Register Integration: A Simple and Efficient Implementation of Squash Reuse

Amir Roth and Gurindar S. Sohi
Computer Sciences Department, Wémsity of Wisconsin - Madison
{amir, sohi}@cs.wisc.edu

Abstract

Reagisterintegration (or simplyintegration) is a medanismfor

incorporating speculativeresults directly into a sequential
executionusingdata-dependenceslationships. In this paper

weuseintegrationto implemensquastreuse the salvaging of

instruction resultsthat were needlesslhydiscaded during the
course of sequentialrecovery from a contmol- or data- mis-
speculation.

To implement integration, we first allow the results of
squashednstructionsto remainin the physical register file
pastmis-speculatiomecovery. Astheprocessorre-tracespor-
tions of the squashedpath, integration logic examinesead
instructionasit is beingrenamed. Using an auxiliary table,
this circuit seachesthe physicalregister file for the physical
register belongingto the correspondingsquashednstanceof
the instruction. If this register is found, integration succeeds
and the squashedesultis re-validatedby a simpleupdateof
the renametable Onceintegrated,an instructionis complete
and maybypassthe out-of-oider core of the madine entirely.
Integration reducescontention for queuing and execution
resouces, collapses dependentchains of instructions and
accelentesthe resolutionof brandhes. It achievesthis using
only rename-tablemanipulations;no additional values are
read fom or written to the physicaggisters.

Our preliminary evaluation showsthat a minimal integration
configuation can provide performancdamprovementf up to
8% when applied to current-geneation micro-architectules
and up to 11.5% when applied to more aggressivemicro-
architectures. Integration alsoreduceghe amountof wasteful
speculationin the madine, cuttingthe numberof instructions
executedby up to 15% and the numberof instructionsfetched
along mis-speculated paths by as mas 6%.

1 Introduction

Modernmicroprocessoreely heavily on speculativeexecution
to achieve performance.Sequentiaprocessorgonesthat exe-
cutesequentiaprograms)speculateon both control anddata,
executinginstructionsheforeall of theirinputdependenceare
known with certainty Successfukpeculationimproves per-
formanceby sparingthe speculatednstructionsthe wait of
having their execution context verified. On the other hand,
unsuccessfulspeculation,or mis-speculation hurts perfor-
manceby forcing the processoto recover to someprior non-
speculatie stateand startover. This paperpresentgegister
integration, a mechanismfor overcomingan inherentineffi-
cieng in corventional sequential mis-speculation reeq.

The inefficiency we speakof is born of a basicantagonistic
combinatiorfoundin sequentiaprograms.While a sequential
programis composef mary locally independentomputa-
tions the stateof the programis only definedsequentiallyat

dynamicinstructionboundaries.Sincemis-speculatiomecor-

ery is definedin termsof this sequentiaktate,a mis-specula-
tion in one computationinadwertently but necessarilycauses

valid work from sequentiallyyounger computationsto be
aborted,or squashedand re-executed. Register integration
can be usedto perform squashreuse[2, 18], to sahagethe
resultsof squashedomputationghatarein factcontrol-and
data-independenbf the particularmis-speculatiorevent that
precipitated the resery action.

Many processorémplementspeculatiorusinga level of indi-

rection that mapsthe architecturalregister name spaceto a
larger physical register storagespace. The larger physical
spaceallows multiple versionsof eacharchitecturallocation
(all but one of which is speculatie) to simultaneouslyco-
exist. Successfuspeculationinvolvesthe promotionof newer
mappingsto non-speculatie status;mis-speculatiorrecorery
restoresprior mappingsand reg/clesthe speculatie storage.
Integrationis motivatedby the obsenation that only restora-
tion of previous mappingsis requiredfor correctrecovery. |If

thespeculatie valuesareleft intactpastarecovery event,then
shouldtheprocessore-tracepartof thesquashegathanddis-
cover that someof the instructionswere usefulafter all, only
the correspondingnappingswill needto be restoredthe val-

uesthemseleswill alreadyexist andwill not needto bere-
computed.

Thematchingof squashedesultswith re-tracednstructionss

accomplishedisinga secondmappinginto the physical regis-

ter file, the Integration Table (IT). The IT differs from the

sequentiaimapping(maptable) in a fundamentalway. The

maptabledescribeghe contentsof the physicalregistersin a

transient,sequentiallydependentvay from the point of view

of the architecturategisters. In contrasttheIT describeghe

contentsof the physical registersin a persistent,orderinde-

pendenwvay thatreflectsthe operationsanddataflav relation-
ships used to create the values they contain. While an

instructionis beingregisterrenamedthe IT is usedto search
the physical registerfile for a physical registerthat holdsthe

resultof a previous squashedhstanceof the sameinstruction.
If aregisteris found suchthatits creatinginstructioninstance
hadthe samephysicalregisterinputsasthe currentlyrenamed
instance,then the currently-renamednstruction is “recog-

nized” ashaving beenpreviously executedandsquashedThe

instructionis integrated by settingthe sequentiamappingfor

its outputto point to the physicalregisterallocatedduring the

initial (squashed)execution. The integrated instruction is

completefor all intentsandpurposesit cancommitassoonas
the retirement algorithm alics.

Integrationhasmary adwantages. Obviously, it reducescon-
sumptionof and contentionfor executionresources. It also
collapsedata-dependemhainsof instructions:a data-depen-
dentchain of dependentnstructionscannotbe executedin a
single cycle, but a completedchain of instructionsmay be
integratedin a singlecycle. Integratedbranchinstructionsare
resohed immediately and should these be mis-predicted

brancheghe mis-predictionpenalty and subsequendemand
on the fetch engineare also reduced. From an engineering
standpointjntegrationis simpleto implement. It is unambig-
uously correct,involves no explicit verification and doesnot

requireadditionaldatapathsto eitherreador write ary values
into the physical registers. In general,integration involves

modificationsonly to the register renamingstagein the pro-

cessor; the rest of the pipeline is wldus to its &istence.

Our initial experimentsshowv that a minimal integration con-
figurationcanachieve speedup®f up to 8% on a representa-
tive current-generatiomicroarchitecture. We estimatethat
the speedupincreasesto up to 11.5% for more aggressie
microarchitectures. Integration also reducesthe level of
wasteful speculationin a processar cutting the number of
instructionsfetchedalongmis-speculategathsby asmuchas
6% and the number of instructionseeuted by 15%.

Therestof the paperis organizedasfollows. Thenext section
presentghe basicintegrationalgorithmandarguesfor its cor-
rectnesproperties. Section3 addressesomeissuesnvolved
in theimplementatiorof integration. In section4 we evaluate
integrationusingcycle-level simulation. Section5 discusses
related vork. Section 6 presents our conclusions.

2 Integration

In thiswork, we useintegrationto implementsquasheusethe
salhaging of resultsthat were unnecessarilyliscardedduring
the processof sequentialmis-speculatiorrecovery. In this
section, we discuss the basic integration algorithm and
describethe principlesthatallow it to accomplishts goalin a
straightforvard way. We specificallyaddresghe integration
of load instructions, which requires additional attention.

2.1 Basic Algorithm

During the course of processing,the programé dataflav

graph,in the form of the resultsof its individual instructions,
is storedin the physical registerfile. At ary pointin the pro-

gram,the “active” vertices(results)of this graphareavailable
through a set of mappingsthat maps architecturalregister
namesto physical register locationsand their values. New

portionsof the dataflav graphcanonly be attachedo these
“active” vertices. As eachinstructionis addedto the graph,a
physical registerto hold its valueis allocatedand mappecto

the architecturaloutput. Eachinstructionis annotatedwith

boththe physicalregisterholdingits valueandthe prior physi-

cal register mapping of the same architectural location.
Recorery entailsbacktrackingover a portion of the program,
restoringthe previous mappingof eachinstructions output
while reg/cling the storage for the squashed result.

Integration exploits the obseration that mis-speculation
recovery is obligated only to restoresome prior sequential
mappinginto the physicalregisterfile. Thattheresultsassoci-
ated with the discardedmappingsare also regycled during
recovery is an implementationcornvenience;leaving them
intactpastthe mis-speculatiomloesnotimpactcorrectnesgof
course,they must be regycled eventually lest the processor
“leak” away all physical registers). Assumingthe resultsare
kept, let us considerthe point immediatelyafter the comple-
tion of a recovrery sequence.Justat this point, all squashed
instructionsare, in principle, still “attached” to the current

state(dependencgraph)of the programasdefinedby thereg-
istermapping. The inputsof the oldestsquashednstructions
arefoundin this mapping. The fact that the inputsare valid
validatesthe outputs,which arethemselesinputsof younger
squashedhstructionsandsoon. Integrationis the procesof
transitively recognizinghis validity, instructionby instruction.
For every instructionsequencedy the processarthe integra-
tion logic looksfor theresultof asquasheéhstructionthathad
the sameinput mappings. If oneis found, the corresponding
physical register is “un-squashed’or “pulled back into the
sequentiaflow” simply by settingthe sequentiaimappingto
pointtoit. This actionre-validatesthe physical registermap-
ping, and makesthe input mappingsof squashednstructions
thatdependonit valid, allowing themto be subsequentlynte-
grated. Notice that this samemechanisnmaturally avoids the
re-useof instructionswhosedatainputshave beeninvalidated.
As the processoisequenceistructionsfrom pathsdifferent
thanthe squasheane, the resultsof theseinstructionscreate
mappingsto new physicalregistersnot foundin the squashed
dataflav graph. Thesenev mappingseffectively “detach”
thoseportionsof the squashedlataflav graphthat dependon
the corresponding@architecturaihame,and prevent themfrom
being intgrated.

Integrationof aresultrequiresocatinga squashedhstanceof
the correspondinginstruction with input physical registers
identicalto thoseof the currentinstancebeingrenamed. To
facilitatethis searchjntegrationreliesonthe Integration Table
(IT), an auxiliary structurethat indexes and tags squashed
resultsusinginstructionidentity and input mappinginforma-
tion. Eachentryin thelT correspondso a squashednstruc-
tion instance and contains that instructions PC and the
physical registersusedfor that instances inputs and output.
The IT alsocontainsthreefields whosepurposewill be made
clearlater: Jump-Trget which is meaningfulonly for control
instructions,and Memory-Addess and Memory-\alue fields
which are meaningful only for loads and stores.

We illustrate the basicalgorithmusingan example. Figurel

shavs a shortprogramfragmentwith four variablesX,Y,Z and

W eachallocatedto a different logical register For each
dynamicinstruction,we shav the instructionprecededy its

PC, the stateof the Map and Integration Tablesimmediately
after the renamingof the instructionand descriptionsof the

actionstakingplaceduringsequentiaprocessingndin thelT.

The shadedboxes and circled markers highlight the handling
of instructionA5. The programundegoesthree processing
phases.In thefirst, instructionsAl throughA8 arerenamed
and executed;a newn physical register is allocatedto each
newly createdresult (marker 2). The secondphasebegins

after all the instructionshave completedexecution when a

branchmis-predictionis detectedat instructionA3. Instruc-
tions A8, A7, A6, A5 and A4 arerecoveredin reverseorder
and the original mappings for their output registers are
restoredmarker 3). However, insteadof regycling the physi-

cal registers,eachresultis enterednto the IT andtaggedwith

theinstructionPC andphysicalregisterinputsusedto createit

(marlker 4). Integration comesinto play in the final phase.
Having recoveredfrom the mis-prediction the sequentiapro-

cessorresumedetching at the re-corvergent point beginning

at A5. We follow the renamingand potentialintegration of

each instruction carefully

Intuitively, the re-tracedinstanceof A5 shouldbe integrated
sinceremaving A4 did not changethe value of Y. Indeed,

when A5 is renamedfor a secondtime Y is mappedto 51
(marker 5), the samemappingit had during A5’s original,
squasheaxecution(marker 1). Properly the IT containsan
entry for an instanceof A5 with input physical register 51
(marker 6). By comparingPC/input-rgister tuplesfrom the
dynamicinstructionand maptablewith the correspondindT
tuples(marker 7 with 8, marker 5 with 6), we determinethat
integrationcantake place. Theactitself consistof settingthe
outputmappingof A5 to the physical registeroriginally allo-
catedfor it, 53 (marker9). ThelT entryis remosedsothatthe
register will not be intgrated by another instruction.

When A6 is renamedor the secondtime, it findsits input X
mappedo register50. Changinghe pathhasremoved A4 and
changedthe value of X with respectto A6, invalidating it.
Thisinvalidationis naturallyreflectedn thelT, asno entryfor
A6 with aninputof 50is found. The A6 IT entryhas52 asits
input; 52 wascreatedoy A4, which wassquashed@ndnotre-
traced Withoutamatch theinstructionis left in thelT until it
is evicted. A new physicalregister 57, is allocatedto the cur-
rent instance of A6.

Recall,whenwe integratedA5, we enteredts output(53) into
themaptable. Thatactionsetthe stagefor A7, aninstruction
thatdependn A5, to beintegratednow. The squasheder-
sion of A7 wasexecutedwith input register53, the outputof
the squashed\5. WhenA?7 is re-tracedjts inputis again 53
thanksto theintegrationof A5. A7 is integratedin exactly the
same manner that A5as.

Thefinal instructionin thegroup,A8, shouldnot beintegrated
sinceit dependon A6, which wasitself notintegrated. Such
indeedis the case. When A6 wasnot integrated a nev map-
ping (57) wascreatedfor X. This new mappingpreventsA8

from beingintegrated,muchlike the removal of A4 changed
the mapping that prented A6 from being intgated.

In a four wide superscalarmachine the integration decision
onthesefour instructionscanbe madein parallel. How thisis
doneis the subjectof a future section. However, the example
demonstratedhe four possiblecasedor superscalarintegra-
tion: basicintegration of an instruction(A5), basicnon-inte-
grationof aninstruction(A6), the integrationof aninstruction
that dependson an integratedinstruction (A7), and the non-
integration of aninstructionthat dependn a non-integrated
instruction (A8).

2.2 Integrating Loads

An integratedinstructioncanbe thoughtof ashaving two exe-
cutions:a physicalexecutionwherethe instructionis actually
executedandthensquashedandan architectural executionin
which the integratedinstructionis supposedo execute but
doesnt actually do so. For mosttypesof instructions,the
algorithmwe have shavn sofar is perfectlysafe. The combi-
nationof operationandvalid input values,denotedoy PC and
physical registersrespectiely, guaranteeshat the resultsof
thephysicalexecutionareidenticalto thosethatwould be pro-
ducedin the architecturakxecution,allowing theformerto be
substitutedor the latter Loadsarethe exception. The inte-
grationof aparticularloadis notguaranteedb besafebecause
aconflictingstoremayhave executedbetweertheload'’s phys-
ical andarchitecturakxecutions. A loadthatis eitherblindly
integrateddespitesucha store conflict or that experiencesa
post-intgration conflict is termedmis-intggrated Mis-inte-
grations jeopardize correctness.

Loadspresenta problembecausephysical registernamesare
not sufficient to detectload/storecollisions. There are two
ways to ensurethat mis-integratedloads are not allowed to
retire. Thefirstis to re-executeall integratedloadsandtreata
changen theoutputvalueasamis-speculation.Theseconds
to storedataaddressegand potentially values)with loadsin
the IT andusestoresto invalidate matchingloads. The first

Insn Action Dynamic Insn Map Table Integration Table IT Action
X Y Z W PC 11 12 (0]

Rename/Alloc Al: X=0; 50 | 47 | 48 | 49 No Match
Rename/Alloc A2: Y=1; 50 | 51 | 48 | 49 No Match
Rename/Alloc A3: if(Z2==0) 50 51 | 48 | 49 No Match
Rename/Alloc A4: X=1; 52351 48 | 49 No Match
Rename/Alloc A5: Y++; 52¥53 | 48 | 49 No Match
Rename/Alloc AG: X++; 54 | 53 | 48 | 49 No Match
Rename/Alloc A7: W=Y*Y; 54 | 53 | 48 | 55 No Match
Rename/Alloc A8: Z=X*Y; 54 | 53 | 56 | 55 No Match
Recorer A8: Z=X*Y,; 54 53 48 55 A8 | 54 | 53 | 56 Enter
Recorer A7 W=Y*Y; 54 53 48 49 A7 | 53 | 53 | 55 Enter
Recorer AG: X++; 52 53 48 49 A6 | 52 54 Enter
Recover A5: Y++; 52 51 48 49 : A5 | 51 53 Enter
Recorer A4 X=1; 50 51 48 49 é%SO 52 Enter
Rename/Integrate eAS: Y++; 508¥53 | 48 | 49 ASW' 51 53 Match/Remove
Rename/Alloc AG: X++; 57 | 53 | 48 | 49 A6 | 52 54 No Match/Leae
Rename/Intgrate A7: W=Y*Y; 57 | 53 | 48 | 55 A7 | 53 | 53 | 55 Match/Remeoe
Rename/Alloc A8: Z=X*Y; 57 | 53 | 58 | 55 A8 | 54 | 53 | 56 No Match/Leae

FIGURE 1. A Working Exampleof Integration. Showshethree-phas@rocessingf a seriesof instructions.
The three phasesare: (i) initial execution(ii) recovery and (iii) squashed-pathe-execution. The shaded
guantities and citled marlers highlight the actions susunding instruction A5.

methodusesa simple IT but reducesthe positive impact of

successfulintegration, forcing integrated loads to consume
execution bandwidth. The secondincreasesthe potential
impactof successfuintegration,but complicateghe IT some-
what. Our frameork models store iralidations.

3 Implementation Aspects

In this sectionwe discussseveral implementationaspectsof
integration including all modificationsthat must be madeto
the basemicroarchitecturethe integration circuit itself, and
the mechanism that ensures the safgmatén of loads.

3.1 Base Micp-architecture Requirements

Integrationis not atechniquethatcanbe appliedto all specu-
lative microarchitectureslts implementatiorrequiresthatthe
base microarchitectureallow speculatre resultsto remain
intact pasta mis-speculatiomecovery action and supportthe
out-of-order allocation and freeing of speculatstorage.

Theserequirementsdisqualify mary current microarchitec-
tures. In-order speculatre microarchitectureslike Sun’s

UltraSparc-Illthat useworking (future) registerfiles indexed

by architectural register number both disallov arbitrary
assignmentof physical resultsto architecturalnamesand

overwrite the mis-speculateéhstructionsresultsduring recor-

ery. Intel's P6[10] core processorandHAL's SFARC64 V

[7] keepspeculatie resultsin the re-orderbuffer, preventing

their preseration past a mis-speculationrecovery. IBM’s

Pawer [19] processorand (we believe) AMD’s K7 [5] have

physical register files separatefrom the re-orderbuffer, but

alsohave anarchitecturategisterfile andrequirethatphysical

registersbe allocatedand freed in-order Microarchitectures
with physical register modelsthat can supportintegrationare

theout-of-orderAlpha processorstartingwith the21264{11],

those of MIPS beginning with the R10000[21], and (we

believe) Intel's Pentium 4 NetBurst microarchitecture [9].

3.2 A Micro-architecture with Integration

We now examinea microarchitecturéhatincludesintegration
and commenton changesn the flow of instructionsthrough
the modifiedpipeline. A pipelinewith integrationis shown in
Figure2(a); the structuralmodificationsand new registertag
anddatapathsarein bold. We work from the backof the pipe-
line to the front, explaining how instructionsbecomecandi-
datesfor integrationbeforedealingwith the flow of integrated
instructions.A later subsectioris dedicatedo explaining the
integration circuit itself in detail.

Sinceintegrationdealswith sahagingthe resultsof squashed
instructions,the most naturaltime to insert instructionsinto
the IT is during mis-speculatiomecovery. Implementatiorof
IT insertion is straightforvard for micro-architectureghat
implementrecovery using serial rollback. Most microarchi-
tectures however, including the Alpha 21264[11] and MIPS
R10000[21], implementrecosery asa monolithiccopy from a
checkpoint.IT insertionis slightly moreinvolvedin this case,
but its particularsdo not affect integration performance. For
clarity, we plain the process as serial.

One importantqualificationto the IT entry procedureis the
exclusion of all instructionsthat have not completedexecu-

tion. Thereasoningoehindthis decisionis thatit is the inte-
gration of completedinstructionsthat contritutes most to

performancelntegrationprovidestwo main performanceéen-
efits: it allows instructionsto bypassthe issueengineand it

collapsesdependenthainsof instructions. Neither of these
benefitsappliesto instructionsthat have not issuedand only

the first appliesto instructionsthat have issuedbut not com-
pleted. However, the numberof instructionslikely to be inte-
gratedwhile in this post-issue/pre-completiostateis small,
andin returnfor forfeiting them,we simplify the handlingof

integratedinstructionsby assuminghatall integratedinstruc-
tions are complete. Faulting instructionsare also excluded
from thelT, sincefaultsmay have sideeffectsthatwould need
to be reproduced on irgeation.

Oneof theprinciplesof integrationis thatit allows speculatie
physicalregistersto “survive” recovery. This meanshatdur-
ing recovery output registersof instructionsthat are entered
into thelT arenotreclaimedandaddedo thefreelist asusual.
However, we must be explicit aboutwho is responsiblefor
eventually freeing the registersof instructionsthat are in the
IT, sothattheseregistersarenot “leaked”. Thepolicy is actu-
ally quite straightforvard. The IT assumesesponsibilityfor
thephysicalregistersof its entries. If anentryis evictedwith-
out having beenintegrated,it physicalregisteris addedto the
freelist. Corversely if an entry is integrated,responsibility
for the registerreturnsto the re-orderbuffer, which handlest
in the usualway. Onecaveatis thatthe IT entry of aninte-
gratedinstructionmustbe clearedso that no othersequential
instructionwill attemptto getownershipof the corresponding
register (the output of two simultaneouslyactive instructions
may not be allocatedto the samephysical register). Notice,
the changeof ownership mechanismalso allows the same
instruction to be repeatedly squashed andgjmated.

Thenext subsectiorescribesheintegrationrelatedmodifica-
tions to the registerrenaminglogic. Here,we describewhat

happengo an instructionafter it hasbeenintegratedwhich,

having decidedthat only completedinstructionscan be inte-

grated,is not much. An integratedinstructionis enterednto

the re-orderbuffer marked as completedand the integrated
physical registeris setasits “current mapping”. Integrated
loads (and stores)are allocatedload (or store)queueentries
that are filled using the IT Memory-Addess and Memory-
Value fields andmarked ascompleted. Theseentries,too, are

ordinary Finally, if the integratedinstructionis a branch,the

resolutionandpotentialrecovery sequencearestartedimme-

diately usingthe Jump-Trget IT field asa recovery address.
The integratedinstructioncan bypassthe out-of-orderexecu-

tion core;it doesnot needto be allocatedto a resenation sta-

tion, scheduled&cuted, or written back.

3.3 Integration Circuit

The most delicatepiece of the integration mechanismis the
integrationcircuititself. Theintegrationcircuit examineseach
dynamicinstructionand decideswhetheror not that instruc-
tion may be integrated. Of course it mustdo sofor multiple,
potentiallydependeninstructionsin parallel. In this section,
we describeone possibleimplementatiorof this logic andits
complity. We begin with a scalardescriptionof the circuit,
before proceeding to the sugsralar case.

Scalarregisterrenamingoccursin two logical steps. First, an
instructions logical inputs are renamedto physical outputs

usinglookupsin the maptable. Secondits logical outputis

allocateda new physicalregisterandthis new logical-to-ptys-
ical mappingis enterednto the sequentiamaptable,allowing

future instructionsthat needthe value to obtain their inputs
from the correctlocation. We call thetwo stagesnputrouting
and outputallocation, respectiely. Integrationaddsa piece
called outputselectionin which the outputmappingmustbe
chosenbetweena newly allocated physical register and a
physicalregisterobtainedfrom anIT entry Theoutputselec-
tion circuit occurslogically after theinputroutingcircuit since
the integrationtestmustcomparethe input physical registers
of the sequentialnstancewith thosein thelT entry However,

the scalarimplementatiorof integration canbe thoughtof as
occurringin oneof two ways. In thefirst, outputselectionis

implementedserially after input routing with the integration
tableindexed by instruction PC and input physical registers.
In the second,outputselectionis split into IT lookup which
happengn parallelwith input routing,andan integration test

which occurslogically afterit. In this organization,shovn in

Figure2(b), thelT isindexedby PC only andthe physicalreg-

ister numbersare usedto matchtags. Both schemedikely
require pipelining rgister renaming into at leastdavetages.

The merits of eachimplementatiorare opento debatein the
scalarealm,but in asuperscalarervironmentonly thesecond
is viable. While thefirst schementerlearesandserializeghe
inputroutingandoutputselectiondecisionghatmustbe made
for eachinstruction,the PC-only indexed schemepermits a
parallelprefiximplementatiorsimilar to theoneusedto super
scalarizecorventionalregister renaming. Let us review con-
ventional superscalar renaming. Superscalar renaming is
more complex than scalarrenamingbecausats input routing
decisionsmust reflect intra-group dependences.To do so,
dependengchecklogic actsin parallelwith outputallocation.
Thislogic compareghelogical input of eachinstructionin the
group with the logical output of each previous in-group
instruction;a matchoverridestheinitial inputroutingretrieved
from the map table and routesthe input to the appropriate

newly allocatedphysicalregister For example,in a groupof

four two-input, one-outputinstructionseach of the second
instructions inputs hasto be comparedwith the first instruc-
tion’s output, eachof the third instructions inputs hasto be
comparedwith the outputsof the first two instructionsand
eachof thefourth instructions inputshasto be comparedvith

the outputsof thefirst threeinstructions. The total numberof

comparisondor this caseis 12 andin generall * N(N-1)/2

with | the numberof inputs per instructionand N, the super

scalarwidth or the numberof parallelrenamingoperations.In

general the depthof the circuit is linearwith N andthe num-
ber of comparisons gns asN?.

In additionto the cornventionaldependence-chedircuit that
comparedogical registers,integrationrequiresthatwe imple-
mentoutputselectionand ary correctionsit might imply for
input routing for subsequeninstructions. Recall,for the sca-
lar integrationtestwe compareceachIT entry input with the
correspondingegister retrieved from the maptable. In the
superscalarcase we mustalsocompareit to the physicalreg-
ister outputsfor all integrationcandidate®f all prior instruc-
tions in the group. Note, we do not have to comparethe
candidateinputs with the newly allocatedphysical registers
correspondingo eachprior instruction:the situationin which
aninstructionis dependenbn a prior instructionin the group
andis integratedwhile the prior instructionis notis obviously
impossible. Nevertheless,although the priority encoding
depthof thecircuitis still N, the superscalawidth, thenumber
of physical register comparisonsiow grows with both N and
the numberof possiblelT matchesM. Thepreciseformulais
| * ((5N(N-l)/2)M+ N) * M); the growth of the function is
IN2M2. The complity of the circuit is very closeto that of
register renamingfor a direct-mapped T, but diverges for
higherassociatiity implementations. For instance,a four-
wide machinewith a direct-mappedT requires20 physical
register comparisonsto implementintegration. The same
machinewith a 2-way IT needs64 comparisons. Just for
scale,an 8-wide machinewith a 4-way IT requires960 com-

(a) (b)
Integration Table Instruction Map Table Free List
) Rename
5 Fetch PC 11 12 O
9 Integratee [AS]51] 53]
g 5 v
g 9 PC 11 12 O X Y Z W
ol E|3l =3 A5]51 53 [50]53[48[49] [57]56]
e gLl
L 0n| S| © LO‘
o c ol © > N
5| & |
B >
£ - -
% S Instruction Actve List——»
> Recorer] PC 11 12 O PC 11 12 O XY Z W
Commit, free old pysical rejister A5[51] [53] [A5]51] [53] [50[53[48[49] [57]56]

FIGURE 2. Implementation Aspects. (a) A micro-

architectue with integration. Integration-specific

modificationsin bold. In addition to the actual integration table (IT) and modifiedrenamelogic, there are
additional pathsfrom the instruction ordering buffer (ROB) to the IT that are usedduring recovery, a path
fromthe T to thefreelist, and pathsbetweerthe IT andtheload and store queues.(b) Scalar PC-indeed
integration circuit. A scalarintegration circuit in which the IT and maptable are accessedn parallel. An
extensionof this circuit implementsuperscalar integration. Thediagramtracesthe IT, maptable andfree
list, aswell astheinstructionitself throughthe two stepsof integration-enabledegisterrenaming At thetop
of the figure, the instruction shownis raw and the structues are as they appearbefore the instruction is
renamed. At the bottom, the instructiondeamed and the struces eflect that fact.

parisons! Certainly a highly associatie integrationcircuit is
challengingo build. In theevaluationsectionwe quantifythe
performance impact of higher assoaityi.

We should mentionherethat someof the compleity of the
integration circuit may be moved off-line into the IT itself.
For instancethe IT could internally performthe intra-group
dependencehecksandstoregroupsof dependeninstructions
in akind of “trace” that canbe integratedusing I*N*M com-
parisons. However, IT managemenbecomesmuch more
comple in this case andthereis the addedproblemof choos-
ing the groupingof instructionsinto traces. An investigation
of such optimizations is outside the scope of thoaskw

3.4 SafelLoad Integration via Store Invalidation

When first presentingintegration, we remarled that special
supportmustbe provided to ensurethat loadsthat have been
invalidatedby interveningstoresareremovedfrom integration
consideration.At thevery least,the mis-integrationshouldbe

detectedso that alternatve correctve action can be taken.

Mis-integration detection and avoidance are implemented
usingasimpleextensionto the processos basicload specula-
tion mechanism. Processordhat supportload speculation
(advancing loads past incomplete stores) detect store/load
orderingviolationsasfollows. Theloadandstorequeueson-

tain addressand value fields. Completedstoreschecktheir

addressaaindvalue aginstaddress/alue pairs of younger pre-

viously completedoads. An addressoverlap coupledwith a

value mismatchsignalsa memoryorderingviolation which is

handled by replaying the load in somayw

The solutionhandleswo casesThe mis-integrationdetection
casecovers conflictswith storesthat completeafter the load
hasbeenintegrated. Mis-integrationdetectionis implemented
naturally by the native load speculationmechanism. Recall,
loadsareenterednto theT alongwith theiraddresandvalue
fields from the load queue. Whenthey areintegrated,these
fields arerestoed to the load queue. To a completingstore,
therefore,an integratedload looks just like ary other com-
pletedload and conflicts are handledin the usualway. Mis-
integration avoidancetargets conflicts with storesthat com-
pletebefore aloadis integrated. To implementavoidance we
simply extend the store-irvalidation procedureto include IT
loads. TheIT essentially'snoops” completedstores,match-
ing their address/alue pairswith the Memory-Address/Mem-
ory-Value pairs of IT loads. An addressmatchhalue
mismatchcauseghe invalidation of the correspondindoad,
preventingit from beingintegrated. Detectionand avoidance

squashingijntegration mustbe carefulnot to confusea value
mis-speculatedhstructionandits dependeninstructionswith

correctlyexecutedsquashechstructions.|T entriesthatcorre-
spondto datamis-speculatedesultsmust not be integrated.
One broad solution to this problem would be to not enter
squashednstructionsinto the IT during recovery from these
kinds of mis-speculationsHowever, this solutionis too harsh
sinceit preventsthe correctly executedinstructionsthat were
lostduringrecovery from beingsalhaged. An effective trick is

to enterall completedinstructionsexceptfor the value mis-
speculatednstructionitself into the IT. This omissioneffec-
tively “detaches’all dependeninstructionsfrom possibleinte-
gration, while lewing all independent instructions intact.

Thereis an interestinginteraction betweenintegration and
anothertechniquefor salagingwork lost to a datamis-specu-
lation, selectivesquashing8, 12,15, 16]. In selectve squash-
ing, instructions are kept in resenation stations until
retirementallowing themto simply re-issueasdatamis-specu-
lations are resohed. If selectve squashings implemented,
integration is not “activated” during data mis-speculations
sincethe instructionsare not squashedndre-fetched. Inte-
gration, on the other hand,still handlescontrol mis-specula-
tion squashesvhich, quite corveniently cannotbe handledby
selectve squashing.Integrationandselectve squashingcom-
plementeachother nicely. However, we do not explore their
interactionexperimentally;our simulationsmodelfull squash-
ing for all mis-speculations.

3.6 Setting the Size of the Bisical Register File

A final implementatiomoteconcernghe sizeof the IT andits
relationshipto the total size of the physical registerfile. To
avoid resourcestalls, the numberof physical registersshould
be equalto the maximumnumberof values(botharchitectural
andspeculatie) thatcanbe“in play” atary time. For aspec-
ulative machinethis is equalto the numberof architectedeg-
isters plus the maximum number of renamed in-flight
instructions(the size of the re-orderbuffer). Now, the IT is
simply amechanisnior keepingphysicalregisters'in circula-
tion” for longerperiodsof time; valuesin the IT arestill con-
sidered‘in play”. Consequentlyto avoid resourcestallsin a
micro-architecturewith integration, the size of the physical
registerfile shouldbe equalto the numberof architectedegis-
tersplusthe size of the re-orderbuffer plusthe sizeof thelT.
In our simulatedconfigurationsye usethis formulato ensure
thatthemachinenever stallsfor lack of afreephysicalregister

can also be implemented using purely address-based criteria4 Performance E\aluation

Our results shav that most mis-integgrations are avoided.
Those that arent, while not impacting correctness,can
degradeperformanceasthey areequivalentto normalload or
value mis-speculations.Our performancesvaluationsection
will measure the pralence of mis-intgration.

3.5 Handling Data Mis-Speculations

Thediscussiorof loadintegrationbringsup animportantnote
regarding integration and the way it must deal with instruc-
tions squashedlue to data mis-speculationdike speculatre
memory-orderingviolations [14, 22] and value mis-specula-
tions[12]. Specifically for micro-architecturetik e the Alpha
21264[11], in which data mis-speculationsre handledby

We evaluatethe potential performancempact of integration
using cycle-level simulation. We presenta full setof results
for onespecificdesignmeantto represent potentialcurrent-
generation(or very near future) microprocessor We then
briefly look attwo dimensionsn theIT designspacesizeand
associatiity. To befair, we quantifythe adwerseperformance
effects of ary additionalpipeline stagesrequiredby integra-
tion. Finally, we try to projectintegration’s impacton more
aggressie future-generation microarchitectures.

4.1 Experimental Framework

We evaluateintegration using the SPEC2000nteger bench-
mark suite. The programsare compiledfor the Alpha EV6

architecturéby the Digital UNIX V4 cc compilerwith optimi-
zations- B - f ast. We usethe testdatasetdor reporting
performancdor all benchmarkexceptperlomk Therewe are
forcedto usethetrainingsetbecaus¢hetestsetcontainsfork
and exec calls that our simulationervironmentdoesnot sup-
port. Wheremultiple testdatasetsaregivenwe usethelonger
runningone,specificallyplacefor vpr andkajiya for eon We
simulate all programs in their entirety

Thesimulationenvironmentis built ontop of the SimpleScalar
3.0[1] Alphatoolkit. Thecycle-level simulatormodelsanout-
of-order machinesimilar in organizationto an unclustered
Alpha 21264[11] with nhominal stagedetch, registerrename
anddispatch,schedule gxecute,writebackand commit. The
out-of-order schedulinglogic speculatedoads aggressiely,
issuingthemevenin the presencef prior storeswith unavail-
able addresses. A mis-speculationcausesthe load and all
downstreaminstructionsto be squashednd re-fetched. Our
modeldoesnot include a dependence-speculatiomechanism
that may reducethe incidenceof memory-orderingviolations
[3, 14, 22]. However, we don't believe that the inclusion of
sucha mechanisnwould take avay a significantportionof the
impact of integration, since most integration candidatesare
producedby control mis-speculation. The recorery mecha-
nismitself is modeledasserialwith bandwidthequalto com-
mit. Recoery stallsrenaming,but executionand retirement
from the headof the machinemay continue. We model a
memorysystemwith non-blockingcachesfinite write-buffers
andmiss-statusolding registerstMSHR), andcycle accurate
bus utilization. Tablel shavs the simulation parametersn
detail. IT configurationis specifiedinline with the respectie
presentatiorof results. The Alpha has64 architecturaregis-
ters;the numberof physicalregistersfor a givenconfiguration
is therefore alays set to be 64 +@B size + IT size.

4.2 Base Configuration Results

Table2, which is split into two for readability shavs the per-
formance impact of integration using a 256-entry direct-
mappedT on the configurationdescribedabore. Datais pre-
sentedn four mainparts.Thefirst two characterizehe perfor-
manceof thebaseandmodifiedsystemin termsof instructions
fetchedandexecuted pranchmis-predictionsandbranchmis-
predictionresolutionlateng, andtotal memory-orderingvio-

lations. Thesenumbergyive a feel for the degreeof mis-spec-
ulation in each programand its causes. Comparingthese
groupsof numbergairwise givesanideaof the overall effect
of integrationon speculatre (mis-speculatie) processoactiv-
ity. Thenext two partsmeasurahe actvity andeffectiveness
of integration usingmore direct metrics. We reportabsolute
countsof instructionsintegrated,loads integrated,and mis-
predicted branchesintegrated (and ostensibly immediately
resohed).

The shadedat the bottomcomputeghe characteristi@andper-
formance metrics of integration and its impact on perfor-
mance. The contribution rate is the numberof instructions
integratedas a percentagef the total numberof instructions
committed;it is the amountof work integrationcontributesto
thearchitecturabxecutionof theprogram. Thesalvege rateis
numberof instructionsintegratedasa percentagef squashed
(and completed)instructionsand measureghe rate at which
integrationcandidatesrehanested. Thecontritution andsal-
vage ratesmeasureboth a programs inherentsuitability for
integrationand our mechanisns ability to captureintegration
candidates.Thefinal threemetricsmeasurghe percentagef
instructionsfetched,instructionsexecutedandtotal execution
time saed by intgration.

Theperformancdiguresshav thatintegrationis equallyeffec-
tive on all benchmarks. On some,like gzip, vpr, crafty and
twolf, it cutsexecutiontime by upwardsof 5%. On others,it
achievesspeedup®f lessthan1%. To explain this behaior
we appealo the structureof the programsandto the contriku-
tion andsahagerates,which help correlatethis structurewith
suitability for integration. Thereare someprogramsthat for
structuralreasonsimply cannottake adwantageof integration.
Onepossibility is that the programshave few squash-causing
branch mis-predictions and memory-ordering violations.
Anotheris thatbranchmis-predictionsare presentut thatthe
codewithin the conditionalarmsis so long thatthe processor
doesnot have time to fetch and execute the re-corvergent
region beforethe branchis resohed. Finally, if there-corver-
gentregion is reachablealong the mis-speculategath, it is
possiblethatit containsno data-independentstructions the
ones that can later be igtated.

How do the benchmarkdreakdown accordingto thesecrite-
ria? Bzip2 for instance,encountersdoranchmis-predictions

Front-End

Symmetric16K-entry combined10-bit history gshareand 2-bit predictors.2K entry, 4-way associatie
BTB, 32 entry return-address-stacR-cycle fetch. 32-entryinstructionbuffer. Up to 8 instructionsfrom
two cacheblocks fetchedper cycle. A maximumof onetaken branchper cycle. 8-wide single-gcle
decode. Direct, unconditional jump mis-predictions veced at decode.

Issue
Mechanism

8-way superscalaput-of-orderspeculatie issuewith a maximumof 128 instructionsor 64 loadsor 32
storesin flight. 2-cycle schedule/rgisterread.Loadsspeculatrely issuein the presencef earlierstores
with unknovn addressesThe load andsubsequennstructionsare squashe@ndre-fetchedon a memory,
orderingviolation. Recweryfrom all formsof mis-speculatioiis serialwith abandwidthof 8 instructiong
percycle. Recovery stallsregisterrenaming,but executionof unrecaeredinstructionsmay proceedn
parallel. Storeto loadbypasdakes2 cycles.Memoryandcontrolinstructionshave the highestscheduling
priority. Priority within a group is determined by age.

Memory
System

32KB, 32Blines, 2-way associatie, 1-cycle accesd.1 instructioncache 64KB, 32B lines, 2-way associa
tive, 2-cycle accessl. 1 datacache A maximumof 16 outstandindoad misses16-entrystorebuffer. 16-
entrylTLB, 32-entryDTLB with 30-g/cle hardwaremisshandling.SharedLMB, 64B line, 4-way associa
tive, 12 cycle accesd 2 cache.70-¢/cle memorylateng. 32B busto L2 cacheclocked at processofre-
queng. 16B hus to memory cloakd at 1/3 processor frequgn€ycle level bus utilization modeled.

FunctionalUnits

(lateny) and all multipliers are fully pipelined.

8INT ALU (1), 2 INT mult/div (3/20),3 FPadd(2), 1 FPmult/div (4/24),4 load/storg2). The FPadderd

TABLE 1. Simulated makine configuration.

infrequently(fewer thanonceevery 400 instructions). It falls
underthefirst category. BzipZs sahagerateis closeto 40%,
but it executesso few instructionsalong mis-speculategaths
ascomparedo otherprogramshatthe overall pool of integra-
tion candidatess small. The secondwo cateyoriesaresome-
whatmoredifficult to distinguishfrom oneanotheybut five of
the otherbenchmarksgcg mcf parser, perlomkandgap fall
into them. Theseprogramsincur branchmis-predictionsor
memory ordering violations every 100 instructionsor so (or
more frequently), execute (and squash) somavhat more
instructionsthanthey commit, yet permitthe successfuinte-
grationof only around20%of squashedhstructions.\ortex is

a strangecase. It executesmary instructionsalongsquashed
pathsbut, sincemary squashesre dueto load mis-specula-
tion, integratesonly arelatively low percentagef them. Per-
formancegain is achieved becausemary of the integrated
instructionsare mispredictecbranches. The four benchmarks
we mentionedat the top executea lot of work alongmis-spec-
ulatedpathsandintegratethatwork at a high rate. Thesepro-
gramshbenefitthe most from integration. Other factorsthat
contritute to the obsened impactof integration but are diffi-
cult to quantifydirectly arethe parallelismin the high-integra-
tion regionsandthe extentto which theintegratedinstructions
help collapse dependence chains.

gzip vpr gcc mcf crafty parser
Committed instructions (M) 3367.27] 1566.70, 2015.64 2590.63| 4264.78| 42035
[Base | Fetched instructions (M) 5555.67] 3667.92] 3816.01 527.87] 8080.35 7515.99
Executed instructions (M) 4114.58 2069.79 2327.15 292.49 5158.60 4854.72)
Mispredicted branches (M) 16.61 20.48 22.93 2.54 38.80 38.08
Misprediction resolution lat. (g 29.72 18.41 16.85 33.37 21.48 20.78
Mis-speculated loads (M) 2.50 0.00 0.20 0.01 1.35 0.14
[Base | Fetched instructions (M) 5376.16| 3424.83] 3709.65 5090.96| 7659.44] 7374.33
+IT ["Executed instructions (M) 3481.16 1774.06 2133.07 271.98 4649.16 4582.10
Mispredicted branches (M) 15.91 20.90 22.97 2.54 38.84 38.05
Misprediction resolution lat. (g 27.56 15.66 15.86 31.96 19.27 20.15
Mis-speculated loads (M) 3.29 0.59 0.36 0.02 1.41 0.20
Integrated instructions (M) 640.70 249.35 167.73 15.85 450.31 274.49]
Integrated loads (M) 177.12 90.69 55.60 3.28 200.29 78.19
Integrated mispredictedbranches(M) 0.78 0.59 0.17 0.01 0.53 0.54
Integrated/committed (%) (Contrib.) 19.0 15.9 8.3 6.1 10.6 6.5]
Integrated/squashed (%) (salage) 61.9 46.7 29.1 24.0 45.3 28.3
Fetched insns seed (%) 3.2 6.6 2.8 3.7 5.2 1.9
Executed insns seed (%) 15.4 15.3 8.3 7.0 9.9 5.6
Execution time saed (%) 4.8 8.1 2.0 11 5.2 1.1
eon perlbmk gap vortex bzip2 twolf
[Committed instructions (M) 45820 2/684.23 1169.58| 9808.12] 8822.14 258.73|
[Base | Fetched instructions (M) 987.32| 51890.55 1738.94] 17977.94 10694.62 530.94]
Executed instructions (M) 554.43| 30300.91 1227.20) 11673.81 9067.05 295.94
Mispredicted branches (M) 4.34 261.86 9.80 34.98 24.40 2.89
Misprediction resolution lat. (G 14.32 60.65 24.82 12.41 19.56 16.56
Mis-speculated loads (M) 3.92 13.66 0.15 43.15 0.16 0.32
[Base | Fetched instructions (M) 957.22| 51341.83 1722.18] 17111.10 10638.29 505.40)
+IT [Executed instructions (M) 501.30] 28964.36 1186.67 9919.20 8917.34 268.77|
Mispredicted branches (M) 4.31 262.07 9.87 33.85 24.49 2.89
Misprediction resolution lat. (G 13.56 59.88 24.35 10.36 19.10 14.98
Mis-speculated loads (M) 3.74 13.56 0.18 40.14 0.52 0.32
Integrated instructions (M) 41.35| 1308.39 3.80 157.36 132.05 22.35)
Integrated loads (M) 12.37 435.56 1.04 34.93 44.27 8.38
Integrated mispredictedbranches(M) 0.30 7.67 0.02 11.73 0.27 0.27
Integrated/committed (7)/0) (contrib.) 9.0 4.7 0.3 1.6 15 8.6
Integrated/squashed (%) (salage) 44.8 22.4 22.4 7.3 334 41.4
Fetched instructions saed (%) 3.1 11 1.0 4.8 0.5 4.8
Executed instructions saed (%) 9.6 4.4 3.3 151 1.7 9.2
Execution time saed (%) 3.0 0.9 0.4 3.1 0.4 5.6

TABLE 2. Detailed Ferformance Impact of Adding a Direct-Mapped, 256-entry IT to a Current Generation
Microarchitecture. Raw quantities & listed in millions ofwents (M) or cycles (c).

To afirst order integrationis primarily a techniquefor reduc-
ing thenumberof instructionsexecutedn a program. To that
endit is fairly successfulreducingthe consumptiorof execu-
tion bandwidthby 1% to 15%. However, a rather striking
trendis the incredibly strongcorrelationbetweenthe perfor-
manceof integrationandits secondordereffect, reducingthe
numberof instructionsfetched whichit doesat ratesthatvary
from closeto nil to near7%. Integrationis a techniquethat
operatesat decode/renaméme. It is is thereforeunableto
eliminatethe lateny andbandwidthof fetch from the costof
anintegratedinstruction. Integrationfreesup executionband-
width for new instructions but doesnot directly free up more
fetch bandwidthto fetch thosenew instructions(it actually
can, but only indirectly via the acceleratedesolutionof mis-
predictedbranches).As aresult,the reducedconsumptiorof
executionbandwidthgenerallyleaves bubblesand openslots
in the executionpipelines. Actual performancegain is more
closelyrelatedto the numberof instructionseliminatedfrom
processing completely

Oneopportunityfor integrationto do harmis by precipitating
squashethroughmis-integrations. However, our figuresshav
that although memory-ordering squashesare sometimes
increasedvith integration,the numberof introducedsquashes
is smallin comparisonwith the numberof loadsintegrated.
On the whole, integrationreduceshe amountof mis-specula-
tion actwvity in the processqrcutting down the number of
instructionsfetchedand (to a lesserdegree) executed. This
factsuggestswo interestingapplicationsor integration. The
first is as a dynamic power and enegy reductiontechnique
[13]. Thisuse,of course requiresthatthe power characteris-
tics of integrationitself be acceptablesomethingthat hasnot
yet beeninvestigated. The secondapplicationis in a simulta-
neousmultithreading(SMT) processof6, 20], whereseveral
narrav front-endssharea large out-of-orderexecutionengine.
This could be an ideal ervironment for integration, which
would reducecontentionin the back end,and would require
only (replicated) narn, low-compleity integration circuits.

4.3 Impact of Table Size and Associatity

Two importantparametersn the designof the IT areits size
and associatiity. Since the IT always containsthe most
recentlysquashednstructions,its size determineghe degree
to which it cansahagework from older squashedegions. If
the IT is too small, older squashednstructionswould be
evicted beforethey could be integrated. However, an overly
large IT is also undesirablesinceit implies an overly large
(and werly slow) physical raister file.

Theeffectof IT sizeon the performancémpactof integration
is shavn in Figure3(a). Thetrendscertainlysupportour pro-
gram-structureexplanationfor the bimodal natureof integra-
tion, as each group of benchmarksrespondsdifferently to

changesn IT size. Thosebenchmarkshatfail to benefitfrom

integrationfor structuralreasonglo soconsistentlyregardless
of IT size. More integrationresourceslo not changethe fact
that the product of programand machinedoesnot produce
mary valid integration candidates. On the other hand, pro-

gramswhosestructuredoesallow themto supportintegration,
can drawv additional benefit from additional integration
resourcesln general,however, a very large IT is not neces-
sary A significantfractionof the benefitcanbe achiezedwith

a small IT that can buffer the squashedesultsfrom the last
mis-speculatedegion. For this set of programsand our

machineconfiguration,256 entries (enoughspaceto buffer

instructions from between4 to 8 mis-speculatedregions)
appeargo be sufiicient. The correspondingrumberof physi-

cal ragisters is 448.

The associatiity of the IT hastwo differentusesthatimpact
performancen two ways. Fromthe standardriewpoint, asso-
ciativity is amechanisnfor moreefficient managementf col-
lisionsin the IT. Specificto the integrationcircuit, however,
associatiity can also determinethe number of squashed
instance®f the samestaticinstructionthataresimultaneously
consideredfor integration. Although the first use doesnot

(a) Effect of IT Size on Performance Impact of Integration

- 10

=

3 8 O 64

>

5 O 128

£ B 256

SR — B 512

S

i T

Q

a4 rl—. 1T mill | roill e o crrm
gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

10 (b) Effect of IT Associativity on Performance Impact of Integration

=

T 8 O 1

>

& & B 2

£ m 4

= 4

S

3 2

3

w0
gzip vpr gee mcf crafty parser eon perlbmk gap vortex bzip2 twolf

FIGURE 3. Effect of IT Sizeand Associativityon Performance Impact of Integration. Percentaye of
executiontime savedusing (a) a direct-mappedT of four sizes:64, 128,256 and512. (the corresponding
physical egister file sizes @& 256, 320, 448 and 704) and (b) a 256-entry IT with associativities 1, 2 and 4.

necessarilymply the secondwe useassociatiity to quantify
both IT eviction policy and integration circuit compleity in
orderto simplify the discussion. Theimpactof IT associati-
ity on integration performances shavn in Figure3(b). The
trendsaresimilar to thoseobsened whenchangingthe sizeof
thelT; thebimodaleffectis still presenfor the sameprogram-
structuralreasonsThetrendsaremuchlesspronouncedhow-
ever. Exceptfor in the casef gzipandvorte, thereis little
benefitto having arnythingmorecomplex thanadirect-mapped
IT that suppliesa singleintegration candidateper instruction.
That higher associatiities that would overly complicatethe
integration circuit are unnecessary is goodséndeed.

4.4 Impact of Increased Pipelining

Earlier we mentionedthat an implementationof integration
mayrequireregisterrenamingto be pipelinedinto two stages.
Suchanincreasdn pipelinedepthwill erodesomeof the per-
formancegainedby integration, and potentially induce abso-
lute slow-downs for programsthat did not originally benefit
from integrationandwould now beforcedto payfor its imple-
mentation. The increasechumberof physical registersmay
also require adding additionalgister read/schedulgces.

Theimpactof increasedipelining for both registerrenaming
andregisterreadis shovn in Figure4(a). Integration-induced
increasedipelining doesmitigate the performanceémpact of
integration,even producingslow-downsfor thosebenchmarks
which integration doesnot help. The dominanteffect is an
increasein the branchresolutionlateny which cutsintegra-
tion’s fetchsarings. Thereis aninterestinginterplaybetween
increasedipelining andintegration. On onehand,it length-
ensthe branchresolutionlateng, increasingthe number of
instructionsthat can be executedalong mis-speculategbaths.
On the other it slows down the executionof all instructions,
reducingthe completionrate of squashednstructions. The
overall effectonthe numberof integrationcandidateandinte-
grations is small.

Although the effects of pipeline depth increasesake away
someof integrations performancesuchincreasesare by no
meansmandatory The accesgimesof large physicalregister
files can be controlled using techniquedik e replication[11,
19] or banking [4] and while integration probably requires
two-stage register renaming, it should not add stagesto
already pipelined renaming implementations.

4.5 Impact of Base Micoarchitecture

Onefinal pieceof datawe would like to provide is anestimate
of theimpactof integrationfor moreaggressie microarchitec-
tures. To modela microarchitecturéhathopefully represents
anext-generatiormicroprocessomwe begin with the organiza-
tion of our basic8-way machine. We doublethe re-ordering
capabilityby doublingthe sizesof theinstructionandmemory
orderingbuffers;the numberof physical registersis increased
accordingly In thememorysystemwe doublethe sizeof the
L2 cacheto 2 MB andincreasehe numberof simultaneously
outstandingmissesto 16. To simulate a faster clock, we
deepenthe pipeline to 5-cycle fetch, 3-cycle decode/rename
and4-cycleregisterread lengthencachearrayaccessimeto 3
cycles,andslowv raw memoryaccessime andthe memorybus
by 50%. In Figure4(b),we comparehespeedupsachieredby
our baselineintegration configuration(a direct-mappe®56-
entry IT) when appliedto both the current-generatiorand
next-generation microarchitectures.

One trend that is noticeableby its novelty is that, unlike
increasingIT size or associatiity, a more aggressie micro-
architecturedoesincreasethe impact of integration on pro-
gramsthatdo notbenefitfrom it in amoreconserative imple-
mentation. The reasonfor this is that a more speculatie
machine changes the structural behavior of the program.
Largerre-orderuffersthatprovide moreroomfor speculation
and a deeperpipeline that increaseghe time it takesto dis-
cover andresolwe branchmis-predictionccombineto raisethe
total number of instructionsexecutedalong mis-speculated

(a) Effect of Increased Pipelining on Performance Impact of Integration

—~ 10
s
5 8 O Base
>
s 6 B Rename+1
g 4 [B RegRead +1 i
= [
5§ ° i
3 0 _-_Ei_zb_l_h_i
£
a2
gzip vpr gce mcf crafty parser eon perlbomk gap vortex bzip2 twolf
1 (b) Effect of Base Microarchitecture Aggressiveness on Performance Impact of Integrati
=
g 10 O current-generation
z 8] i
3 Next-generation
(0]
E 6
'_
5 4
L r—l_|_l
3 o i il e Il

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

FIGURE 4. Effectof IncreasedPipelining and a More Aggressie BaseMicroarchitecture on Performance
Impact of Integration. Executiontime saved using a direct-mapped256-entry IT for (a) our base
microarchitecute with intg@ration-deepend pipeline and (b) a rm@ggressive base migarchitectuie.

paths. Thatincreaseshe numberof potentialintegrationcan-
didatesand, in turn, successfulntegrations. For example,a
larger machinecan mis-speculatdonger along a conditional
armandis morelik ely to reach(andsquash}here-corvergent
region alongthe mis-speculategath. Our resultsindicatethat
between5% and 50% more instructionsare integratedin the
more aggresge, more-speculaté configuration.

Therelativeincreasen theeffectivenesof integrationis prob-
ablylargerthanasimpleincreasen integratedinstructionscan
accountfor. As the graphshaows, integrationis 50%to 120%
more effective in reducingexecutiontime in the aggressie

configurationthanin the baseconfiguration. Absoluteperfor-
manceimprovementsfor the next-generationmicro-architec-
ture are closeto or over 10% for several benchmarks. The
reasonfor this boostis that in the more aggressie, more
deeply pipelined implementation,the benefit of each inte-

gratedinstructionis also relatively higher Specifically the
longer registerread times make integrations ability to col-

lapsedependenthainsof instructionsmore important. The
absoluteimportanceof instantbranchmis-predictionresolu-
tion is alsoincreasedy longerregisterreadtimes. However,

the relative impact of this effect is somavhat mitigated
because the depth of the front end increases as well.

5 Related Work

The term squashreusewasintroducedto describeone of the
tasksperformedby InstructionReusgIR) [18]. IR is atable-
basedtechniquefor avoiding the executionof an instruction
that hasbeenpreviously executedwith the sameinputs. In

addition to squashreuse,in which the reusedvalue comes
from the sameinstanceof the instructionthathasmerelybeen
squashed|R implementsgeneal reuse in which the reused
valuecomesfrom a different(not necessarilysquashedprevi-

ousinstancehatjusthappengo have thesamenputoperands.

Integrationimplementsonly squastreusebecauseét requires
that the value alreadyexist in the register file and that the
physical register inputs of the squashedinstruction match
exactly with the inputsof the instructionit will “replace”. IR

lifts theseconstraintshy storingthe squashedalueinsidethe
lookuptable(whichis calledareusebuffer or RB) andwriting

it into theregisterfile whenreuseis detectedandby basingthe
reusecriterion itself is on instance-independerrchitectural

quantitieslike valuesor logical register names,rather than
instance-dependenticro-architectural oneslik e physicalreg-

ister numbers. IR is very applicable,it can exploit general
reuseandbe implementedbn ary microarchitecturebut hasa
somavhat comple< implementation. A value-basedeusetest
impliesthe needto readregisters,which not only complicates
theregisterfile, but alsomovesIR furtherbackin the pipeline,
reducingits impact. An architectural-name-basedusetest
removes the needto read registers but requiresan explicit

dependence-trackingchemewithin the RB so as not to

becometoo conserative. Both IR forms require additional
write data-path#nto theregisterfile. In integration,thereused
valuesarealreadystoredin physical registersso no additional
registerdata-pathso reador write ary valuesarerequired. At

the sametime, the physical-reggisterbasednatureof the reuse
test implements dependence-tracking naturally

The Dynamic Contwol Independence(DCI) [2] buffer is
anotheresultsahagemechanisnthatoperatesn acentralized
window ervironment. The DCI buffer is a shadev re-order
buffer whosecontentspersistpastmis-speculatioreventsthat

invalidate the architecturalbuffer (this is a familiar theme).
Shadaev buffer tagsandresultscanbere-usedf theinstruction
provesto be control-anddata-independent.Controlindepen-
dent instructions are found by associatiely searchingthe
squashedegion of the shadav buffer; their data-independent
natureis checled usingan architectural-name-basdavalida-
tion scheme. The DCI buffer is essentiallyan architectural-
name-baseiinplementatiorof squashre-usesimilarto IR that
uses a shadore-order bffer rather than an RB.

We have alreadyalludedto the interplay betweenintegration
andselectivesquashing8, 12, 15, 16], which allows instruc-
tion instancesto execute multiple times “in-place” before
retirement. Selectve squashings an effective way of dealing
with datamis-speculationsin which the correctinstructions
are alreadyin the machine. Selectve squashingallows the
penalty of squashand re-fetchto be avoided at the cost of
keeping instructions in the resenation-station longer and
increasingresenation-stationcontention. Selectve squash-
ing, however, cannotsalvagework lost to controlmis-specula-
tion. Integration and selectve squashingare duals. Both
techniquesahageinstructionsby keepingaroundinformation
for longerthanis conventionally required,physical registers
for integrationandresenrationstationsfor selectve squashing.
However, while selectve squashingctively picks outinstruc-
tions dependenbn the mis-speculationintegration waits for
all squashedhstructionsto be re-processethenpicksout the
ones that were actually mis-speculation independent.

6 Conclusions and Futue Work

We presentregister integration (or just integration), a tech-
nique for sahaging valid resultsthat have beenunavoidably
lostdueto the sequentiahatureof speculatiorandmis-specu-
lationrecovery. Integrationis adisciplinethatallows specula-
tive resultsto remainin the physicalregisterfile pastrecovery

eventswith the hopethat they were independenbdf the mis-

speculationn questionandcanbe usedoncethe particularsof

that mis-speculatiorhave beenresohed. Integrationlogic is

implementedasa modificationto corventionalregisterrenam-
ing thatrecognizeghe validity of squashedesultsusingtheir

data-dependencesdspareshe processofrom having to re-

execute the corresponding instructions.

Our initial evaluationshaws that integration hasthe potential
for noticeableperformancemprovementsof up to 8% at con-
figurationsrepresentatdie of current-generatioprocessorand
up to 11.5% for more aggressie, more speculatie, more-
deeplypipelinednext-generatiorconfigurations.Thesespeed-
ups are achieved through a combinationof reductionin the
consumptionof executionand fetch bandwidths the collaps-
ing of dependeninstruction chains,and the accelerationof
branchresolution. Our numbersindicatethat programstypi-
cally areableto reusebetweern20% and 60% of all squashed
instructionsthathave completedexecutionprior to squashing,

representing between 1% and 19% of committed instructions.

Perhapanoreimportantthanintegrations performancechar-
acteristicsareits mis-speculatiomeductioncharacteristicsIn
addition to improving performance,integration reducesthe
overall level of wastedwork performedby the processor It
reducesthe number of instructions executed by re-using
squasheatomputationsandits acceleratiorof branchresolu-
tion reducesthe numberof instructionsfetched along mis-
speculatedpaths. According to our results,the numberof

instruction fetchessaved can reach 6% and the number of
instruction executionssaved, 15%. Both of thesenumbers
grow relatively asthe underlyingmicro-architecturdecomes
more aggressie. Thesecharacteristicsnalke integration an
interestingcandidatefor reducingdynamic-paver andenegy
and also suggestits usein reducingresourcecontentionin
simultaneously multi-threaded (SMT) processors.

Theimplementatiorof integrationis simple,requiringonly an
integrationtable(IT), a smallcache-lile structurewith limited
content-addressibleapabilities and an integration circuit,
which is addedto the registerrenaminglogic. No changego
eitherthe fetch or executionenginegshemselesarenecessary
andintegrationdoesnot requirethe readingor writing of ary
register values,only map table manipulationsare used. The
performanceémprovementswe presenfareall achiezablewith
the minimal compleity implementation of intgration.

Futurework in the areaof integration includesa more thor-
ough evalutation of the IT design space,experimentswith
more varied benchmarksand a more detailed investigation
into the interactionof differentmicro-architecturaparameters
with integration. A study of the high-level characteristicof
programghatdraw benefitfrom integrationis alsointeresting.
We have mentionedossibilityfor interestingsynegy between
integrationandselectve squashingthat possibility needsfur-
ther investigation. The power aspectsof integration and its
potentialuseasa power-reductiontechniquearealsosubjects
of open research.

The mostinterestingfuture directionfor integrationlies in its

ability to supportnen speculationrmodels. As we have pre-

sentedit, integrationis a mechanisnthat can re-imposelost

sequentiasemanticon a setof instructionsusing only their

data-dependencesThe real power of integration, however,

may be in its ability to impose such semanticson a set of

instructionsthat were not executedsequentiallyin the first

place Integration enablesa new form of speculationdata-

driven speculation in which speculatie execution proceeds
along statically annotated data-dependencearcs with no

regards to sequencing. Integration is used subsequentlyto

sequencethe resultsinto a control-driven sequentialform

requiredby thearchitecturainterface. In fact,integrationwas
inventedduringthecourseof ourinvestigationinto anew form

of speculatre multithreadingcalled speculativedata-driven
multithreading (DDMT)[17].

Acknowledgements

This work wassupportedn partby NationalScience~ounda-
tion grantsMIP-9505853and CCR-9900584donationsfrom
Intel Corp.and SunMicrosystemsthe University of Wiscon-
sin GraduateSchool and an Intel Ph.D Fellovship. The
authors thank the angmous referees for theirviews.

References

[1] D.Burger and T. Austin. The SimpleScalarTool Set,
Version2.0. TechnicalReportCS-TR-97-1342{niver-
sity of Wisconsin-Madison, Jun. 1997.

[2] Y. Chou,J.Fung,andJ. ShenReducingBranchMispre-
diction Penaltiesvia DynamicControlindependencBe-
tection. In Proc. 1999 International Conferenceon
Supercomputingpagesl09-118, Jun. 1999.

(3]

(4]

(5]
(6]
(7]
(8]

El
(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

G. Chrysosand J. Emer. Memory Dependencéredic-
tion usingStoreSets.In Proc. 25thinternationalSympo-
sium on ComputerArchitecture pages142-153,Jun.
1998.

J.-L. Cruz, A. Gonzalez,M. Valero, and N. Topham.
Multiple-Banked RegisterFile Architectures.In Proc.
27th Annualinternational Symposiunon ComputerAr-
chitecture pages 316-325, Jun. 2000.

K. Diefendorf.K7 Challengedntel. MicroprocessoRe-
port, 12(14), Nov. 1998.

K. Diefendorf.CompagChooses$SMT for Alpha. Micro-
processor Reportl3(16), Dec. 1999.

K. Diefendorf. HAL MakesSPARCSFly. Microproces-
sor Report13(5), Nov. 1999.

M. Franklin. The Multiscalar Architecture PhD thesis,
University of Wisconsin-MadisonMadison,WI| 53706,
Nov. 1993.

P. Glaskowsky Pentium4 (Partially) PreviewedMicro-
processor Reportl4(8), Aug. 2000.

L. GwenapplIntel's P6 UsesDecoupledSuperscalaDe-
sign.Microprocessor Repord(2), Feb. 1995.

R. Kessler.The Alpha 21264MicroprocessorlEEE Mi-
cro, 19(2), Mar./Apr. 1999.

M. Lipasti. Value Locality and SpeculativeExecution
PhDthesis,Departmenbf Electricaland ComputerEn-
gineering, Carnegie-Mellon University, May 1997.

S.Manne, A. Klauser,and D. Grunwald. Pipeline Gat-
ing: SpeculatiorControlfor EnergyReductionln Proc.
25th Annualinternational Symposiunon ComputerAr-
chitecture pages 132-141, Jun. 1998.

A. MoshovosandG. Sohi.Memory Dependenc&pecu-
lation Tradeoffsin CentralizedContinuous-Windov6u-
perscalaiProcessorsin Proc. 6th Annuallnternational
Symposiunon High-PerformanceComputerArchitec-
ture, pages 301-312, Feb. 2000.

E. Rotenberg,Q. Jacobson,Y. Sazeidesand J. Smith.
TraceProcessordn Proc.30thInternationalSymposium
on Microarchitecturepages 138-148, Dec. 1997.

E. Rotenbergand J.Smith. Control Independencean
Trace Processorsin Proc. 32nd International Sympo-
sium on Microarchitecturegpages 4-15, Nov. 1999.

A. Roth and G. Sohi. SpeculativeData-Driven Multi-
threading.In Proc. 7th International Symposiumon
High-PerformanceComputerArchitecture(to appear)
Jan. 2001.

A. SodaniandG. S. Sohi.DynamiclnstructionReuseln
Proc.24thInternationalSymposiunon ComputerArchi-
tecture pages 194-205, Jun 1997.

P.Song.IBM’'s Power3to ReplaceP2SC.Microproces-
sor Report11(15), Nov. 1997.

D. M. Tullsen, S.J. Eggers,andH. M. Levy. Simulta-
neousMultithreading:Maximizing On-ChipParallelism.
In Proc.22ndInternationalSymposiunon ComputerAr-
chitecture pages 392-403, Jun. 1995.

K. YeagerTheMIPS R10000SuperscalaMicroproces-
sor.|IEEE Micro, Apr. 1996.

A. Yoaz, M. Erez, R. Ronen,and S. Jourdan.Specula-
tion Techniquedor Improving Load-Relatednstruction
Schedulingln Proc. 26th Annuallnternational Sympo-
siumonComputerArchitecture pagest2—-53 May 1999.

