instructions.
The three phasesare: (i) initial execution(ii) recovery and (iii) squashed-pathre-execution. The shaded
quantities and circled markers highlight the actions surrounding instruction A5.

�

�

� ���

�

��

methodusesa simple IT but reducesthe positive impact of
successfulintegration, forcing integrated loads to consume
execution bandwidth. The secondincreasesthe potential
impactof successfulintegration,but complicatestheIT some-
what. Our framework models store invalidations.

3 Implementation Aspects

In this sectionwe discussseveral implementationaspectsof
integration including all modificationsthat must be madeto
the basemicroarchitecture,the integration circuit itself, and
the mechanism that ensures the safe integration of loads.

3.1 Base Micro-architecture Requirements

Integrationis not a techniquethatcanbeappliedto all specu-
lative microarchitectures.Its implementationrequiresthat the
base microarchitectureallow speculative results to remain
intact pasta mis-speculationrecovery actionandsupportthe
out-of-order allocation and freeing of speculative storage.

Theserequirementsdisqualify many current microarchitec-
tures. In-order speculative microarchitectureslike Sun’s
UltraSparc-III that useworking (future) registerfiles indexed
by architectural register number both disallow arbitrary
assignmentsof physical results to architecturalnamesand
overwritethemis-speculatedinstructionsresultsduringrecov-
ery. Intel’s P6 [10] coreprocessorsandHAL’s SPARC64 V
[7] keepspeculative resultsin the re-orderbuffer, preventing
their preservation past a mis-speculationrecovery. IBM’ s
Power [19] processorsand (we believe) AMD’ s K7 [5] have
physical register files separatefrom the re-orderbuffer, but
alsohaveanarchitecturalregisterfile andrequirethatphysical
registersbe allocatedand freed in-order. Microarchitectures
with physical registermodelsthat can supportintegrationare
theout-of-orderAlphaprocessorsstartingwith the21264[11],
those of MIPS beginning with the R10000 [21], and (we
believe) Intel’s Pentium 4 NetBurst microarchitecture [9].

3.2 A Micro-architecture with Integration

We now examinea microarchitecturethat includesintegration
andcommenton changesin the flow of instructionsthrough
themodifiedpipeline. A pipelinewith integrationis shown in
Figure2(a); the structuralmodificationsandnew register tag
anddatapathsarein bold. Wework from thebackof thepipe-
line to the front, explaining how instructionsbecomecandi-
datesfor integrationbeforedealingwith theflow of integrated
instructions.A later subsectionis dedicatedto explaining the
integration circuit itself in detail.

Sinceintegrationdealswith salvagingthe resultsof squashed
instructions,the most natural time to insert instructionsinto
the IT is duringmis-speculationrecovery. Implementationof
IT insertion is straightforward for micro-architecturesthat
implementrecovery using serial rollback. Most microarchi-
tectures,however, including the Alpha 21264[11] andMIPS
R10000[21], implementrecoveryasamonolithiccopy from a
checkpoint. IT insertionis slightly moreinvolvedin this case,
but its particularsdo not affect integrationperformance.For
clarity, we explain the process as serial.

One importantqualificationto the IT entry procedureis the
exclusion of all instructionsthat have not completedexecu-

tion. The reasoningbehindthis decisionis that it is the inte-
gration of completedinstructions that contributes most to
performance.Integrationprovidestwo mainperformanceben-
efits: it allows instructionsto bypassthe issueengineand it
collapsesdependentchainsof instructions. Neither of these
benefitsappliesto instructionsthat have not issuedandonly
the first appliesto instructionsthat have issuedbut not com-
pleted. However, thenumberof instructionslikely to be inte-
gratedwhile in this post-issue/pre-completionstateis small,
andin returnfor forfeiting them,we simplify the handlingof
integratedinstructionsby assumingthatall integratedinstruc-
tions are complete. Faulting instructionsare also excluded
from theIT, sincefaultsmayhavesideeffectsthatwouldneed
to be reproduced on integration.

Oneof theprinciplesof integrationis thatit allowsspeculative
physical registersto “survive” recovery. This meansthatdur-
ing recovery output registersof instructionsthat are entered
into theIT arenot reclaimedandaddedto thefreelist asusual.
However, we must be explicit about who is responsiblefor
eventually freeing the registersof instructionsthat are in the
IT, sothattheseregistersarenot “leaked”. Thepolicy is actu-
ally quite straightforward. The IT assumesresponsibilityfor
thephysicalregistersof its entries. If anentryis evictedwith-
out having beenintegrated,it physical registeris addedto the
free list. Conversely, if an entry is integrated,responsibility
for the registerreturnsto the re-orderbuffer, which handlesit
in the usualway. Onecaveat is that the IT entry of an inte-
gratedinstructionmustbe clearedso that no othersequential
instructionwill attemptto getownershipof thecorresponding
register (the outputof two simultaneouslyactive instructions
may not be allocatedto the samephysical register). Notice,
the changeof ownership mechanismalso allows the same
instruction to be repeatedly squashed and integrated.

Thenext subsectiondescribestheintegrationrelatedmodifica-
tions to the register renaminglogic. Here,we describewhat
happensto an instructionafter it hasbeenintegratedwhich,
having decidedthat only completedinstructionscan be inte-
grated,is not much. An integratedinstructionis enteredinto
the re-orderbuffer marked as completedand the integrated
physical register is set as its “current mapping”. Integrated
loads(and stores)are allocatedload (or store)queueentries
that are filled using the IT Memory-Address and Memory-
Valuefieldsandmarkedascompleted.Theseentries,too, are
ordinary. Finally, if the integratedinstructionis a branch,the
resolutionandpotentialrecovery sequencesarestartedimme-
diately using the Jump-Target IT field asa recovery address.
The integratedinstructioncanbypassthe out-of-orderexecu-
tion core;it doesnot needto beallocatedto a reservationsta-
tion, scheduled, executed, or written back.

3.3 Integration Circuit

The most delicatepieceof the integration mechanismis the
integrationcircuit itself. Theintegrationcircuit examineseach
dynamicinstructionand decideswhetheror not that instruc-
tion maybe integrated. Of course,it mustdo so for multiple,
potentiallydependentinstructionsin parallel. In this section,
we describeonepossibleimplementationof this logic andits
complexity. We begin with a scalardescriptionof thecircuit,
before proceeding to the super-scalar case.

Scalarregisterrenamingoccursin two logical steps. First, an
instruction’s logical inputs are renamedto physical outputs

usinglookupsin the maptable. Second,its logical output is
allocateda new physicalregisterandthis new logical-to-phys-
ical mappingis enteredinto thesequentialmaptable,allowing
future instructionsthat needthe value to obtain their inputs
from thecorrectlocation. Wecall thetwo stagesinput routing
and output allocation, respectively. Integration addsa piece
calledoutputselectionin which the outputmappingmustbe
chosenbetweena newly allocatedphysical register and a
physical registerobtainedfrom anIT entry. Theoutputselec-
tion circuit occurslogically after theinput routingcircuit since
the integrationtestmustcomparethe input physical registers
of thesequentialinstancewith thosein theIT entry. However,
the scalarimplementationof integrationcanbe thoughtof as
occurringin oneof two ways. In thefirst, outputselectionis
implementedserially after input routing with the integration
table indexed by instructionPC and input physical registers.
In the second,outputselectionis split into IT lookup, which
happensin parallelwith input routing,andan integration test,
which occurslogically after it. In this organization,shown in
Figure2(b), theIT is indexedby PConlyandthephysicalreg-
ister numbersare usedto match tags. Both schemeslikely
require pipelining register renaming into at least two stages.

The meritsof eachimplementationareopento debatein the
scalarrealm,but in asuper-scalarenvironmentonly thesecond
is viable. While thefirst schemeinterleavesandserializesthe
input routingandoutputselectiondecisionsthatmustbemade
for eachinstruction, the PC-only indexed schemepermitsa
parallelprefix implementationsimilar to theoneusedto super-
scalarizeconventionalregister renaming. Let us review con-
ventional super-scalar renaming. Super-scalar renaming is
morecomplex thanscalarrenamingbecauseits input routing
decisionsmust reflect intra-groupdependences.To do so,
dependency-checklogic actsin parallelwith outputallocation.
This logic comparesthelogical inputof eachinstructionin the
group with the logical output of each previous in-group
instruction;amatchoverridestheinitial input routingretrieved
from the map table and routesthe input to the appropriate

newly allocatedphysical register. For example,in a groupof
four two-input, one-outputinstructionseach of the second
instruction’s inputshasto be comparedwith the first instruc-
tion’s output,eachof the third instruction’s inputs hasto be
comparedwith the outputsof the first two instructionsand
eachof thefourth instruction’s inputshasto becomparedwith
theoutputsof thefirst threeinstructions. Thetotal numberof
comparisonsfor this caseis 12 and in generalI * N(N-1)/2,
with I the numberof inputsper instructionandN, the super-
scalarwidth or thenumberof parallelrenamingoperations.In
general,thedepthof thecircuit is linearwith N andthenum-
ber of comparisons grows asN2.

In additionto the conventionaldependence-checkcircuit that
compareslogical registers,integrationrequiresthatwe imple-
mentoutputselectionandany correctionsit might imply for
input routing for subsequentinstructions. Recall,for thesca-
lar integrationtestwe comparedeachIT entry input with the
correspondingregister retrieved from the map table. In the
super-scalarcase,we mustalsocompareit to thephysicalreg-
ister outputsfor all integrationcandidatesof all prior instruc-
tions in the group. Note, we do not have to comparethe
candidateinputs with the newly allocatedphysical registers
correspondingto eachprior instruction:thesituationin which
an instructionis dependenton a prior instructionin thegroup
andis integratedwhile theprior instructionis not is obviously
impossible. Nevertheless,although the priority encoding
depthof thecircuit is still N, thesuperscalarwidth, thenumber
of physical registercomparisonsnow grows with both N and
thenumberof possibleIT matches,M. Thepreciseformulais
I * (((N(N-1)/2)M + N) * M); the growth of the function is
IN2M2. The complexity of the circuit is very closeto that of
register renamingfor a direct-mappedIT, but diverges for
higher-associativity implementations. For instance,a four-
wide machinewith a direct-mappedIT requires20 physical
register comparisonsto implement integration. The same
machinewith a 2-way IT needs64 comparisons. Just for
scale,an 8-wide machinewith a 4-way IT requires960 com-

FIGURE 2. Implementation Aspects. (a) A micro-architecture with integration. Integration-specific
modificationsin bold. In addition to the actual integration table (IT) and modifiedrenamelogic, there are
additional pathsfrom the instructionordering buffer (ROB) to the IT that are usedduring recovery, a path
fromtheIT to thefreelist, andpathsbetweentheIT andthe load andstore queues.(b) Scalar, PC-indexed
integration circuit. A scalar integration circuit in which the IT and maptable are accessedin parallel. An
extensionof this circuit implementssuper-scalar integration. Thediagramtracesthe IT, maptableand free
list, aswell astheinstructionitself throughthetwo stepsof integration-enabledregisterrenaming. At thetop
of the figure, the instruction shownis raw and the structures are as they appearbefore the instruction is
renamed. At the bottom, the instruction is renamed and the structures reflect that fact.

A5 5351
PC OI1 I2

A5 5351
PC OI1 I2

50 4953 48
X WY Z

A5 5351
PC OI1 I2

57 56

57 5650 4953 48
X WY Z

A5 5351
PC OI1 I2

Integration Table Instruction Map Table Free List

=

Instruction Active List

Load Queue

Execution
Units

Integration
Table

Free
List

Rename
Integrate Fetch

Commit, free old physical register

RecoverC
om

pl
et

e?
 In

se
rt

 in
to

 IT

N
ot

 c
om

pl
et

e?
 F

re
e

phy
si

ca
l r

eg
is

te
r Evict

Reclaim Register

(a) (b)

Store Queue

S
no

op

A
dd

r/
Va

lu
e

A
dd

r/
Va

lu
e

parisons! Certainly, a highly associative integrationcircuit is
challengingto build. In theevaluationsection,wequantifythe
performance impact of higher associativity.

We shouldmentionherethat someof the complexity of the
integration circuit may be moved off-line into the IT itself.
For instance,the IT could internally perform the intra-group
dependencechecksandstoregroupsof dependentinstructions
in a kind of “trace” that canbe integratedusing I*N*M com-
parisons. However, IT managementbecomesmuch more
complex in this case,andthereis theaddedproblemof choos-
ing the groupingof instructionsinto traces. An investigation
of such optimizations is outside the scope of this work.

3.4 SafeLoad Integration via Store Invalidation

When first presentingintegration, we remarked that special
supportmustbe provided to ensurethat loadsthat have been
invalidatedby interveningstoresareremovedfrom integration
consideration.At thevery least,themis-integrationshouldbe
detectedso that alternative corrective action can be taken.
Mis-integration detection and avoidance are implemented
usinga simpleextensionto theprocessor’s basicloadspecula-
tion mechanism. Processorsthat support load speculation
(advancing loads past incomplete stores) detect store/load
orderingviolationsasfollows. Theloadandstorequeuescon-
tain addressand value fields. Completedstorescheck their
addressandvalueagainstaddress/valuepairsof younger pre-
viously completedloads. An addressoverlapcoupledwith a
valuemismatchsignalsa memoryorderingviolation which is
handled by replaying the load in some way.

Thesolutionhandlestwo cases.Themis-integrationdetection
casecoversconflictswith storesthat completeafter the load
hasbeenintegrated. Mis-integrationdetectionis implemented
naturally by the native load speculationmechanism. Recall,
loadsareenteredinto theIT alongwith theiraddressandvalue
fields from the load queue. When they are integrated,these
fields are restored to the load queue. To a completingstore,
therefore,an integratedload looks just like any other com-
pletedload andconflictsarehandledin the usualway. Mis-
integration avoidancetargets conflicts with storesthat com-
pletebefore a loadis integrated. To implementavoidance,we
simply extend the store-invalidation procedureto include IT
loads. The IT essentially“snoops”completedstores,match-
ing their address/valuepairswith theMemory-Address/Mem-
ory-Value pairs of IT loads. An address match/value
mismatchcausesthe invalidation of the correspondingload,
preventingit from beingintegrated. Detectionandavoidance
can also be implemented using purely address-based criteria.

Our results show that most mis-integrations are avoided.
Those that aren’t, while not impacting correctness,can
degradeperformanceasthey areequivalentto normalloador
value mis-speculations.Our performanceevaluationsection
will measure the prevalence of mis-integration.

3.5 Handling Data Mis-Speculations

Thediscussionof loadintegrationbringsup animportantnote
regarding integration and the way it must deal with instruc-
tions squasheddue to datamis-speculationslike speculative
memory-orderingviolations [14, 22] and value mis-specula-
tions[12]. Specifically, for micro-architectureslike theAlpha
21264 [11], in which data mis-speculationsare handledby

squashing,integrationmustbe carefulnot to confusea value
mis-speculatedinstructionandits dependentinstructionswith
correctlyexecutedsquashedinstructions.IT entriesthatcorre-
spondto datamis-speculatedresultsmust not be integrated.
One broad solution to this problem would be to not enter
squashedinstructionsinto the IT during recovery from these
kindsof mis-speculations.However, this solutionis too harsh
sinceit preventsthe correctlyexecutedinstructionsthat were
lostduringrecovery from beingsalvaged.An effective trick is
to enterall completedinstructionsexcept for the value mis-
speculatedinstructionitself into the IT. This omissioneffec-
tively “detaches”all dependentinstructionsfrom possibleinte-
gration, while leaving all independent instructions intact.

There is an interestinginteraction betweenintegration and
anothertechniquefor salvagingwork lost to a datamis-specu-
lation,selectivesquashing[8, 12,15,16]. In selectivesquash-
ing, instructions are kept in reservation stations until
retirementallowing themto simply re-issueasdatamis-specu-
lations are resolved. If selective squashingis implemented,
integration is not “activated” during data mis-speculations
sincethe instructionsarenot squashedand re-fetched. Inte-
gration,on the other hand,still handlescontrol mis-specula-
tion squasheswhich,quiteconveniently, cannotbehandledby
selective squashing.Integrationandselective squashingcom-
plementeachothernicely. However, we do not explore their
interactionexperimentally;our simulationsmodelfull squash-
ing for all mis-speculations.

3.6 Setting the Size of the Physical Register File

A final implementationnoteconcernsthesizeof theIT andits
relationshipto the total size of the physical register file. To
avoid resourcestalls,the numberof physical registersshould
beequalto themaximumnumberof values(botharchitectural
andspeculative) thatcanbe“in play” at any time. For a spec-
ulative machinethis is equalto thenumberof architectedreg-
isters plus the maximum number of renamed in-flight
instructions(the size of the re-orderbuffer). Now, the IT is
simplyamechanismfor keepingphysicalregisters“in circula-
tion” for longerperiodsof time; valuesin the IT arestill con-
sidered“in play”. Consequently, to avoid resourcestalls in a
micro-architecturewith integration, the size of the physical
registerfile shouldbeequalto thenumberof architectedregis-
tersplus thesizeof the re-orderbuffer plus thesizeof the IT.
In our simulatedconfigurations,we usethis formulato ensure
thatthemachineneverstallsfor lackof a freephysicalregister.

4 Performance Evaluation

We evaluatethe potentialperformanceimpact of integration
usingcycle-level simulation. We presenta full setof results
for onespecificdesignmeantto representa potentialcurrent-
generation(or very near future) microprocessor. We then
briefly look at two dimensionsin theIT designspace,sizeand
associativity. To befair, we quantify theadverseperformance
effects of any additionalpipeline stagesrequiredby integra-
tion. Finally, we try to project integration’s impacton more
aggressive future-generation microarchitectures.

4.1 Experimental Framework

We evaluateintegration using the SPEC2000integer bench-
mark suite. The programsare compiledfor the Alpha EV6

architectureby theDigital UNIX V4 cc compilerwith optimi-
zations-O3 -fast. We usethe testdatasetsfor reporting
performancefor all benchmarksexceptperlbmk. Thereweare
forcedto usethetrainingsetbecausethetestsetcontainsfork
andexec calls that our simulationenvironmentdoesnot sup-
port. Wheremultiple testdatasetsaregivenweusethelonger
runningone,specificallyplacefor vpr andkajiya for eon. We
simulate all programs in their entirety.

Thesimulationenvironmentis built on topof theSimpleScalar
3.0[1] Alpha toolkit. Thecycle-level simulatormodelsanout-
of-order machinesimilar in organization to an unclustered
Alpha 21264[11] with nominalstagesfetch, register rename
anddispatch,schedule,execute,writebackandcommit. The
out-of-order schedulinglogic speculatesloads aggressively,
issuingthemevenin thepresenceof prior storeswith unavail-
able addresses.A mis-speculationcausesthe load and all
downstreaminstructionsto be squashedandre-fetched. Our
modeldoesnot includea dependence-speculationmechanism
that may reducethe incidenceof memory-orderingviolations
[3, 14, 22]. However, we don’t believe that the inclusionof
suchamechanismwould takeawayasignificantportionof the
impact of integration, since most integration candidatesare
producedby control mis-speculation. The recovery mecha-
nism itself is modeledasserialwith bandwidthequalto com-
mit. Recovery stalls renaming,but executionand retirement
from the headof the machinemay continue. We model a
memorysystemwith non-blockingcaches,finite write-buffers
andmiss-statusholding registers(MSHR), andcycle accurate
bus utilization. Table1 shows the simulationparametersin
detail. IT configurationis specifiedinline with the respective
presentationof results. The Alpha has64 architecturalregis-
ters;thenumberof physicalregistersfor a givenconfiguration
is therefore always set to be 64 + ROB size + IT size.

4.2 Base Configuration Results

Table2, which is split into two for readability, shows theper-
formance impact of integration using a 256-entry direct-
mappedIT on theconfigurationdescribedabove. Datais pre-
sentedin four mainparts.Thefirst two characterizetheperfor-
manceof thebaseandmodifiedsystemin termsof instructions
fetchedandexecuted,branchmis-predictionsandbranchmis-
predictionresolutionlatency, andtotal memory-orderingvio-

lations. Thesenumbersgive a feel for thedegreeof mis-spec-
ulation in each program and its causes. Comparingthese
groupsof numberspair-wisegivesanideaof theoverall effect
of integrationonspeculative (mis-speculative)processoractiv-
ity. Thenext two partsmeasuretheactivity andeffectiveness
of integrationusingmoredirect metrics. We reportabsolute
countsof instructionsintegrated,loads integrated,and mis-
predicted branchesintegrated (and ostensibly, immediately
resolved).

Theshadedat thebottomcomputesthecharacteristicandper-
formancemetrics of integration and its impact on perfor-
mance. The contribution rate is the numberof instructions
integratedasa percentageof the total numberof instructions
committed;it is theamountof work integrationcontributesto
thearchitecturalexecutionof theprogram.Thesalvagerate is
numberof instructionsintegratedasa percentageof squashed
(and completed)instructionsand measuresthe rate at which
integrationcandidatesareharvested.Thecontributionandsal-
vageratesmeasureboth a program’s inherentsuitability for
integrationandour mechanism’s ability to captureintegration
candidates.Thefinal threemetricsmeasurethepercentageof
instructionsfetched,instructionsexecutedandtotal execution
time saved by integration.

Theperformancefiguresshow thatintegrationis equallyeffec-
tive on all benchmarks.On some,like gzip, vpr, crafty and
twolf, it cutsexecutiontime by upwardsof 5%. On others,it
achievesspeedupsof lessthan1%. To explain this behavior
we appealto thestructureof theprogramsandto thecontribu-
tion andsalvagerates,which helpcorrelatethis structurewith
suitability for integration. Therearesomeprogramsthat for
structuralreasonssimply cannottakeadvantageof integration.
Onepossibility is that the programshave few squash-causing
branch mis-predictions and memory-ordering violations.
Anotheris thatbranchmis-predictionsarepresentbut that the
codewithin theconditionalarmsis so long that theprocessor
does not have time to fetch and execute the re-convergent
region beforethebranchis resolved. Finally, if there-conver-
gent region is reachablealong the mis-speculatedpath, it is
possiblethat it containsno data-independentinstructions,the
ones that can later be integrated.

How do thebenchmarksbreakdown accordingto thesecrite-
ria? Bzip2, for instance,encountersbranchmis-predictions

Front-End Symmetric16K-entrycombined10-bit history gshareand2-bit predictors.2K entry, 4-way associative
BTB, 32 entry return-address-stack.3-cycle fetch.32-entryinstructionbuffer. Up to 8 instructionsfrom
two cacheblocks fetchedper cycle. A maximumof one taken branchper cycle. 8-wide single-cycle
decode. Direct, unconditional jump mis-predictions recovered at decode.

Issue
Mechanism

8-way superscalarout-of-orderspeculative issuewith a maximumof 128 instructionsor 64 loadsor 32
storesin flight. 2-cycle schedule/registerread.Loadsspeculatively issuein thepresenceof earlierstores
with unknown addresses.Theloadandsubsequentinstructionsaresquashedandre-fetchedon a memory
orderingviolation. Recovery from all formsof mis-speculationis serialwith abandwidthof 8 instructions
per cycle. Recovery stalls register renaming,but executionof unrecoveredinstructionsmay proceedin
parallel. Storeto loadbypasstakes2 cycles.Memoryandcontrolinstructionshave thehighestscheduling
priority. Priority within a group is determined by age.

Memory
System

32KB, 32B lines,2-wayassociative,1-cycleaccessL1 instructioncache.64KB, 32B lines,2-wayassocia-
tive, 2-cycle access,L1 datacache.A maximumof 16 outstandingloadmisses.16-entrystorebuffer. 16-
entryITLB, 32-entryDTLB with 30-cyclehardwaremisshandling.Shared1MB, 64Bline, 4-wayassocia-
tive, 12 cycle accessL2 cache.70-cycle memorylatency. 32B bus to L2 cacheclocked at processorfre-
quency. 16B bus to memory clocked at 1/3 processor frequency. Cycle level bus utilization modeled.

FunctionalUnits
(latency)

8 INT ALU (1), 2 INT mult/div (3/20),3 FPadd(2), 1 FPmult/div (4/24),4 load/store(2). TheFPadders
and all multipliers are fully pipelined.

TABLE 1. Simulated machine configuration.

infrequently(fewer thanonceevery 400 instructions). It falls
underthefirst category. Bzip2’s salvagerateis closeto 40%,
but it executesso few instructionsalongmis-speculatedpaths
ascomparedto otherprogramsthattheoverall poolof integra-
tion candidatesis small.Thesecondtwo categoriesaresome-
whatmoredifficult to distinguishfrom oneanother, but five of
the otherbenchmarks:gcc, mcf, parser, perlbmkandgap fall
into them. Theseprogramsincur branchmis-predictionsor
memoryorderingviolations every 100 instructionsor so (or
more frequently), execute (and squash) somewhat more
instructionsthanthey commit, yet permit the successfulinte-
grationof only around20%of squashedinstructions.Vortex is

a strangecase. It executesmany instructionsalongsquashed
pathsbut, sincemany squashesare due to load mis-specula-
tion, integratesonly a relatively low percentageof them. Per-
formancegain is achieved becausemany of the integrated
instructionsaremispredictedbranches.The four benchmarks
we mentionedat thetop executea lot of work alongmis-spec-
ulatedpathsandintegratethatwork at a high rate. Thesepro-
gramsbenefit the most from integration. Other factorsthat
contribute to the observed impactof integrationbut arediffi-
cult to quantifydirectlyaretheparallelismin thehigh-integra-
tion regionsandtheextentto which theintegratedinstructions
help collapse dependence chains.

gzip vpr gcc mcf crafty parser
Committed instructions (M) 3367.27 1566.70 2015.64 259.63 4264.78 4203.56
Base Fetched instructions (M) 5555.67 3667.92 3816.01 527.87 8080.35 7515.99

Executed instructions (M) 4114.58 2069.79 2327.15 292.49 5158.60 4854.72
Mispredicted branches (M) 16.61 20.48 22.93 2.54 38.80 38.08
Misprediction resolution lat. (c) 29.72 18.41 16.85 33.37 21.48 20.78
Mis-speculated loads (M) 2.50 0.00 0.20 0.01 1.35 0.14

Base
+ IT

Fetched instructions (M) 5376.16 3424.83 3709.65 509.96 7659.44 7374.33
Executed instructions (M) 3481.16 1774.06 2133.07 271.98 4649.16 4582.10
Mispredicted branches (M) 15.91 20.90 22.97 2.54 38.84 38.05
Misprediction resolution lat. (c) 27.56 15.66 15.86 31.96 19.27 20.15
Mis-speculated loads (M) 3.29 0.59 0.36 0.02 1.41 0.20

Integrated instructions (M) 640.70 249.35 167.73 15.85 450.31 274.49
Integrated loads (M) 177.12 90.69 55.60 3.28 200.29 78.19
Integrated mispredictedbranches(M) 0.78 0.59 0.17 0.01 0.53 0.54
Integrated/committed (%) (contrib.) 19.0 15.9 8.3 6.1 10.6 6.5
Integrated/squashed (%) (salvage) 61.9 46.7 29.1 24.0 45.3 28.3
Fetched insns saved (%) 3.2 6.6 2.8 3.7 5.2 1.9
Executed insns saved (%) 15.4 15.3 8.3 7.0 9.9 5.6
Execution time saved (%) 4.8 8.1 2.0 1.1 5.2 1.1

eon perlbmk gap vortex bzip2 twolf
Committed instructions (M) 458.29 27684.23 1169.58 9808.12 8822.14 258.73
Base Fetched instructions (M) 987.32 51890.55 1738.94 17977.94 10694.62 530.94

Executed instructions (M) 554.43 30300.91 1227.20 11673.81 9067.05 295.94
Mispredicted branches (M) 4.34 261.86 9.80 34.98 24.40 2.89
Misprediction resolution lat. (c) 14.32 60.65 24.82 12.41 19.56 16.56
Mis-speculated loads (M) 3.92 13.66 0.15 43.15 0.16 0.32

Base
+ IT

Fetched instructions (M) 957.22 51341.83 1722.18 17111.10 10638.29 505.40
Executed instructions (M) 501.30 28964.36 1186.67 9919.20 8917.34 268.77
Mispredicted branches (M) 4.31 262.07 9.87 33.85 24.49 2.89
Misprediction resolution lat. (c) 13.56 59.88 24.35 10.36 19.10 14.98
Mis-speculated loads (M) 3.74 13.56 0.18 40.14 0.52 0.32

Integrated instructions (M) 41.35 1308.39 3.80 157.36 132.05 22.35
Integrated loads (M) 12.37 435.56 1.04 34.93 44.27 8.38
Integrated mispredictedbranches(M) 0.30 7.67 0.02 11.73 0.27 0.27
Integrated/committed (%) (contrib.) 9.0 4.7 0.3 1.6 1.5 8.6
Integrated/squashed (%) (salvage) 44.8 22.4 22.4 7.3 33.4 41.4
Fetched instructions saved (%) 3.1 1.1 1.0 4.8 0.5 4.8
Executed instructions saved (%) 9.6 4.4 3.3 15.1 1.7 9.2
Execution time saved (%) 3.0 0.9 0.4 3.1 0.4 5.6

TABLE 2. Detailed Performance Impact of Adding a Direct-Mapped, 256-entry IT to a Current Generation
Microarchitecture. Raw quantities are listed in millions of events (M) or cycles (c).

To a first order, integrationis primarily a techniquefor reduc-
ing thenumberof instructionsexecutedin a program. To that
endit is fairly successful,reducingtheconsumptionof execu-
tion bandwidthby 1% to 15%. However, a ratherstriking
trend is the incredibly strongcorrelationbetweenthe perfor-
manceof integrationandits secondordereffect, reducingthe
numberof instructionsfetched,which it doesat ratesthatvary
from closeto nil to near7%. Integration is a techniquethat
operatesat decode/renametime. It is is thereforeunableto
eliminatethe latency andbandwidthof fetch from the costof
anintegratedinstruction. Integrationfreesup executionband-
width for new instructions,but doesnot directly freeup more
fetch bandwidthto fetch thosenew instructions(it actually
can,but only indirectly via the acceleratedresolutionof mis-
predictedbranches).As a result,the reducedconsumptionof
executionbandwidthgenerallyleavesbubblesandopenslots
in the executionpipelines. Actual performancegain is more
closely relatedto the numberof instructionseliminatedfrom
processing completely.

Oneopportunityfor integrationto do harmis by precipitating
squashesthroughmis-integrations.However, ourfiguresshow
that although memory-ordering squashesare sometimes
increasedwith integration,thenumberof introducedsquashes
is small in comparisonwith the numberof loadsintegrated.
On thewhole, integrationreducestheamountof mis-specula-
tion activity in the processor, cutting down the number of
instructionsfetchedand (to a lesserdegree)executed. This
factsuggeststwo interestingapplicationsfor integration. The
first is as a dynamic power and energy reductiontechnique
[13]. This use,of course,requiresthat thepower characteris-
tics of integrationitself be acceptable,somethingthat hasnot
yet beeninvestigated. Thesecondapplicationis in a simulta-
neousmultithreading(SMT) processor[6, 20], whereseveral
narrow front-endssharea largeout-of-orderexecutionengine.
This could be an ideal environment for integration, which
would reducecontentionin the back end,and would require
only (replicated) narrow, low-complexity integration circuits.

4.3 Impact of Table Size and Associativity

Two importantparametersin the designof the IT areits size
and associativity. Since the IT always containsthe most
recentlysquashedinstructions,its sizedeterminesthe degree
to which it cansalvagework from older squashedregions. If
the IT is too small, older squashedinstructionswould be
evicted beforethey could be integrated. However, an overly
large IT is also undesirablesince it implies an overly large
(and overly slow) physical register file.

Theeffect of IT sizeon theperformanceimpactof integration
is shown in Figure3(a). Thetrendscertainlysupportour pro-
gram-structureexplanationfor the bimodalnatureof integra-
tion, as each group of benchmarksrespondsdifferently to
changesin IT size. Thosebenchmarksthatfail to benefitfrom
integrationfor structuralreasonsdo soconsistently, regardless
of IT size. More integrationresourcesdo not changethe fact
that the product of programand machinedoesnot produce
many valid integration candidates. On the other hand,pro-
gramswhosestructuredoesallow themto supportintegration,
can draw additional benefit from additional integration
resources.In general,however, a very large IT is not neces-
sary. A significantfractionof thebenefitcanbeachievedwith
a small IT that can buffer the squashedresultsfrom the last
mis-speculatedregion. For this set of programsand our
machineconfiguration,256 entries (enoughspaceto buffer
instructions from between4 to 8 mis-speculatedregions)
appearsto besufficient. Thecorrespondingnumberof physi-
cal registers is 448.

The associativity of the IT hastwo differentusesthat impact
performancein two ways. Fromthestandardviewpoint,asso-
ciativity is amechanismfor moreefficientmanagementof col-
lisions in the IT. Specificto the integrationcircuit, however,
associativity can also determine the number of squashed
instancesof thesamestaticinstructionthataresimultaneously
consideredfor integration. Although the first use doesnot

FIGURE 3. Effect of IT Size and Associativityon Performance Impact of Integration. Percentage of
executiontime savedusing(a) a direct-mappedIT of four sizes:64, 128,256 and 512. (the corresponding
physical register file sizes are 256, 320, 448 and 704) and (b) a 256-entry IT with associativities 1, 2 and 4.

	

�

�

� 	

� � ! � � � � � � � � " � � �
 � # � � �
$ %&

'(
)* +,

-* .&

/ 01&
23
45 (a) Effect of IT Size on Performance Impact of Integration

64

128

256

512

	

�

�

� 	

� � ! � � � � � � � � " � � �
 � # � � �
$ %&

'(
)* +,

-* .&

/ 01&
23
45 (b) Effect of IT Associativity on Performance Impact of Integration

1

2

4

necessarilyimply thesecond,we useassociativity to quantify
both IT eviction policy and integration circuit complexity in
orderto simplify thediscussion.Theimpactof IT associativ-
ity on integrationperformanceis shown in Figure3(b). The
trendsaresimilar to thoseobservedwhenchangingthesizeof
theIT; thebimodaleffect is still presentfor thesameprogram-
structuralreasons.Thetrendsaremuchlesspronounced,how-
ever. Exceptfor in thecasesof gzipandvortex, thereis little
benefitto having anythingmorecomplex thanadirect-mapped
IT that suppliesa singleintegrationcandidateper instruction.
That higher associativities that would overly complicatethe
integration circuit are unnecessary is good news indeed.

4.4 Impact of Increased Pipelining

Earlier we mentionedthat an implementationof integration
mayrequireregisterrenamingto bepipelinedinto two stages.
Suchanincreasein pipelinedepthwill erodesomeof theper-
formancegainedby integration,andpotentially induceabso-
lute slow-downs for programsthat did not originally benefit
from integrationandwouldnow beforcedto payfor its imple-
mentation. The increasednumberof physical registersmay
also require adding additional register read/schedule cycles.

The impactof increasedpipelining for both registerrenaming
andregisterreadis shown in Figure4(a). Integration-induced
increasedpipelining doesmitigatethe performanceimpactof
integration,evenproducingslow-downsfor thosebenchmarks
which integration doesnot help. The dominanteffect is an
increasein the branchresolutionlatency which cuts integra-
tion’s fetchsavings. Thereis aninterestinginterplaybetween
increasedpipelining andintegration. On onehand,it length-
ens the branchresolutionlatency, increasingthe numberof
instructionsthat canbe executedalongmis-speculatedpaths.
On the other, it slows down the executionof all instructions,
reducingthe completionrate of squashedinstructions. The
overalleffecton thenumberof integrationcandidatesandinte-
grations is small.

Although the effects of pipeline depth increasestake away
someof integration’s performance,suchincreasesare by no
meansmandatory. Theaccesstimesof largephysical register
files can be controlledusing techniqueslike replication[11,
19] or banking [4] and while integration probably requires
two-stage register renaming, it should not add stagesto
already pipelined renaming implementations.

4.5 Impact of Base Microarchitecture

Onefinal pieceof datawe would like to provide is anestimate
of theimpactof integrationfor moreaggressivemicroarchitec-
tures. To modela microarchitecturethathopefully represents
a next-generationmicroprocessor, we begin with theorganiza-
tion of our basic8-way machine. We doublethe re-ordering
capabilityby doublingthesizesof theinstructionandmemory
orderingbuffers; thenumberof physical registersis increased
accordingly. In thememorysystem,we doublethesizeof the
L2 cacheto 2 MB andincreasethenumberof simultaneously
outstandingmissesto 16. To simulate a faster clock, we
deepenthe pipeline to 5-cycle fetch, 3-cycle decode/rename
and4-cycleregisterread,lengthencachearrayaccesstimeto 3
cycles,andslow raw memoryaccesstimeandthememorybus
by 50%. In Figure4(b),wecomparethespeedupsachievedby
our baselineintegration configuration(a direct-mapped256-
entry IT) when applied to both the current-generationand
next-generation microarchitectures.

One trend that is noticeableby its novelty is that, unlike
increasingIT size or associativity, a more aggressive micro-
architecturedoes increasethe impact of integration on pro-
gramsthatdonotbenefitfrom it in amoreconservative imple-
mentation. The reasonfor this is that a more speculative
machine changes the structural behavior of the program.
Largerre-orderbuffersthatprovidemoreroomfor speculation
and a deeperpipeline that increasesthe time it takes to dis-
cover andresolve branchmis-predictionscombineto raisethe
total number of instructionsexecutedalong mis-speculated

FIGURE 4. Effectof IncreasedPipelining anda More AggressiveBaseMicroarchitectureon Performance
Impact of Integration. Execution time saved using a direct-mapped256-entry IT for (a) our base
microarchitecutre with integration-deepend pipeline and (b) a more aggressive base microarchitecture.

	

�

�

� 	
�

� � ! � � � � � � � � " � � �
 � # � � �
$ %&

'(
)* +,

-* .&

/ 01&
23
45 (b) Effect of Base Microarchitecture Aggressiveness on Performance Impact of Integration

Current-generation

Next-generation

6

	

�

�

� 	

� � ! � � � � � � � � " � � �
 � # � � �
$ %&

'(
)* +,

-* .&

/ 01&
23
45 (a) Effect of Increased Pipelining on Performance Impact of Integration

Base

Rename + 1

RegRead + 1

paths. That increasesthenumberof potentialintegrationcan-
didatesand, in turn, successfulintegrations. For example,a
larger machinecan mis-speculatelonger along a conditional
armandis morelikely to reach(andsquash)there-convergent
region alongthemis-speculatedpath.Our resultsindicatethat
between5% and50% more instructionsare integratedin the
more aggressive, more-speculative configuration.

Therelative increasein theeffectivenessof integrationis prob-
ably largerthanasimpleincreasein integratedinstructionscan
accountfor. As thegraphshows, integrationis 50%to 120%
more effective in reducingexecution time in the aggressive
configurationthanin thebaseconfiguration.Absoluteperfor-
manceimprovementsfor the next-generationmicro-architec-
ture are closeto or over 10% for several benchmarks. The
reasonfor this boost is that in the more aggressive, more
deeply pipelined implementation,the benefit of each inte-
gratedinstruction is also relatively higher. Specifically, the
longer register-read times make integration’s ability to col-
lapsedependentchainsof instructionsmore important. The
absoluteimportanceof instantbranchmis-predictionresolu-
tion is alsoincreasedby longerregister-readtimes. However,
the relative impact of this effect is somewhat mitigated
because the depth of the front end increases as well.

5 Related Work

The term squashreusewasintroducedto describeoneof the
tasksperformedby InstructionReuse(IR) [18]. IR is a table-
basedtechniquefor avoiding the executionof an instruction
that hasbeenpreviously executedwith the sameinputs. In
addition to squashreuse,in which the reusedvalue comes
from thesameinstanceof theinstructionthathasmerelybeen
squashed,IR implementsgeneral reuse, in which the reused
valuecomesfrom a different(not necessarilysquashed)previ-
ousinstancethatjusthappensto havethesameinputoperands.
Integration implementsonly squashreusebecauseit requires
that the value alreadyexist in the register file and that the
physical register inputs of the squashedinstruction match
exactly with the inputsof the instructionit will “replace”. IR
lifts theseconstraintsby storingthesquashedvalueinsidethe
lookuptable(which is calleda reusebuffer or RB) andwriting
it into theregisterfile whenreuseis detectedandby basingthe
reusecriterion itself is on instance-independentarchitectural
quantities like valuesor logical register names,rather than
instance-dependentmicro-architectural oneslikephysicalreg-
ister numbers. IR is very applicable,it can exploit general
reuseandbeimplementedon any microarchitecture,but hasa
somewhatcomplex implementation.A value-basedreusetest
implies theneedto readregisters,which not only complicates
theregisterfile, but alsomovesIR furtherbackin thepipeline,
reducingits impact. An architectural-name-basedreusetest
removes the need to read registersbut requiresan explicit
dependence-trackingschemewithin the RB so as not to
becometoo conservative. Both IR forms requireadditional
write data-pathsinto theregisterfile. In integration,thereused
valuesarealreadystoredin physical registerssono additional
registerdata-pathsto reador write any valuesarerequired. At
the sametime, the physical-register-basednatureof the reuse
test implements dependence-tracking naturally.

The Dynamic Control Independence(DCI) [2] buffer is
anotherresultsalvagemechanismthatoperatesin acentralized
window environment. The DCI buffer is a shadow re-order
buffer whosecontentspersistpastmis-speculationeventsthat

invalidate the architecturalbuffer (this is a familiar theme).
Shadow buffer tagsandresultscanbere-usedif theinstruction
provesto becontrol-anddata-independent.Control indepen-
dent instructions are found by associatively searchingthe
squashedregion of the shadow buffer; their data-independent
natureis checked usingan architectural-name-basedinvalida-
tion scheme. The DCI buffer is essentiallyan architectural-
name-basedimplementationof squashre-usesimilar to IR that
uses a shadow re-order buffer rather than an RB.

We have alreadyalludedto the interplaybetweenintegration
andselectivesquashing[8, 12, 15, 16], which allows instruc-
tion instancesto execute multiple times “in-place” before
retirement. Selective squashingis aneffective way of dealing
with datamis-speculations,in which the correct instructions
are alreadyin the machine. Selective squashingallows the
penalty of squashand re-fetch to be avoided at the cost of
keeping instructions in the reservation-station longer and
increasingreservation-stationcontention. Selective squash-
ing, however, cannotsalvagework lost to controlmis-specula-
tion. Integration and selective squashingare duals. Both
techniquessalvageinstructionsby keepingaroundinformation
for longer than is conventionally required,physical registers
for integrationandreservationstationsfor selectivesquashing.
However, while selective squashingactively picksout instruc-
tions dependenton the mis-speculation,integration waits for
all squashedinstructionsto bere-processedthenpicksout the
ones that were actually mis-speculation independent.

6 Conclusions and Future Work

We presentregister integration (or just integration), a tech-
nique for salvaging valid resultsthat have beenunavoidably
lost dueto thesequentialnatureof speculationandmis-specu-
lationrecovery. Integrationis adisciplinethatallowsspecula-
tive resultsto remainin thephysicalregisterfile pastrecovery
eventswith the hopethat they were independentof the mis-
speculationin questionandcanbeusedoncetheparticularsof
that mis-speculationhave beenresolved. Integration logic is
implementedasamodificationto conventionalregisterrenam-
ing that recognizesthevalidity of squashedresultsusingtheir
data-dependencesandsparestheprocessorfrom having to re-
execute the corresponding instructions.

Our initial evaluationshows that integrationhasthe potential
for noticeableperformanceimprovementsof up to 8% at con-
figurationsrepresentative of current-generationprocessorsand
up to 11.5% for more aggressive, more speculative, more-
deeplypipelinednext-generationconfigurations.Thesespeed-
ups are achieved througha combinationof reductionin the
consumptionof executionand fetch bandwidths,the collaps-
ing of dependentinstruction chains,and the accelerationof
branchresolution. Our numbersindicatethat programstypi-
cally areableto reusebetween20%and60%of all squashed
instructionsthathave completedexecutionprior to squashing,
representing between 1% and 19% of committed instructions.

Perhapsmore importantthan integration’s performancechar-
acteristics,areits mis-speculationreductioncharacteristics.In
addition to improving performance,integration reducesthe
overall level of wastedwork performedby the processor. It
reduces the number of instructions executed by re-using
squashedcomputationsand its accelerationof branchresolu-
tion reducesthe numberof instructionsfetchedalong mis-
speculatedpaths. According to our results,the numberof

instruction fetchessaved can reach6% and the numberof
instruction executionssaved, 15%. Both of thesenumbers
grow relatively asthe underlyingmicro-architecturebecomes
more aggressive. Thesecharacteristicsmake integration an
interestingcandidatefor reducingdynamic-power andenergy
and also suggestits use in reducingresourcecontentionin
simultaneously multi-threaded (SMT) processors.

Theimplementationof integrationis simple,requiringonly an
integrationtable(IT), a smallcache-like structurewith limited
content-addressiblecapabilities and an integration circuit,
which is addedto the registerrenaminglogic. No changesto
eitherthefetchor executionenginesthemselvesarenecessary
andintegrationdoesnot requirethe readingor writing of any
register values,only map tablemanipulationsare used. The
performanceimprovementswe presentareall achievablewith
the minimal complexity implementation of integration.

Futurework in the areaof integration includesa more thor-
ough evalutation of the IT design space,experimentswith
more varied benchmarks,and a more detailed investigation
into theinteractionof differentmicro-architecturalparameters
with integration. A studyof the high-level characteristicsof
programsthatdraw benefitfrom integrationis alsointeresting.
Wehavementionedpossibilityfor interestingsynergy between
integrationandselective squashing;thatpossibilityneedsfur-
ther investigation. The power aspectsof integration and its
potentialuseasa power-reductiontechniquearealsosubjects
of open research.

Themostinterestingfuturedirectionfor integrationlies in its
ability to supportnew speculationmodels. As we have pre-
sentedit, integration is a mechanismthat can re-imposelost
sequentialsemanticson a setof instructionsusingonly their
data-dependences.The real power of integration, however,
may be in its ability to imposesuch semanticson a set of
instructionsthat were not executedsequentiallyin the first
place. Integration enablesa new form of speculation,data-
driven speculation, in which speculative executionproceeds
along statically annotateddata-dependencearcs with no
regards to sequencing. Integration is usedsubsequentlyto
sequencethe results into a control-driven sequentialform
requiredby thearchitecturalinterface. In fact,integrationwas
inventedduringthecourseof our investigationinto anew form
of speculative multithreadingcalled speculativedata-driven
multithreading (DDMT) [17].

Acknowledgements

This work wassupportedin partby NationalScienceFounda-
tion grantsMIP-9505853andCCR-9900584,donationsfrom
Intel Corp.andSunMicrosystems,the University of Wiscon-
sin GraduateSchool and an Intel Ph.D Fellowship. The
authors thank the anonymous referees for their reviews.

References

[1] D. Burger and T. Austin. The SimpleScalarTool Set,
Version2.0.TechnicalReportCS-TR-97-1342,Univer-
sity of Wisconsin-Madison, Jun. 1997.

[2] Y. Chou,J.Fung,andJ.Shen.ReducingBranchMispre-
dictionPenaltiesvia DynamicControlIndependenceDe-
tection. In Proc. 1999 International Conferenceon
Supercomputing, pages109–118, Jun. 1999.

[3] G. Chrysosand J.Emer. Memory DependencePredic-
tion usingStoreSets.In Proc.25thInternationalSympo-
sium on ComputerArchitecture, pages142–153,Jun.
1998.

[4] J.-L. Cruz, A. Gonzalez,M. Valero, and N. Topham.
Multiple-BankedRegisterFile Architectures.In Proc.
27thAnnualInternationalSymposiumon ComputerAr-
chitecture, pages 316–325, Jun. 2000.

[5] K. Diefendorf.K7 ChallengesIntel. MicroprocessorRe-
port, 12(14), Nov. 1998.

[6] K. Diefendorf.CompaqChoosesSMT for Alpha.Micro-
processor Report, 13(16), Dec. 1999.

[7] K. Diefendorf.HAL MakesSPARCSFly. Microproces-
sor Report, 13(5), Nov. 1999.

[8] M. Franklin. The Multiscalar Architecture. PhD thesis,
Universityof Wisconsin-Madison,Madison,WI 53706,
Nov. 1993.

[9] P.Glaskowsky.Pentium4 (Partially)Previewed.Micro-
processor Report, 14(8), Aug. 2000.

[10] L. Gwenapp.Intel’s P6UsesDecoupledSuperscalarDe-
sign.Microprocessor Report, 9(2), Feb. 1995.

[11] R. Kessler.TheAlpha 21264Microprocessor.IEEE Mi-
cro, 19(2), Mar./Apr. 1999.

[12] M. Lipasti. Value Locality and SpeculativeExecution.
PhDthesis,Departmentof ElectricalandComputerEn-
gineering, Carnegie-Mellon University, May 1997.

[13] S.Manne,A. Klauser,and D. Grunwald.PipelineGat-
ing: SpeculationControlfor EnergyReduction.In Proc.
25thAnnualInternationalSymposiumon ComputerAr-
chitecture, pages 132–141, Jun. 1998.

[14] A. MoshovosandG. Sohi.MemoryDependenceSpecu-
lationTradeoffsin Centralized,Continuous-WindowSu-
perscalarProcessors.In Proc. 6th Annual International
Symposiumon High-PerformanceComputerArchitec-
ture, pages 301–312, Feb. 2000.

[15] E. Rotenberg,Q. Jacobson,Y. Sazeides,and J.Smith.
TraceProcessors.In Proc.30thInternationalSymposium
on Microarchitecture, pages 138–148, Dec. 1997.

[16] E. Rotenbergand J.Smith. Control Independencein
TraceProcessors.In Proc. 32nd International Sympo-
sium on Microarchitecture, pages 4–15, Nov. 1999.

[17] A. Roth and G. Sohi. SpeculativeData-Driven Multi-
threading. In Proc. 7th International Symposiumon
High-PerformanceComputerArchitecture(to appear),
Jan. 2001.

[18] A. SodaniandG. S.Sohi.DynamicInstructionReuse.In
Proc.24thInternationalSymposiumonComputerArchi-
tecture, pages 194–205, Jun 1997.

[19] P.Song.IBM’s Power3to ReplaceP2SC.Microproces-
sor Report, 11(15), Nov. 1997.

[20] D. M. Tullsen,S.J. Eggers,and H. M. Levy. Simulta-
neousMultithreading:MaximizingOn-ChipParallelism.
In Proc.22ndInternationalSymposiumonComputerAr-
chitecture, pages 392–403, Jun. 1995.

[21] K. Yeager.TheMIPSR10000SuperscalarMicroproces-
sor.IEEE Micro, Apr. 1996.

[22] A. Yoaz, M. Erez, R. Ronen,and S.Jourdan.Specula-
tion Techniquesfor ImprovingLoad-RelatedInstruction
Scheduling.In Proc. 26th AnnualInternationalSympo-
siumonComputerArchitecture, pages42–53,May1999.

