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Abstract

An effectivemethodfor reducingthe effect of load la-
tencyin modernprocessorsis dataprefetching. Oneformof
dataprefetching, streambuffers,hasbeenshownto bepar-
ticularly effectivedueto its’ ability to detectdata streams
and run aheadof them,prefetching as it goes. Unfortu-
nately, in thepast,theapplicabilityof streamingwaslimited
to strideintensivecode.

In this paper we proposePredictor-Directed Stream
Buffers(PSB),a schemein which thestreambuffer follows
an addresspredictionstreaminsteadof a fixedstride. In
addition,weexamineusingconfidencetechniquesto guide
theallocationandprioritization of streambuffersandtheir
prefetch requests.Our resultsshowfor pointer-basedappli-
cationsthat PSBprovidesa 30%speedupon average over
no prefetching, andprovidesan average10%speedupover
using previouslyproposedstride-basedstreambuffers for
pointer-intensiveapplications.

1 Introduction

A greatdealof effort hasbeeninvestedin reducingtheim-
pact of cachemisseson programperformance. As with
any other latency, cachemiss latency canbe toleratedus-
ing compile-timetechniquessuchasinstructionscheduling,
or run-timetechniquesincludingout-of-orderissue,decou-
pledexecution,or non-blockingloads.It is alsopossibleto
reducethelatency of cachemissesusingmulti-level caches,
victim caches,andprefetching.

Severalapproacheshave beenproposedfor prefetching
datato reduceor eliminateload latency. Theserangefrom
insertingcompiler-basedprefetchesto purehardware-based
data prefetching. Compiler-basedprefetchingannotates
load instructionsor insertsexplicit prefetchinstructionsto
bringdatainto thecachebeforeit is neededto hidetheload
latency. They uselocalityanalysisto insertprefetchinstruc-
tions, showing significantimprovements[21]. Hardware-
basedprefetchingcandynamicallypredictprefetchaddress
streamsandpredictprefetchaddressesthatmaybehardto
find usingcompileranalysis.Compilerandhardware-based
prefetchingcanbeusedtogether, sincethecompilercanbe
usedto prefetchloadinstructionsfor whichit canaccurately
determinelocality information,andthehardwareprefetcher
canbeusedfor thoseloadaddresspatternsnot captured.In

thispaperwefocusona new hardware-basedprefetcher.

Thefocusof our researchis improving theperformance
of dataprefetchingwith streambuffers in the context of a
realisticprocessordesign. Streambuffers wereoriginally
proposedby Jouppi [19] to prefetcha streamof sequen-
tial cacheblocks. Whena cachemissoccurs,the next se-
quentialcacheblock is allocatedinto a streambuffer. The
streambuffer thenprefetchessequentialcacheblocksfrom
that address,asbandwidthpermits,until the buffer is full.
As prefetchesareused,new datais broughtin, keepingthe
buffer far enoughin advanceof thedata’s usesothat it can
potentiallyhidetheentirelatency.

PalacharlaandKessler[22] extendedstreambuffersby
associatingastridewith eachstreambuffer. They examined
providing a stride from a tablewhich was indexed by the
areaof memorybeingaccessed.Farkaset. al. [13] further
extendedthis researchby usinga PC indexedstridetable,
which allows for detectionof many stridesover the same
regionof memory.

In this paperwe proposea new form of streambuffer
calledthePredictor-DirectedStreamBuffer (PSB).Instead
of associatinga fixedstridewith eachbuffer, we usea pre-
dictor to generatethenext addressto prefetch.We simulate
theuseof a hybrid StrideFilteredMarkov (SFM) predictor
to directstreambuffer prefetchingandfind it is quiteadept
at finding both complex array accessand pointer chasing
behavior overa setof pointerintensivebenchmarks.

Farkaset. al. [13] show theimportanceof usingalloca-
tionfilterstopreventthestreambuffersfrombeingallocated
anddeallocatedtoo oftenandfor too many streams,anef-
fectwecallstreamthrashing. Weproposeatechniquebased
on confidencefor eliminatingstreamthrashingas well as
makingmoreeffective useof availableprocessorandpre-
dictor resources.This is doneby usingconfidenceto guide
streambuffer allocationandprefetchprioritization.

The rest of the paper is organizedas follows. Sec-
tion 2 describespastaddresspredictionwork as it relates
to PSBs. In section3, prior hardwareprefetchingmodels
arediscussed.Section4 describesour Predictor-Directed
StreamBuffer architecture. Simulationmethodologyand
benchmarkdescriptionscanbefoundin Section5. Section6
presentsresultsfor ourarchitecture,andourconclusionsare
summarizedin section7.



2 Address Prediction

To guidehardware-basedprefetching,accurateaddresspre-
dictionis needed.In performingthisresearch,weexamined
usingstride-basedaddressprediction,Markov/context ad-
dressprediction,andcorrelatedaddressprediction.

2.1 Stride

A stridepredictor[8, 12] keepstrackof notonly thelastad-
dressreferencedby a load,but alsothedifferencebetween
thelastaddressof theloadandtheaddressbeforethat.This
differenceis calledthestride.Thepredictorspeculatesthat
thenew addressseenby theloadwill bethesumof thelast
valueseenand the stride. We choseto usethe two-delta
stridepredictor[12, 28], which only replacesthepredicted
stridewith anew strideif thatnew stridehasbeenseentwice
in a row.

2.2 Context/Markov Predictor

Context [28, 29, 32] andMarkov [6, 7, 18] predictorsare
fundamentallysimilar, in that eachpredictorbasesits pre-
diction on thelastvaluesseen.An order � context/Markov
predictorusesthe � pastvaluesto predictthe next one. It
canonly providea prediction,if thegivenpatternhasbeen
seenandthetransitionis recordedinto apredictiontable.

A Markov predictor assumesthat the addressstream
seenin a programcanbeefficiently modeledby a Markov
model.A Markov modelis asetof statesandtransitionfre-
quencieswhereeachstatehasa probabilityof transitionto
another. Eachtransitionfrom addressA to B is assigneda
weight representingthe fractionof As thatarefollowedby
a B. TheMarkov predictordescribedin [18] is a first order
context predictorasit usesonly the last addressto predict
thenext one.

Bekermanet. al. [2] proposeyet anothercontext-based
predictor. For everyload,they combineaseriesof pastbase
addresses(they statethat 4 is enoughfor reasonableaccu-
racy), to generatea historyandstoreit into a first-level ta-
ble. They usethat history asan index into a secondlevel
table that storesa predictedbaseaddress.They thenadd
the load’s staticoffset (which could be storedin the first-
level table)with thepredictedbaseaddress.By usingbase
addresses,a high-level of globalcorrelationis achievedfor
multiple load instructionsaccessingdifferentfields in the
sameobject.

In this paper, we only provideresultsfor strideandfirst
orderMarkov-basedprediction.We simulatedhigherorder
Markov predictorsandthecorrelationpredictor[2], but saw
little to no improvementin predictionaccuracy andcover-
ageover first orderMarkov predictorfor the programswe
examined. This is partially dueto the fact that correlated
loadslie within thesamecacheblock for theprogramswe
examined. Therefore,correctly predicting the correlated

load provideslessgainsin termsof prefetching,sincewe
performour predictionsandprefetchesat the cacheblock
granularity.

3 Hardware Prefetching Models

We classify the prior hardware prefetchingresearchinto
threemodels– FetchStreamPrefetching,Demand-Based
Prefetching,andDecoupledPrefetching.

3.1 Fetch Stream Prefetching

The first model follows the branch prediction or fetch
stream,predictingandprefetchingaddresses[9, 16, 10, 4].

ChenandBaer[9] proposedanapproachto provide the
loadpredictionearlyby usingaLook-AheadPC,whichcan
run aheadof thenormalinstructionfetchengine.TheLA-
PC is guidedby a branchpredictionarchitecturethat runs
aheadof the fetchengine,andis usedto index into anad-
dresspredictiontable to predict dataaddressesfor cache
prefetching.SincetheLA-PC providedthe instructionad-
dressstreamaheadof the normal fetch engine,they were
able to initiate datacacheprefetchesfarther in advanced
thanif they hadusedthenormalPC,which in turn allowed
more of the datacachemiss penalty to be masked. The
amountof loadlatency thatcanbehiddenis dependentupon
how far thelook-aheadPCcangetin front of theexecution
stream.

Reinmanet.al.[23] extendedtheapproachof Chenand
Baer[9] to instructionprefetching.In their approach,they
only have onebranchpredictorinsteadof two as in Chen
andBaer. This is accomplishedby decouplingthe branch
predictor from the instruction cachewith a fetch target
queuebetweenthem.Thequeueis usedto storefetchblock
predictions,which are then fed into the instructioncache
in a latercycle. The fetchaddressesin thequeueareused
to performinstructioncacheprefetching.They recentlyex-
tendedthis approachto performpower-efficient instruction
prefetchingby decouplingthetagcomponentof theinstruc-
tion cacheaccessfrom thedatacomponentof thecacheac-
cess[24]. Thetagcomponentverifiesif anaddressis in the
cachein a separatecycle beforethedatacomponentaccess
for theinstructionlookup. If thefetchaddressis not found,
it is prefetched,while the fetchaddressis queuedup to be
consumedby the datacomponent.In this new design,the
datacomponentaccessconsumessignificantly lesspower,
sinceonly onewayof thedatacomponentis driven,andthe
way wasdeterminedduringthe tagaccessin a prior cycle.
They arecurrentlyextendingthisdesignto fetchstreamdata
cacheprefetching.

3.2 Demand-Based Prefetching

The second model can be classified as demand-based
prefetching.In thisapproachanactionsuchasacachemiss



or theuseof a cacheblockhasto occurfor a prefetchto be
generated.

An earlyexampleof ademand-basedprefetchingarchi-
tectureis Next LinePrefetching(NLP)by Smith[31], where
eachcacheblockwastaggedwith a bit indicatingwhenthe
next blockshouldbeprefetched.Whenablockis prefetched
its tagbit is setto zero.Whentheblock is accessedduring
a fetchandthebit is zero,a prefetchof thenext sequential
block is triggeredandthebit is setto one.

Another demand-basedprefetching architecture is
Shadow Directory Prefetching (SDP) by Charney and
Puzak[6]. In SDP, eachL2 cacheblock hasa shadow ad-
dressassociatedwith it. Theshadow addresspointsto the
cacheblock accessedright after the correspondingcache
block, providing a simpleMarkov transition. A hit in the
L2 cachewith a useful shadow entry triggers a prefetch
of the shadow address.Alexanderand Kedem[1] exam-
inedusinga similar Markov table,but distributedover the
DRAM modules,which areusedto prefetchcacheblocks
from DRAM arrayinto anSRAM buffer.

The last example we will discuss is the Markov
prefetcherusedby Josephand Grunwald [18]. When a
cachemissoccurred,themissaddresswouldindex into their
Markov predictiontableto provide thenext setof possible
cacheaddressesthathavefollowedthismissaddressbefore.
After theseaddressesare prefetched,the prefetcherstays
idle until thenext cachemiss.They donotusethepredicted
addressesto re-index into thetableto generatemorepredic-
tionsfor prefetching.

In orderto minimizetheloadonthebus,prefetchband-
width is limited by employing accuracy basedadaptiv-
ity [18]. In this scheme,two-bit saturationcountersare
addedto eachpredictionaddress.The idea is to remove
prefetchesthat have exhibited poor behavior in the past.
Whenaprefetchis discardedfrom theprefetchbuffer with-
out beingused,the correspondingcounteris incremented.
If theprefetchedblock is used,thenthecounterassociated
with the entry that madethe prediction, is decremented.
Whenthesignbit of thecounteris set,therelevantentryin
thepredictiontableis disabled.Prefetchrequestsfrom dis-
abledentriesaretrackedso that they canbe enabledwhen
they startmakingcorrectpredictions.

3.3 Decoupled/Stream Prefetching

In this modelthe prefetcheris looselydecoupledfrom the
instructionfetch streamandcanpotentiallyprefetchdown
multiplepredictedstreamsindependentof whattheinstruc-
tion fetchstreamis doing.

3.3.1 Decoupled Models

An accessdecoupledarchitecturepartitionsprogramsinto a
prefetchinginstructionstreamandanexecutioninstruction

stream[15, 3, 17]. As long astheprefetchstreamcanrun
aheadof the executionstream,the memorylatency canbe
masked. Roth et. al. [25, 26] hasexaminedboth a soft-
wareandhardwareapproachfor prefetchingrecursive data
structuresusinga decoupledmodel.YangandLebeck[33]
examinedanarchitecturewhich usesthecompilerto create
smallprefetchkernelsof instructions,whichareexecutedin
parallelwith theoriginal applicationin a separateprefetch
engine.

3.3.2 Stream Buffers

Jouppiintroducedstreambuffers to improvedirectmapped
cacheperformance[19]. The streambuffers follow multi-
ple streamsprefetchingthemin parallelandthesestreams
can be completelydecoupledfrom the instructionstream
of the processor. They aredesignedas FIFO buffers that
prefetchconsecutivecacheblocks,startingwith theonethat
missedin theL1 cache.On subsequentmisses,theheadof
thestreambuffer is probed.If thereferencehits, thatblock
is transferredto theL1 cache.

PalacharlaandKessler[22] suggestedtwo techniquesto
enhancetheeffectivenessof streambuffers : allocationfil-
ters anda non-unitstride detectionmechanism.The filter
preventsastreambuffer from beingallocateduntil two con-
secutive missesoccurfor thesamestream.Also presented
by PalacharlaandKessleris a minimumdeltanon-unitde-
tection scheme. With this scheme,the dynamicstride is
determinedby theminimumsigneddifferencebetweenthe
missaddressandthepastN missaddresses.If thisminimum
deltais smallerthentheL1 blocksize,thenthestrideis set
to thecacheblock sizewith thesignof theminimumdelta.
Otherwise,thestrideis setto theminimumdelta.

To implementthe non-unitstridedetectionan address
indexed stridetable is used. To find the striding behavior
thememoryis dividedup into chunks,andassociatedwith
eachchunkis astride.While thisapproachis quiteeffective
at finding strides,we found that it was uniformly outper-
formedby theper-loadstridedetectorof Farkaset. al. [13].
Therefore,we only presentcomparisonresultsof our ap-
proachwith thePC-basedstridepredictionstreambuffers.

Farkaset. al. [13] madean importantcontribution by
extending this model to use a PC-basedstride predictor
to provide the strideon streambuffer allocation. The PC-
stridepredictordeterminesthestridefor a load instruction
by using the PC to index into a stride addressprediction
table. This differs from the minimum-deltascheme,since
the minimum-deltausesthe global history to calculatethe
stride for a given load. PC-stridepredictorusesan asso-
ciative buffer to recordthe lastmissaddressfor N load in-
structions,alongwith their programcountervalues.Thus,
the stride predictionfor a streambuffer is basedonly on
thepastmemorybehavior of the loadfor which thestream
buffer wasallocated.



Farkaset. al. [14] further enhancedthe streambuffer
design� of PalacharlaandKesslerby enforcingthe streams
being followed by multiple stream buffers to be non-
overlapping. This preventedduplication and saved bus
bandwidth. Furthermore,insteadof the FIFO structure
which had beenoriginally proposedby Jouppi, they pro-
posedthe useof a fully-associative streambuffer lookup,
whichwemodel.

4 Predictor-Directed Stream Buffers

We will now describeour Predictor-directedStreamBuffer
(PSB)architecture.The PSBarchitectureresideson chip
andprefetchesdatafrom the L2 cacheandmain memory
into thestreambuffers. If a prefetchrequestis not foundin
the L2, it will servicethe requestfrom mainmemory. We
concentrateon streambuffersinsteadof themany otherar-
chitecturesdescribedin theprevioussectionbecauseof their
simpleyeteffectivedesign,theirability to follow aprefetch
streamindependentof the fetchstream,andthedesignfits
nicelywith anon-chipprefetcherto try to hideL2 andmain
memorylatency.

We presentan approachthat extendsthe PC indexed
streambuffer designof Farkaset. al. [13]. As describedin
Section3, thePCindex schemeusesa streambuffer which
is guidedby a staticstride,provided at allocationtime by
a per-PCstridetableasshown in Figure1. This approach
canwork well for stride-basedapplications,but thestream
buffersdonotfollow thecorrectstreamfor non-stridebased
loadpatterns,suchasduringthetraversalof arecursivedata
structure.

To addressthisproblem,weproposePredictor-Directed
StreamBuffers (PSB)asshown in Figure2. The general
ideaof a PSBis to usea predictorto generatean address
streamfor prefetching.The predictortakesasinput some
prediction information, suchas the last addressaccessed
andhistoryinformation,andthengeneratesapredictionfor
a given streambuffer. This predictionis thenstoredback
into thestreambuffer, andthepredictioninformationin the
streambuffer is updated.In this way we cangeneratepre-
diction � from prediction ����� . Thebaseof therecursion
is a cachemisswhichcausesastreambuffer allocation.

Thereare two major partsto PSBs,a per-streamhis-
tory which is storedwith eachstreambuffer, anda stateless
addresspredictorwhich is sharedbetweenstreambuffers.
Theper-streamhistoryis usedto keepdataabouta particu-
lar streambuffer andmaybeusedfor a varietyof purposes,
suchasindexing into the addresspredictor, confidencein-
formation,andlocal stride.Theprimaryserviceof theper-
streamhistoryis to storeacurrentor speculativestatewhich
canbefed to thepredictor. Thepredictionfrom theaddress
predictiontableis thenusedto updatethestateinformation
in thestreambuffer sothatanew speculativepredictioncan
bemade.It is akey point thattheaddresspredictiontableis

t
	
ag   c
 ache block  c
 omp� arato� r

•••

Predicted
S


tride
La� st

A
�

ddress

t
	
ag   c
 ache block  c
 omp� arato� r

f
�
rom/to ne� xt lo� wer level o� f memory� 

t
�
o data�  cache� , registe� r file� , and MSHRs

8 b
uff

ers


s� tore predic� ted
s� tride in 
s� treaming�  buffer�  
o� n alloc� ation

Figure 1: Stride-basedStreamBuffer Architecture. Eight
streambuffers are shown(overlappingeach other). Each
stream buffer can hold N cache blocks. Whena stream
buffer is allocated,it is assigneda predictedstride to use
to generateall of its prefetch addresses.
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Figure 2: A Predictor-DirectedStreamBuffer. We modify
thestreambuffer so it accessesa separateaddresspredic-
tion tableto get its next prefetch address.

notupdatedwhenthestreambuffer makesaprediction,this
stepis doneseparatelyin thewrite-backstagewhena load
hasa datacachemiss.

This modelallows the streambuffer to follow the ad-
dresspredictionstreamof any addresspredictor, whosepre-
dictionsaremoreaccuratethanthoseof a fixed-stridepre-
dictor.

4.1 Predictor-Directed Stream Buffer Implemen-
tation

Figure2 shows thegeneralmodelof our predictor-directed
streambuffer architecture.Eachstreambuffer holds(1) the
PCof theloadthatcausedthestreambuffer to beallocated,
(2) the last predictedaddressfor the load,and(3) any ad-
ditional predictioninformation(e.g.,historystateor confi-
dence)neededto performthenext addressprediction.The
streambuffer is on-chipnext to theaddresspredictor, which



in our caseis astride-filteredMarkov predictor.
Thereareseveralstagesof executionastreambufferwill

go throughover the courseof a program,startingwith the
allocationof a streamandendingwith it’s reallocation.We
now show the initialization, steadystateoperationof, and
terminationof a streamin astreambuffer.

Allocation A streambuffer is allocated,subjectto allo-
cationfilters (seesection4.3),whena loadexecutesandit
missesboth in thedatacacheandthestreambuffer. When
a load is given a streambuffer, it copiesits PC, current
address,and any additionalprediction information to the
streambuffer from theaddresspredictor. This initialization
stageis only doneonceperallocation,andis directedonly
from predictorto streambuffer, thestateof theaddresspre-
dictor is not modified. This copiedstatewill later beused
for indexing into thepredictiontable.

Prediction Each cycle, one streambuffer is chosento
make a predictionusingtheaddresspredictor, accordingto
priority heuristicsdescribedin section4.4.Theinformation
storedin thestreambuffer is usedto index into theaddress
predictor, returningthe next predictedaddress,andpoten-
tially updatingthestreambuffer’s history information. We
properlymodelallowing only a singlepredictionpercycle
to begeneratedfrom thepredictor. Dueto thefactthatonly
onerequest(missor prefetch)canbeprocessedby thebus
fromtheL1 to theL2 cacheatatime,thepredictorwasnota
bottleneckevenwith theonepredictionpercycle limitation.

Once a streambuffer has beenallocated,the stream
buffer’shistoryinformationis updatedaftereachprediction.
Theaddresspredictiontable,aswasmentionedearlier, re-
mainsunchangedwhile generatingapredictionfor astream
buffer. For example,a designsuchasa context predictor
whichusesahistoryof thelastN addressesto index into the
addresspredictorwould storethe history of its last N pre-
dictionsin the streambuffer, andusethis asan index into
theaddresspredictoreachcycle. Thehistoryof the lastN
addressesstoredin thestreambuffer is updatedaftera pre-
diction,not thestatein theaddresspredictiontable.There-
fore, thestreambuffer maintainsits own predictionhistory
information.

Before insertingthe predictioninto the streambuffer,
the streambuffers are searchedin parallel for the cache
block of thepredictedaddress.Thiswasusedby Farkaset.
al., [13] to prevent streambuffers from prefetchingdown
overlappingpaths. If the predictionis found to be already
residentin a buffer entry thenthepredictionis ignored,no
usefulpredictionis madethat cycle, andthestreambuffer
predictionhistory information is updated. If predictionis
not foundin thestreambuffer, thepredictionis storedin the
streambuffer’s leastrecentlyusedentry, and that entry is
markedasreadyfor prefetching.Onceall entrieshavebeen
predictedfor a streambuffer, no furtherentrieswill bepre-
dicteduntil (1) an entry is clearedduring a lookup (it is a

hit), or (2) thestreambuffer is reallocated.

Prefetching Onceanentryhasa valid predictionassoci-
atedwith it, it is readyto be prefetched. We only allow
prefetchesto occurif theL1-L2 busis freeatthestartof any
givencycle. Whenthebus is free,a streambuffer with an
entrycontaininga valid un-prefetchedpredictionis chosen
using the priority schedulingalgorithmsdescribedin sec-
tion 4.4. The prefetchis then sentto the lower levels of
memoryandtheentryis markedasprefetchedandwaiting.

Lookup Whena load performsa lookup in the L1 data
cache,it searchesall of thestreambuffer entriesin parallel
for a hit. For our results,we assumethedatacachelookup
latency is the sameasthe streambuffer lookup latency. If
thereis a hit in the streambuffer, and the datais not yet
readyin thedatacache,thecacheblockstoredin thestream
buffer is movedinto thedatacache.If thereis ataghit in the
streambuffer, but theblockis notreadyin thestreambuffer,
thetagis movedintoadatacacheMSHR,andthedatacache
handlestheblock whenit comesbackfrom memory. For a
streambuffer hit, the correspondingstreambuffer entry is
freedfor anew predictionandprefetch.

We will now describeourdesignusinga Stride-Filtered
Markov (SFM)addresspredictor, althoughany addresspre-
dictor [2, 18, 28, 29, 32] canbeusedto guidethepredictor-
directedstreambuffer. We examinedseveral typesof pre-
dictors(includingstridewith correlated[2]), but only pro-
vide resultsfor a SFMtable,asit performeduniformly bet-
ter.

4.2 Stride-Filtered Markov Predictor

Charney andReeves[7] andalsoJosephandGrunwald[18]
introducedMarkov prefetching,andprovided resultsfor a
“strideandMarkov in series”predictor. We usethispredic-
tor to guideour predictor-directedstreambuffer, andmake
a few minor improvementswhicharedescribedbelow.

To provideaddresspredictionfor thestreambufferswe
usea Stride-FilteredMarkov (SFM) predictor. Thepredic-
tor hasa two-deltastridetablein front of a Markov predic-
tion table,asshown in Figure3. In the write-backstage,
the load instructionis checked to seeif it hit or missedin
theL1 datacache.Thepredictiontableis only updatedon
a miss(i.e. we arepredictingthemissstream).In addition,
our implementationdoesnot storeloadsthat receive their
value forwardedfrom storesin the predictiontable, since
wefoundlittle benefitfrom prefetchingtheseloads.

In thewrite-backstage,theload-PC(for a missedload)
is usedto index into thestridetable.Thestridetablestores
(1) the last addressfor the load, (2) the last stridefor the
load, (3) the 2-deltastride,and(4) someconfidenceinfor-
mation. If the stridecalculatedby (currentmissaddress-
lastaddress)doesnotmatchthelaststrideor 2-deltastride,
thentheMarkov tableis updatednotingthetransitionfrom
lastaddressto currentaddress.Thelastaddressis storedas
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Figure 3: Stride-Filtered Markov Predictor-Directed
StreamBuffer Architecture. Whena streambuffer is allo-
catedit is assigneda fixedstride from the stride-pctable.
To generatethenext prefetch addressthelast addressis (1)
looked up in the Markov table, and (2) usedto calculate
a next stride address. If the Markov table hits, then the
Markov addressis used,otherwisethe next stride address
is usedfor theprefetch.

the tag,andthecurrentaddressasthe dataentry. Accord-
ingly, whenthatsamelastaddressis seenagain,it will geta
hit in theMarkov table,predictingthenext missaddressnot
capturedby thestridepredictor.

For theSFMpredictorexaminedin thispaper, wedonot
useany history to index into the Markov part of the table,
in otherwordswe presentresultsfrom a first orderMarkov
predictor. We examinedusinghigherorderMarkov predic-
torsasin [18], but foundthatit providedlittle improvement,
confirmingtheirresults.Theonlyadditionalinformationwe
copy into thestreambuffer from thepredictoris somecon-
fidenceinformation,to guidepriority schedulingdescribed
below.

In orderto reducethe sizeof the Markov predictorta-
ble westoreinto thetableonly thedifferencebetweencon-
secutive cachemissaddresses,ratherthantheabsolutead-
dressasis donein prior work. Of coursethisnumbercanbe
further reducedby storingthis differenceasthenumberof
cacheblocksratherthanat a bytegranularity. To calculate
theaddressto prefetch,a streambuffer addsits lastmissing
addressto thesignedoffsetcontainedin thetable.Thetable
is still indexedby thelastmissasin thestandardMarkov ta-
ble. Figure4 shows how many bits areneededto represent
the addressdifferencefor all of the misstransitionsfound
in the Markov table. The resultsshow that having 16 bits
capturesalmostall of the transitions. This numbercould
perhapsbe further reducedby smartheapmemoryalloca-
tion which could placeobjectswith high temporallocality
closeto oneanother. In this paperwe usea Markov table
with 2K entries,which usesa total of 4Kbytesfor thedata
storage. In addition, the tag size can also be reducedby
storingonly partialaddresstags.
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Figure 4: Thenumberof bits to accurately predict cache
missesusingthe Markov DifferencePredictor. They-axis
showsthepercentof L1 cachemissesthatcouldbecorrectly
predictedgiventhenumberof bitsusedfor each entryof the
markov tableshownon thex-axis. Thecachemissaddress
is predictedbyaddingtogethertheaddressusedto index the
Markov tablewith thevaluestoredin theMarkov table.

4.3 Allocation Filtering

Streambuffer allocationis oneof themostimportantparts
of a streambuffer architecture.Sincethereareonly a small
numberof streambuffers,thereis highcontention,asevery
datacachemisscouldpotentiallyallocateastreambuffer.

Farkaset. al. [13] showedthatusingtwo missstridefil-
tering providedgoodresultsfor a PC-basedstreambuffer.
Two missfiltering only allocatesa streambuffer for a load
whenit misses2 timesin a row, andthelasttwo stridesare
identical. For our predictor-directedstreambufferswe ex-
aminetwo methodsfor filtering allocation– a generalform
of two missfiltering, andusingour new predictionconfi-
denceto guideallocation.

WhenupdatingtheSFMpredictorfor a loadthatmisses
in thecache,boththePC-basedstridetableandtheaddress
basedMarkov table are indexed, and potentiallyupdated.
Our two-missallocationfilter allows a load to allocatea
streambuffer whentheloadhastwo cachemissesin a row,
andbothtimestheloadwouldhavebeencorrectlypredicted
usingthestridepredictoror theMarkov predictor. If thisoc-
curs,thenit allocatesastreambuffer. Thismodifiedscheme
is our two-missallocationfilter.

The secondheuristicwe examineusesaddresspredic-
tion confidenceto guidestreambuffer allocation.Eachen-
try in thePC-basedtablestoresanaccuracycounter, which
is incrementedeverytimetheload’supdateaddressmatches
the prediction of the stride or Markov table, and decre-
mentedwhenit doesnot match.Thesaturatingcounterre-
flects the ability of the predictorbeingable to predict the
load’s misses.By separatingtheconfidencecountersfrom
thestreambuffer wecangaugehow well aparticularloadis
performingbeforewe allocatea streambuffer to it. In this
way we canavoid streamthrashing.Whena streambuffer
is allocatedit copiestheaccuracy confidencecounterinto a
priority counterin thestreambuffer. Maintainingtheprior-
ity counteris describedin moredetailin thenext section.

Onacachemiss,theaccuracy confidencecounterin the



predictiontableis usedto guidestreambuffer allocation.If
theaddresspredictionconfidencelevel of theloadis above
anallocationthreshold,it is allowedto contendfor astream
buffer. Our resultssuggestthat a thresholdvalue of 1 is
appropriatefor our benchmarksuite. In addition,a load is
only allocateda streambuffer if thereis at leastonestream
buffer whosepriority confidencecounteris lessor equalto
the accuracy confidencecounterof the load. If the load’s
accuracy confidenceis lower thanall of thestreambuffers
priority confidence,thena streambuffer will not be allo-
catedfor it.

4.4 Stream Buffer Priority

The predictorand bus createa resourceconstraint,since
there are potentially several streambuffers which have
empty entries,or have predictedaddresseswaiting to be
prefetched. We examinetwo approachesfor determining
which streambuffer shouldgetaccessto thepredictorand
L1-L2 buseachcycle.

The first heuristic is Round-Robingiving eachbuffer
an equalchanceat performinga predictionor prefetch. A
pointeris keptto thelaststreambuffer to performa predic-
tion andanotherpointerfor thelastentryto issueaprefetch.
Thestreambuffersarethensequentiallyexaminedin round-
robin order, looking for a buffer with an entry in needof
predictionor a predictedentryreadyto beprefetched.

The secondheuristicusesPriority Counters to guide
which streambuffer getsto performthe next predictionor
prefetch.Everytime thereis a lookupandthestreambuffer
getsa hit, thepriority counteris incrementedby a constant
value (2 in our implementation). To enablethe reuseof
streambuffers that had high confidencebut outlived their
usefulness,afterseveralallocationrequests(i.e. datacache
missesthatalsomissin streambuffers)we decrementeach
streambuffer’s priority counterby a valueof 1. We found
using10L1 datacachemissesasouragingperiodprovided
decentresults.Whendeterminingwhich streambuffer gets
to usethepredictoror performaprefetch,thestreambuffers
areexaminedin theorderfrom highestpriority to lowest.If
thereareseveral streambuffers that areat the sameconfi-
dencelevel,weuseanLRU policy to choosethewinner. As
describedin section4.3 whena streambuffer is allocated,
the accuracy confidenceis copiedinto the streambuffer’s
priority counter. Thiscutsdown thecontentiontimeof load
thathasprovento bepredictable.

In addition,as alsodescribedin the prior section,the
priority counteris usedto guide streambuffer allocation
when using accuracy confidenceto guide allocation. A
streambuffer will only bere-allocatedfor adatacachemiss
if the load’s predictionaccuracy confidenceis greaterthan
or equal to a streambuffer’s priority counter. Therefore,
streambuffers that are performing useful prefetcheswill
stayallocatedandhavea longerlifetime.

Program Description

health A hierarchicalhealth-caresystemsimulatortaken from
theOldenBenchmarksuite(input: 3 500).

burg A programthatgeneratesa fasttreeparserusingBURS
technology. It is commonlyusedto constructoptimalin-
structionselectorsfor usein compilercodegeneration.
Theinput usedwasa grammarthatscribestheVAX in-
structionarchitecture.

deltablue A constraintsolution systemwhich is implementedin
C++,with anabundanceof shortlivedheapobjects.

gs Ghostscriptis an implementationof Adobe Systems’
PostScript(tm) language. The input run converts a
PostScriptfile into a jpeg.

sis Synthesisof synchronousandasynchronouscircuits(in-
put: simplify). It includesa numberof capabilitiessuch
asstateminimizationandoptimization.Theprogramhas
approximately172,000linesof sourcecodeanda good
dealof pointerarithmetic.

turb3d Simulatesisotropic,homogeneousturbulencein a cube
with periodicboundaryconditionsin x,y,zcoordinatedi-
rections(input: ref).

Table1: Descriptionof benchmarksused.

4.5 TLB Translation and Prefetching

As westorethevirtual effectiveaddressof aloadin ourpre-
dictor, weneedto translatethis to aphysicaladdressbefore
we accessmemory. On a prefetch,we accessthedataTLB
for the translationandperforma replacementif necessary.
In essence,this amountsto TLB prefetching[27]. How-
ever, wedid notobserveany benefitsor performancelosses
causedby this approach,asthe benchmarkswe have used
hadonly asmallnumberTLB misses.TheTLB translations
couldpotentiallybestoredwith eachstreambufferwhenthe
streambuffer is allocated.Thena TLB lookupwould only
needto beperformedwhenthenext virtual prefetchaddress
goesoutsidethecurrentpageboundary.

5 Methodology

Thesimulatorusedin this studywasderivedfrom theSim-
pleScalar/Alpha3.0 tool set [5], a suiteof functionaland
timing simulationtools for the Alpha AXP ISA. The tim-
ingsimulatorexecutesonlyuser-level instructions,perform-
ing a detailedtiming simulationof anaggressive8-waydy-
namicallyscheduledmicroprocessorwith two levelsof in-
structionanddatacachememory. Simulationis execution-
driven,includingexecutiondown any speculativepathuntil
thedetectionof afault,TLB miss,or branchmis-prediction.

To perform our evaluation, we collected results for
the programsshown in Table 1. The programswere
compiled on a DEC Alpha AXP-21164 processorusing
the DEC FORTRAN, C and C++ compilersunderOSF/1
V4.0 operatingsystemusing full compiler optimization
(-O4 -ifo). Table 2 shows the numberof instructions
simulated,L1 datacachemissrate,percentof executedin-



program #inst %L1 %lds %sts IPC L1-L2 L2-M
(Mill) MR %bus %bus

health 33 26.5 36.0 14.2 0.62 38.5 0.5
burg 300 6.5 19.1 18.7 1.91 19.5 4.8
deltablue 96 16.7 28.9 9.9 1.22 39.3 4.1
gs 300 2.0 19.2 6.8 3.5 6.8 0.9
sis 300 3.7 28.7 12.8 1.94 12.2 0.9
turb3d 300 6.5 23.3 16.2 2.54 26.2 13.7

Table 2: Baselineresultsshowingthe numberof instruc-
tions simulated,L1 data cache missrate, percent of exe-
cutedinstructionsthat were loadsand stores, the IPC for
each program, and the percentof cyclesthe bus wasbusy
fromtheL1 to L2, andthebusfromtheL2 to mainmemory
were busy.

structionsthatwereloadsandstores,theIPC for eachpro-
gram,andthepercentof cyclesthebus from theL1 to L2,
and the bus from the L2 to main memorywerebusy (oc-
cupied). Turb3d was fast forwarded1.3 billion instruc-
tions[30] beforegatheringstatistics.

5.1 Baseline Architecture

Our baselinesimulationconfigurationmodelsa next gener-
ation out-of-orderprocessormicroarchitecture.We’ve se-
lectedthe parametersto captureunderlyingtrendsin mi-
croarchitecturedesign. The processorhasa large window
of execution;it canfetchup to 8 instructionsper cycle. It
hasa 128 entry re-orderbuffer with a 64 entry load/store
buffer. To compensatefor theaddedcomplexity of disam-
biguatingloadsandstoresin a largeexecutionwindow, we
increasedthestoreforwardlatency to 2 cycles.

To make surethat the prefetchingspeedupswe report
are from actualprefetchingbenefitandnot from compen-
satingfor aconservativememorydisambiguationpolicy, we
implementedperfectstoresets[11]. Perfectstoresetscause
loadstoonlybedependentonstoreswhichwrite to thesame
memory, i.e whenthey areactuallydependentinstructions.
In this way loadswill not beheldup by falsedependencies
makingtheprefetcherlook better. Theperformancediffer-
encebetweenthetwo schemesis exploredin section6.

In the baselinearchitecture,there is an 8 cycle mini-
mum branchmis-predictionpenalty. The processorhas8
integerALU units,4-load/storeunits,2-FPadders,2-integer
MULT/DIV, and2-FPMULT/DIV. Thelatenciesare:ALU
1 cycle,MULT 3 cycles,IntegerDIV 12cycles,FPAdder2
cycles,FPMult 4 cycles,andFPDIV 12 cycles. All func-
tional units, exceptthe divide units, arefully pipelinedal-
lowing a new instructionto initiate executioneachcycle.
We useaMcFarlinggsharepredictor[20] to driveour fetch
unit. Two predictionscanbe madeper cycle with up to 8
instructionsfetched.

We rewrote the memoryhierarchyin SimpleScalarto

bettermodelbus occupancy, bandwidth,andpipelining of
thesecondlevel cacheandmainmemory. For themajority
of our results,theL1 instructioncacheis a 32K 2-way as-
sociative cachewith 32-bytelines. Thebaselineresultsare
run with a 32k 4-way associative datacachewith 32-byte
lines.A 1 MegabyteunifiedL2 cacheis simulatedwith 64-
byte lines. TheL2 cachehasa latency of 12 cycles,andis
pipelinedthreeaccessesdeep.Themainmemoryhasanac-
cesstimeof 120cycles.TheL1 to L2 buscansupportup to
8 bytesperprocessorcycle whereastheL2 to memorybus
cansupport4 bytespercycle.

6 Prefetching Performance

This sectioncomparespredictor-directedstreambuffers to
the bestperformingprior streambuffer approach.This is
the pc-basedstride streambuffers of Farkaset. al. [13],
which wasdescribedin section3. We call their approach
PC-Stride, wheredatacachemissedloadsare kept track
of in a 256 entry 4-way associative strideaddresspredic-
tion table.On a miss,thepredictedstrideis copiedinto the
streambuffer to guidethepredictions.We examinedusing
PCstridetableslargerthan256entry, but they providedlit-
tle to no improvement.

For ourPSBarchitecture,wealsousea256entry4-way
strideaddresspredictiontableto filter stridepredictionsout
of a 2K entryMarkov table. We usea differentialMarkov
tableas describedin section4.2, whereeachentry in the
Markov table is only 16-bits (total tablesizeof 4Kbytes).
The advantageof PSB over PC-Strideis that we can ac-
curatelyfollow non-stridebasedmisspatterns.Resultsare
shown for PSBfor all four combinationsof the allocation
filter andpriority scheduler. Theseare (1) two missallo-
cationfilter with round-robingscheduling(2Miss-RR),(2)
two missallocationfilter with priority confidenceschedul-
ing (2Miss-Priority),(3) confidenceallocationwith round-
robin scheduling(ConfAlloc-RR),and(4) confidenceallo-
cation with priority scheduling(ConfAlloc-Priority). For
the accuracy confidencecounterstoredin our stridetable,
we useda saturatingvalueof 7, and for the priority con-
fidencecounterin the streambuffers we useda saturating
confidencevalueof 12. SeeSection4 for theothervalues
usedfor theaccuracy andpriority counters.

For both the PC-Strideand the PSB architectureswe
used8 streambuffers, eachwith 4 entries. All stream
buffers are checked in parallel on a lookup. In addition,
when a streambuffer generatesa prediction, all stream
buffersarecheckedto guaranteethat thestreambuffersdo
not follow overlappingstreams.

For the addresspredictorswe use,we predict the vir-
tual addressstreaminsteadof the physicaladdressstream,
andwe performTLB translationson thoseaddresseswhen
performingthe prefetch. Sincewe only insert loadsinto
thestridePC-tableonacachemiss,weonly requireasmall



256entrystridePC-tableto captureall thecritical loadsthat
miss.M Finally, we only storeandusecacheblock addresses
not thefull addressfor boththestrideandMarkov tables.

Figure5 shows thespeedupover thebaselinearchitec-
tureIPC shown in Table2 for PC-Strideandour predictor-
directedstreambuffer configurations.Resultsareshown for
five pointer-basedapplications,andonestride-basedFOR-
TRAN program.We ranseveralFORTRAN programs,and
they all had similar performanceto the resultsshown for
turb3d. Sincetheseprogramsaremostlystride-based,our
PSBarchitecturesachievesbasicallythesameperformance
asthe PC-stridearchitecture,gettingbenefitonly from the
additionof confidenceandscheduling. For pointerbased
applications,our resultsshow thatpredictor-directedstream
bufferscanachieve significantspeedups(17%speedupfor
deltablue and18%speedupfor burg) over usingPC-
strideguidedstreambuffers.

It canbe seenin Figure5 that confidenceallocationis
very importantfor burg andsis. The reasonwhy per-
formancedegradesfor sis when using 2Miss filter allo-
cationfor our approachis dueto streamthrashing.Using
the confidencecountersto guideallocation,allows stream
buffer allocationto concentrateonhighly predictableloads,
andavoidsreplacingstreambuffers thatarereceiving a lot
of hits. Streamthrashingis a seriousproblem for pro-
gramswith largeamountsof missingloadsasis thecasein
both largeprogramsandtight inner loopswhich arehighly
software pipelined. Performingloop unrolling and soft-
warepipeliningincreasesthenumberof loadinstructionsin
theprogram,which candegradetheperformanceof stream
buffers. If an architecturehasstreambuffers, a loop with
a hardwarepredictablereferencestreammayachievebetter
performanceperformingno loop unrolling,andinsteaduse
thestreambuffersto hidetheloadlatency.

Figure6 showstheprefetchingaccuracy for thedifferent
configurationsexamined,whereprefetchingaccuracy is the
percentageof all prefetchesthatwereusedby theprocessor.
Allowing thestreambuffer to follow non-stridepredictions
canincreasetheprefetchingaccuracy by almosta factorof
2 for deltablue whenusingconfidenceallocation.

Figure7 showsthecachemissratesfor thebaselineand
prefetchingarchitectures.We definea cachemissasanac-
cessto a cacheblock which is not currentlyresidentin the
cache,i.e. accessesto in-flight datacountascachemisses.
Wehavefoundthistrackingof cachemissesto bemorerep-
resentativeof thesystembehavior thansimplycheckingthe
cachetagsandMSHRsfor ahit.

The total impact of the systemcan be seenin fig-
ure 8 which shows the averageload latency for the differ-
ent benchmarksandtechniques.For deltablue, we re-
move 4 full cycles from the averagelatency, and3 cycles
for burg. Even a moderatereductionin averagelatency
canproduceasignificantperformanceimpactandthis is re-
flectedin thespeedupsobtained.

Figure 9 shows the percentof bus utilization for both
thebusfrom theL1 to L2, andthebusfrom theL2 to main
memory. This revealsan interestingcharacteristicof sis.
Whenconfidenceis notemployed,theprefetcherspendsthe
majority of its time issuinguselessprefetchrequeststo the
L2 cachedueto streambuffer thrashing.Thebusutilization
risesby afactorof four andtheaccuracy dropssignificantly.

By far thelargestconsumersof L1 to L2 bandwidthare
deltablue, andhealth, and it is for theseprograms
whichstreambuffer prioritizationschedulingperformedthe
best.Theschedulingof prefetchesallowsthestreambuffers
that are most likely to hit to use the bandwidthfirst, al-
lowing thesehigh confidenceprefetchesto cover morela-
tency. Streambuffer priority schedulingprovidedanaddi-
tional speedupof 11% for deltablue whenconfidence
wasusedin conjunction.

The speedupthat we are achieving is due to the hid-
ing of latency associatedwith capacityproblemsin theL1
cache. This is shown by figure 10, wherewe look at the
performancefor 16K 4-way, 32K 2-way, and 32K 4-way
cache.The resultsshow the speedupobtainedfor the dif-
ferent prefetchingtechniquesover a baselinearchitecture
with the samecacheconfiguration.It canbe seenthat the
speedupobtainedis independentof cachesizeover a rea-
sonablesetof configurations.

6.1 Perfect Disambiguation Results

As mentionedearlier, we simulatedthe effects of perfect
load-storedisambiguation.The IPC resultswith andwith-
out perfectmemorydisambiguationfor the baselinearchi-
tectureandourproposedschemearepresentedin Figure11.
For no disambiguation(NoDis), a load waits to issueun-
til all prior storeshave issued.Perfectstoresets[11] pro-
vides a decentspeedupfor the baselinearchitecturefor
deltablue andsis. However it yields little improve-
mentin conjunctionwith prefetchingfor all programs,ex-
ceptfor sis.

7 Summary

We choseto focuson streambuffersbecauseof their abil-
ity to follow addressstreamsindependentof whatthefetch
streamis doing.Prior streambuffer architectureswerelim-
ited to following down a streamusinga fixed stride [13],
which limits their benefit for commercialpointer-based
applications. To go beyond this limit we presenteda
new streambuffer architecture(Predictor-DirectedStream
Buffer) to follow non-stridestreams.In addition,we pre-
senteda new streambuffer allocationandpriority schedul-
ing techniquebasedonconfidence.

It shouldbenotedthatany addresspredictorcanbeused
to guide the predictedprefetchstreamfor our predictor-
directedstreambuffer. Due to spaceconstraints,we only
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Figure10: PercentSpeedupVarying theCacheSizeandAssociativity.
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Figure11: Performanceresultswith (Dis) andwithout(NoDis)perfectstore sets(perfectdisambiguation).

presentedresultsfor usinga stride-filteredMarkov address
predictorto guidestreambuffer prefetching.The Markov
predictorwas a differential Markov predictorwhosedata
sizewasonly 4Kbytes.We foundthis predictorto perform



betterthanotherrecentlyproposedcontext [28] andcorre-
latedu predictors[2] for dataprefetching.

For stride-basedapplications(e.g., FORTRAN pro-
grams), predictor-directedstreambuffers provided simi-
lar performanceto stride-basedstreambuffers. For the 5
pointer-basedapplicationswe examined,predictor-directed
streambuffers provide a 30% speedupon averageover no
prefetching,and10% averagespeedupover usingthe best
performingprior streambuffer architecture.
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