PredictotDirectedStreamBuffers

Timothy Shervood

SuleymanSair

BradCalder

Departmenbf ComputerScienceandEngineering
University of California,SanDiego
{sherwod,ssaicalde} @cs.usd.ed

Abstract

An effectivemethodfor reducingthe effect of load la-
tencyin modernprocessasis dataprefetdhing. Oneform of
dataprefething, streambuffers, hasbeenshownto be par-
ticularly effectivedueto its’ ability to detectdata streams
and run aheadof them, prefething as it goes. Unfortu-
nately in thepast,theapplicability of streamingwaslimited
to strideintensivecode

In this paper we propose PredictorDirected Stream
Buffers (PSB),a schemein which the streambuffer follows
an addressprediction streaminsteadof a fixed stride In
addition, we examineusing confidencaechniquesto guide
theallocationand prioritization of streambuffers andtheir
prefetd requestsOur resultsshowfor pointerbasedappli-
cationsthat PSBprovidesa 30% speedumn average over
no prefetting, and providesan average 10% speedupver
using previously proposedstride-basedstream buffers for
pointerintensiveapplications.

1 Introduction

A greatdealof effort hasbeeninvestedn reducingtheim-
pact of cachemisseson programperformance. As with
ary otherlateng, cachemisslateng canbe toleratedus-
ing compile-timetechniquesuchasinstructionscheduling,
or run-timetechniquesncludingout-of-orderissue decou-
pled execution,or non-blockingloads.lt is alsopossibleto
reducehelateng of cachemisseaisingmulti-level caches,
victim cachesandprefetching.

Severalapproachebave beenproposedor prefetching
datato reduceor eliminateload lateng. Theserangefrom
insertingcompilerbasedrefetcheso purehardware-based
data prefetching. Compilerbasedprefetchingannotates
load instructionsor insertsexplicit prefetchinstructionsto
bring datainto the cachebeforeit is neededo hidetheload
lateng/. They uselocality analysigo insertprefetchinstruc-
tions, shawing significantimprovementg21]. Hardware-
basedprefetchingcandynamicallypredictprefetchaddress
streamsand predictprefetchaddressethatmay be hardto
find usingcompileranalysis Compilerandhardware-based
prefetchingcanbe usedtogethersincethe compilercanbe
usedto prefetchoadinstructiondor whichit canaccurately
determindocality information,andthe hardwareprefetcher
canbeusedfor thoseloadaddresgpatternsot capturedin

this papemwe focuson anew hardware-basegrefetcher

Thefocusof ourresearchis improving the performance
of dataprefetchingwith streambuffersin the context of a
realistic processodesign. Streambuffers were originally
proposedby Jouppi[19] to prefetcha streamof sequen-
tial cacheblocks. Whena cachemissoccurs,the next se-
quentialcacheblock is allocatedinto a streambuffer. The
streambuffer thenprefetchesequentiatacheblocksfrom
thataddressas bandwidthpermits,until the buffer is full.
As prefetcheareused,new datais broughtin, keepingthe
buffer far enoughin advanceof the datas usesothatit can
potentiallyhidethe entirelateng.

PalacharlaandKesslel[22] extendedstreambuffersby
associating stridewith eachstreanmbuffer. They examined
providing a stride from a table which wasindexed by the
areaof memorybeingaccessedFarkaset. al. [13] further
extendedthis researctby usinga PC indexed stride table,
which allows for detectionof mary stridesover the same
region of memory

In this paperwe proposea new form of streambuffer
calledthe PredictorDirectedSteamBuffer (PSB).Instead
of associatin@ fixed stridewith eachbuffer, we usea pre-
dictor to generatehe next addresso prefetch.We simulate
the useof a hybrid StrideFiltered Markov (SFM) predictor
to directstreambuffer prefetchingandfind it is quite adept
at finding both complex array accessand pointer chasing
behaior overasetof pointerintensize benchmarks.

Farkaset. al. [13] showv theimportanceof usingalloca-
tionfiltersto preventthestreanbuffersfrom beingallocated
anddeallocatedoo often andfor too mary streamsan ef-
fectwecall streamthrashing We proposetechniquébased
on confidencefor eliminating streamthrashingas well as
making more effective useof available processoandpre-
dictor resourcesThis is doneby usingconfidencedo guide
streambuffer allocationandprefetchprioritization.

The rest of the paperis organizedas follows. Sec-
tion 2 describegastaddresspredictionwork asit relates
to PSBs. In section3, prior hardware prefetchingmodels
arediscussed.Section4 describesour PredictorDirected
StreamBuffer architecture. Simulationmethodologyand
benchmarklescriptionganbefoundin Sections. Sectioné
presentsesultsfor ourarchitectureandourconclusionsare
summarizedn section?.

2 AddressPrediction

To guidehardware-basegrefetchingaccurateaddresgpre-
dictionis neededIn performingthisresearchywe examined
using stride-basecddressrediction, Markov/context ad-
dresgprediction,andcorrelatecaddresgrediction.

2.1 Stride

A stridepredictor8, 12] keepgrackof notonly thelastad-

dressreferencedy aload, but alsothe differencebetween
thelastaddres®f theloadandtheaddresbeforethat. This

differenceis calledthe stride. The predictorspeculateshat
thenew addresseenby theloadwill bethe sumof thelast
value seenandthe stride. We choseto usethe two-delta
stridepredictor[12, 28], which only replaceghe predicted
stridewith anew strideif thatnew stridehasbeerseertwice

in arow.

2.2 Context/Markov Predictor

Context [28, 29, 32] andMarkov [6, 7, 18] predictorsare
fundamentallysimilar, in that eachpredictorbasests pre-
diction on thelastvaluesseen.An orderk context/Markov
predictorusesthe k pastvaluesto predictthe next one. It
canonly provide a prediction,if the givenpatternhasbeen
seemandthetransitionis recordednto a predictiontable.

A Markov predictorassumeghat the addressstream
seenin a programcanbe efficiently modeledby a Markov
model.A Markov modelis a setof statesandtransitionfre-
guenciesvhereeachstatehasa probability of transitionto
another Eachtransitionfrom addressA to B is assignech
weightrepresentinghe fraction of As thatarefollowed by
aB. TheMarkov predictordescribedn [18] is afirst order
contet predictorasit usesonly the lastaddresgo predict
thenext one.

Bekermanet. al. [2] proposeyet anothercontet-based
predictor For everyload,they combinea seriesof pastbase
addressefthey statethat4 is enoughfor reasonableccu-
ragy), to generatea history andstoreit into afirst-level ta-
ble. They usethat history asanindex into a secondevel
table that storesa predictedbaseaddress. They thenadd
the load’s static offset (which could be storedin the first-
level table)with the predictedbaseaddress By usingbase
addresses high-level of globalcorrelationis achievedfor
multiple load instructionsaccessinglifferentfields in the
sameobject.

In this paperwe only provide resultsfor strideandfirst
orderMarkov-basedrediction. We simulatedhigherorder
Markov predictorsandthecorrelationpredictor{2], but saw
little to no improvementin predictionaccurag andcover
ageover first orderMarkov predictorfor the programswe
examined. This is partially dueto the fact that correlated
loadslie within the samecacheblock for the programswe
examined. Therefore,correctly predicting the correlated

load provideslessgainsin termsof prefetching,sincewe
performour predictionsand prefetchesat the cacheblock
granularity

3 Hardware Prefetching Models

We classify the prior hardware prefetchingresearchinto
threemodels— Fetch StreamPrefetching,Demand-Based
PrefetchingandDecoupledPrefetching.

3.1 Fetch Stream Prefetching

The first model follows the branch prediction or fetch
streampredictingandprefetchingaddressef®, 16, 10, 4].

ChenandBaer[9] proposedanapproactto provide the
loadpredictionearlyby usinga Look-AheadPC,which can
run aheadof the normalinstructionfetchengine. The LA-
PCis guidedby a branchpredictionarchitecturethatruns
aheadof thefetchengine,andis usedto index into anad-
dresspredictiontable to predictdataaddresse$or cache
prefetching.Sincethe LA-PC providedthe instructionad-
dressstreamaheadof the normalfetch engine,they were
able to initiate datacacheprefetchedartherin advanced
thanif they hadusedthe normalPC,whichin turn allowed
more of the datacachemiss penaltyto be masled. The
amounbf loadlateng thatcanbehiddenis dependentipon
how farthelook-aheadPC cangetin front of the execution
stream.

Reinmanet.al.[23] extendedthe approactof Chenand
Baer[9] to instructionprefetching.In their approachthey
only have one branchpredictorinsteadof two asin Chen
andBaer This is accomplishedy decouplingthe branch
predictor from the instruction cachewith a fetch target
queuebetweerthem.Thequeueis usedto storefetchblock
predictions,which are thenfed into the instructioncache
in alatercycle. Thefetchaddressem the queueareused
to performinstructioncacheprefetching.They recentlyex-
tendedthis approacho performpower-efficientinstruction
prefetchingoy decouplinghetagcomponenof theinstruc-
tion cacheaccesg$rom the datacomponenbf the cacheac-
cesgq24]. Thetagcomponenverifiesif anaddresss in the
cachein a separateycle beforethe datacomponengaccess
for theinstructionlookup. If the fetchaddresss notfound,
it is prefetchedwhile the fetch addresss queuedup to be
consumedy the datacomponent.In this new design,the
datacomponentaccesonsumesignificantly lesspower,
sinceonly oneway of the datacomponents driven,andthe
way wasdeterminedduringthe tag accessn a prior cycle.
They arecurrentlyextendingthisdesignto fetchstreandata
cacheprefetching.

3.2 Demand-Based Prefetching

The second model can be classified as demand-based
prefetchingn thisapproachanactionsuchasacachemiss

or theuseof a cacheblock hasto occurfor a prefetchto be
generated.

An earlyexampleof ademand-baseprefetchingarchi-
tecturels Next Line Prefetding (NLP) by Smith[31], where
eachcacheblock wastaggedwith abit indicatingwhenthe
next blockshouldbeprefetchedWhenablockis prefetched
its tag bit is setto zero. Whenthe block is accesseduring
afetchandthebit is zero,a prefetchof the next sequential
blockis triggeredandthebit is setto one.

Another demand-basedprefetching architecture is
Shadev Directory Prefetching (SDP) by Charng and
Puzak[6]. In SDR eachL2 cacheblock hasa shadev ad-
dressassociatedvith it. The shadev addresgointsto the
cacheblock accessedight after the correspondingcache
block, providing a simple Markov transition. A hit in the
L2 cachewith a useful shadav entry triggers a prefetch
of the shadev address. Alexanderand Kedem[1] exam-
ined usinga similar Markov table,but distributed over the
DRAM moduleswhich are usedto prefetchcacheblocks
from DRAM arrayinto an SRAM buffer.

The last example we will discussis the Markov
prefetcherusedby Josephand Grunwald [18]. When a
cachemissoccurredthemissaddressvouldindex into their
Markov predictiontableto provide the next setof possible
cacheaddressethathave followedthis missaddresdefore.
After theseaddressesre prefetchedthe prefetcherstays
idle until thenext cachemiss. They do notusethepredicted
addressew re-inde into thetableto generatenorepredic-
tionsfor prefetching.

In orderto minimizetheloadonthebus, prefetchband-
width is limited by emplgoying accuacy basedadaptiv-
ity [18]. In this scheme,two-bit saturationcountersare
addedto eachpredictionaddress. The ideais to remove
prefetcheshat have exhibited poor behaior in the past.
Whena prefetchis discardedrom the prefetchbuffer with-
out beingused,the correspondingounteris incremented.
If the prefetchedlock is used,thenthe counterassociated
with the entry that madethe prediction, is decremented.
Whenthesignbit of the counteris set,therelevantentryin
the predictiontableis disabled.Prefetchrequestgrom dis-
abledentriesaretracked so thatthey canbe enabledwvhen
they startmakingcorrectpredictions.

3.3 Decoupled/Stream Prefetching

In this modelthe prefetcheiis loosely decoupledrom the
instructionfetch streamand can potentially prefetchdown
multiple predictedstreamsndependentf whattheinstruc-
tion fetchstreamis doing.

3.3.1 Decoupled Models

An accesslecoupledrchitecturgartitionsprogramsnto a
prefetchinginstructionstreamandan executioninstruction

stream[15, 3, 17]. As long asthe prefetchstreamcanrun
aheadof the executionstreamthe memorylateng canbe
masled. Rothet. al. [25, 26] hasexaminedboth a soft-
wareandhardwareapproactfor prefetchingrecursve data
structuresusinga decouplednodel. YangandLebeck[33]
examinedanarchitecturavhich usesthe compilerto create
smallprefetchkernelsof instructionswhich areexecutedn
parallelwith the original applicationin a separategrefetch
engine.

3.3.2 Stream Buffers

Jouppiintroducedstreambuffers to improve directmapped
cacheperformancdg19]. The streambuffersfollow multi-
ple streamgrefetchingthemin parallelandthesestreams
can be completelydecoupledfrom the instruction stream
of the processar They are designedas FIFO buffers that
prefetchconsecutie cacheblocks,startingwith theonethat
missedn theL1 cache.On subsequenmissesthe headof
the streambuffer is probed.If thereferencehits, thatblock
is transferredo the L1 cache.

PalacharlaandKesslef22] suggestetivo techniqueso
enhanceéhe effectivenesof streambuffers: allocationfil-
ters anda non-unitstride detectionmechanism.The filter
preventsa streanbuffer from beingallocateduntil two con-
secutve missesoccurfor the samestream.Also presented
by PalacharlaandKessleris a minimumdelta non-unitde-
tection scheme. With this scheme the dynamicstride is
determinedy the minimum signeddifferencebetweerthe
missaddressandthepastN missaddressedf thisminimum
deltais smallerthenthe L1 block size,thenthe strideis set
to the cacheblock sizewith the signof the minimumdelta.
Otherwisethestrideis setto the minimumdelta.

To implementthe non-unitstride detectionan address
indexed stridetableis used. To find the striding behaior
thememoryis divided up into chunks,andassociatedvith
eachchunkis astride.While this approachs quiteeffective
at finding strides,we found that it was uniformly outper
formedby the perloadstridedetectorof Farkaset. al. [13].
Therefore,we only presentcomparisorresultsof our ap-
proachwith the PC-basedtridepredictionstreambuffers.

Farkaset. al. [13] madean importantcontribution by
extending this model to use a PC-basedstride predictor
to provide the stride on streambuffer allocation. The PC-
stridepredictordetermineghe stride for a load instruction
by usingthe PC to index into a stride addressrediction
table. This differs from the minimum-deltaschemesince
the minimum-deltausesthe global history to calculatethe
stridefor a givenload. PC-stridepredictorusesan asso-
ciative buffer to recordthe lastmissaddresdor N loadin-
structions,alongwith their programcountervalues. Thus,
the stride predictionfor a streambuffer is basedonly on
the pastmemorybehaior of the load for which the stream
buffer wasallocated.

Farkaset. al. [14] further enhancedhe streambuffer
degignof Palacharlaand Kesslerby enforcingthe streams
being followed by multiple stream buffers to be non-
overlapping. This prevented duplication and saved bus
bandwidth. Furthermore,insteadof the FIFO structure
which had beenoriginally proposedby Jouppi, they pro-
posedthe useof a fully-associatve streambuffer lookup,
whichwe model.

4 Predictor-Directed Stream Buffers

We will now describeour PredictordirectedStreamBuffer
(PSB) architecture. The PSB architectureresideson chip
and prefetchegdatafrom the L2 cacheand main memory
into the streambuffers. If a prefetchrequesis notfoundin
the L2, it will servicethe requestfrom main memory We
concentrat®n streambuffersinsteadof the mary otherar
chitectureslescribedn theprevioussectiorbecausef their
simpleyet effective designtheir ability to follow aprefetch
streamindependenbf the fetch stream,andthe designfits
nicelywith anon-chipprefetcheto try to hideL2 andmain
memorylateng.

We presentan approachthat extendsthe PC indexed
streambuffer designof Farkaset. al. [13]. As describedn
Section3, the PCindex schemeausesa streambuffer which
is guidedby a staticstride, provided at allocationtime by
a perPC stridetableasshavn in Figure 1. This approach
canwork well for stride-baseépplicationsbut the stream
buffersdo notfollow thecorrectstreanfor non-stridebased
loadpatternssuchasduringthetraversalof arecursve data
structure.

To addresghis problem,we proposePredictorDirected
StreamBuffers (PSB)as shownn in Figure2. The general
ideaof a PSBis to usea predictorto generatean address
streamfor prefetching. The predictortakesasinput some
predictioninformation, such as the last addressaccessed
andhistoryinformation,andthengenerates predictionfor
a given streambuffer. This predictionis then storedback
into the streambuffer, andthe predictioninformationin the
streambuffer is updated.In this way we cangeneratere-
diction n from predictionn — 1. Thebaseof the recursion
is a cachemisswhich causes streambuffer allocation.

Thereare two major partsto PSBs,a perstreamhis-
tory which s storedwith eachstreambuffer, anda stateless
addresgredictorwhich is sharedbetweenstreambuffers.
The perstreamhistoryis usedto keepdataabouta particu-
lar streambuffer andmaybe usedfor a variety of purposes,
suchasindexing into the addresgredictor confidencen-
formation,andlocal stride. The primary serviceof the per
streamhistoryis to storea currentor speculatie statewhich
canbefedto thepredictor The predictionfrom theaddress
predictiontableis thenusedto updatethe stateinformation
in thestreanbuffer sothata new speculatie predictioncan
bemade.lt is akey pointthattheaddresgredictiontableis

to data cache, register file, and MSHRs

he block m r store predicted
ﬂ tag \ cacl eboE \ comparatol \ sridein
M streaming buffer
on allocation

tag \ cache block\ comparator \

Last
Address

Predicted
Stride

LT
2

from/to next lower level of memory

Figure 1: Stride-basedsteamBuffer Architecture. Eight
streambuffers are shown(overlappingead other). Each
stream buffer can hold N cadhe blocks. Whena stream
buffer is allocated,it is assigneda predictedstride to use
to geneiateall of its prefett addresses.

to data cache, register file, and MSHRs
load info

'y
(PC, address)
tag |cacheblock| comparator from
=] ‘ - ‘ par ‘ write-back
N stage
E tag \cache bl ock\ comparator \
Prediction Info ;b;a of "
Load PC prediction info
edicted : H
e | Hisory E Address
Stride < = edi
Confidence predicied | Predictor
Last Address address
&
?
v from/to next lower level of memory

Figure 2: A PredictorDirectedStreamBuffer. We modify
the streambuffer soit accesses sepaate addresspredic-
tion tableto getits next prefetd address.

notupdatedvhenthe streambuffer makesa prediction this
stepis doneseparatelyn the write-backstagewhena load
hasa datacachemiss.

This model allows the streambuffer to follow the ad-
dresgredictionstreanmof any addrespredictor whosepre-
dictionsaremoreaccurateghanthoseof a fixed-stridepre-
dictor.

4.1 Predictor-Directed Stream Buffer Implemen-
tation

Figure2 shows the generaimodelof our predictordirected
streambuffer architecture Eachstreambuffer holds(1) the
PCof theloadthatcausedhe streambuffer to beallocated,
(2) the last predictedaddresdor the load, and (3) ary ad-
ditional predictioninformation(e.g., history stateor confi-
dence)neededo performthe next addresgprediction. The
streanbuffer is on-chipnext to theaddresgredictor which

in our cases a stride-filteredMarkov predictor

Thereareseveralstage®f executionastreamnbuffer will
go throughover the courseof a program,startingwith the
allocationof a streamandendingwith it’s reallocation.We
now shav the initialization, steadystateoperationof, and
terminationof a streamin a streambuffer.

Allocation A streambuffer is allocated,subjectto allo-

cationfilters (seesection4.3), whena load executesandit

misseshothin the datacacheandthe streambuffer. When
a load is given a streambuffer, it copiesits PC, current
addressand ary additional predictioninformationto the
streambuffer from the addresgredictor This initialization
stageis only doneonceper allocation,andis directedonly
from predictorto streambuffer, the stateof theaddresgpre-
dictor is not modified. This copiedstatewill later be used
for indexing into the predictiontable.

Prediction Each cycle, one streambuffer is chosento
male a predictionusingthe addressredictor accordingto
priority heuristicsdescribedn sectiord4.4. Theinformation
storedin the streambuffer is usedto index into the address
predictor returningthe next predictedaddressand poten-
tially updatingthe streambuffer’s history information. We
properlymodelallowing only a singlepredictionpercycle
to begeneratedrom the predictor Dueto thefactthatonly
onerequesimissor prefetch)canbe processedy the bus
fromthel1 tothel2 cacheatatime,thepredictorwasnota
bottleneckevenwith theonepredictionpercycle limitation.

Once a streambuffer has beenallocated, the stream
buffer'shistoryinformationis updatedaftereachprediction.
The addresgredictiontable,aswasmentionecdearlier, re-
mainsunchangedvhile generating predictionfor astream
buffer. For example,a designsuchasa context predictor
whichusesa historyof thelastN addresset index into the
addres9redictorwould storethe history of its lastN pre-
dictionsin the streambuffer, and usethis asanindex into
the addresgredictoreachcycle. The history of the lastN
addressestoredin the streambuffer is updatedaftera pre-
diction, not the statein theaddresgpredictiontable. There-
fore, the streambuffer maintainsits own predictionhistory
information.

Before insertingthe predictioninto the streambuffer,
the streambuffers are searchedn parallel for the cache
block of the predictedaddressThis wasusedby Farkaset.
al., [13] to prevent streambuffers from prefetchingdown
overlappingpaths. If the predictionis foundto be already
residentin a buffer entrythenthe predictionis ignored,no
usefulpredictionis madethat cycle, andthe streambuffer
predictionhistory informationis updated. If predictionis
notfoundin thestreanbuffer, thepredictionis storedin the
streambuffer’s leastrecentlyusedentry, andthatentry is
markedasreadyfor prefetching.Onceall entrieshave been
predictedfor a streambuffer, no furtherentrieswill bepre-
dicteduntil (1) anentryis clearedduringa lookup (it is a

hit), or (2) thestreambuffer is reallocated.

Prefetching Oncean entry hasa valid predictionassoci-
atedwith it, it is readyto be prefetched. We only allow
prefetcheso occurif theL1-L2 busis freeatthestartof ary
givencycle. Whenthe busis free, a streambuffer with an
entry containinga valid un-prefetchegbredictionis chosen
usingthe priority schedulingalgorithmsdescribedn sec-
tion 4.4. The prefetchis then sentto the lower levels of
memoryandthe entryis markedasprefetchecandwaiting.

Lookup Whena load performsa lookupin the L1 data
cachejt searchesll of the streambuffer entriesin parallel
for ahit. For our results,we assumehe datacachelookup
lateng is the sameasthe streambuffer lookup lateng. If
thereis a hit in the streambuffer, andthe datais not yet
readyin thedatacachethecacheblock storedin thestream
bufferis movedinto thedatacache f thereis ataghitin the
streanbuffer, but theblockis notreadyin the streanbuffer,
thetagis movedinto adatacacheMSHR,andthedatacache
handlegheblock whenit comeshackfrom memory For a
streambuffer hit, the correspondingtreambuffer entry is
freedfor anew predictionandprefetch.

We will now describeour designusinga Stride-Filtered
Markov (SFM)addresgpredictor althoughary addrespre-
dictor[2, 18, 28, 29, 37] canbeusedto guidethe predictor
directedstreambuffer. We examinedseveraltypesof pre-
dictors(including stridewith correlated2]), but only pro-
vide resultsfor a SFM table,asit performeduniformly bet-
ter.

4.2 Stride-Filtered Markov Predictor

Charng andReeves[7] andalsoJoseplandGrunwald[18]

introducedMarkov prefetching,and provided resultsfor a
“stride andMarkov in series”predictor We usethis predic-
tor to guideour predictordirectedstreambuffer, andmake
afew minorimprovementswvhich aredescribedelow.

To provide addresgpredictionfor the streambufferswe
usea Stride-Hltered Markov (SFM) predictor The predic-
tor hasa two-deltastridetablein front of a Markov predic-
tion table,as shovn in Figure 3. In the write-backstage,
the load instructionis checledto seeif it hit or missedin
the L1 datacache.The predictiontableis only updatedon
amiss(i.e. we arepredictingthe missstream).In addition,
our implementatiordoesnot storeloadsthat receve their
value forwardedfrom storesin the predictiontable, since
we foundlittle benefitfrom prefetchingheseloads.

In thewrite-backstagetheload-PC(for amissedoad)
is usedto index into the stridetable. The stridetablestores
(1) the last addresdor the load, (2) the last stride for the
load, (3) the 2-deltastride,and (4) someconfidencanfor-
mation. If the stride calculatedby (currentmissaddress
lastaddress@loesnot matchthelaststrideor 2-deltastride,
thenthe Markov tableis updatedhotingthetransitionfrom
lastaddresdo currentaddressThelastaddresss storedas

to data cache, register file, and MSHRs load info
'y

4 (PC, address)
from write-
—»{ tag [cache block| comparator | back stage
.
. .
| tag [cache block| comparator | Stride
] storepredicted | Predictor
= stridein
H|||| streaming buffer
on allocation if address not
stride predictable,
 storein markov
mark x last address
MUX [it H "
markov address Elll it hit, reurn | Markov
stride address H predicted | Predictor
v ‘&{\éc’ address
from/to next lower level of memory L)

Figure 3: Stride-Hltered Markov PredictorDirected
StreamBuffer Architectue. Whena streambuffer is allo-

catedit is assigneda fixed stride from the stride-pctable

To geneiatethe next prefetd addressthe last addressis (1)

looked up in the Markov table and (2) usedto calculate
a next stride address. If the Markov table hits, thenthe
Markov addressis used,otherwisethe next stride address
is usedfor the prefetd.

thetag, andthe currentaddressasthe dataentry. Accord-
ingly, whenthatsameastaddresss seemagain,it will geta
hit in the Markov table,predictingthenext missaddressot
capturedoy the stridepredictor

FortheSFM predictorexaminedn thispaperwe donot
useary historyto index into the Markov part of thetable,
in otherwordswe presentesultsfrom afirst orderMarkov
predictor We examinedusinghigherorderMarkov predic-
torsasin [18], but foundthatit providedlittle improvement,
confirmingtheirresults.Theonly additionalinformationwe
copy into the streambuffer from the predictoris somecon-
fidenceinformation,to guidepriority schedulingdescribed
below.

In orderto reducethe size of the Markov predictorta-
ble we storeinto thetableonly the differencebetweercon-
secutve cachemissaddressegatherthanthe absolutead-
dressasis donein prior work. Of coursethisnumbercanbe
furtherreducedby storingthis differenceasthe numberof
cacheblocksratherthanat a byte granularity To calculate
theaddresgo prefetch a streambuffer addsits lastmissing
addresso the signedoffsetcontainedn thetable. Thetable
is still indexedby thelastmissasin thestandardvarkov ta-
ble. Figure4 shavs how mary bits areneededo represent
the addresdlifferencefor all of the misstransitionsfound
in the Markov table. The resultsshov that having 16 bits
capturesalmostall of the transitions. This numbercould
perhapsbe further reducedby smartheapmemoryalloca-
tion which could placeobjectswith high temporallocality
closeto oneanother In this paperwe usea Markov table
with 2K entries,which usesa total of 4Kbytesfor the data
storage. In addition, the tag size can also be reducedby
storingonly partialaddressags.

==delta
—rr=Qs
—=sis
=e=turb3d
=O==health

Percent of References

1 s 5 7 e 1 1 15 17 19
Number of bits

Figure 4: The numberof bits to accurately predict cache
missesusing the Markov DifferencePredictor They-axis
showshepercentof L1 cachemisseshatcouldbecorrectly
predictedgiventhenumberof bits usedfor eadh entryof the
marlov table shownon the x-axis. Thecade missaddress
is predictedby addingtogethertheaddressusedo index the
Markov tablewith the valuestoredin the Markov table

4.3 Allocation Filtering

Streambuffer allocationis one of the mostimportantparts
of astreambuffer architecture Sincethereareonly asmall
numberof streambuffers,thereis high contentionasevery
datacachemisscould potentiallyallocatea streambuffer.

Farkaset. al. [13] shavedthatusingtwo missstridefil-
tering provided goodresultsfor a PC-basedtreambuffer.
Two missfiltering only allocatesa streambuffer for aload
whenit misse< timesin arow, andthelasttwo stridesare
identical. For our predictordirectedstreambuffers we ex-
aminetwo methoddor filtering allocation— a generafform
of two missfiltering, and using our new predictionconfi-
denceto guideallocation.

Whenupdatingthe SFM predictorfor aloadthatmisses
in thecachepoththe PC-basedtridetableandthe address
basedMarkov table are indexed, and potentially updated.
Our two-miss allocationfilter allows a load to allocatea
streambuffer whentheload hastwo cachemissesn arow,
andbothtimestheloadwould have beencorrectlypredicted
usingthestridepredictoror theMarkov predictor If thisoc-
curs,thenit allocatesa streambuffer. Thismodifiedscheme
is our two-missallocationfilter.

The secondheuristicwe examineusesaddresgpredic-
tion confidencdo guidestreambuffer allocation. Eachen-
try in the PC-basedablestoresanaccuracycounter which
isincrementeaverytimetheload'supdateaddressnatches
the prediction of the stride or Markov table, and decre-
mentedwhenit doesnot match. The saturatingcounterre-
flectsthe ability of the predictorbeing ableto predictthe
load’s misses.By separatinghe confidencecountersfrom
thestreambuffer we cangaugehow well aparticularoadis
performingbeforewe allocatea streambuffer to it. In this
way we canavoid streamthrashing.Whena streambuffer
is allocatedt copiestheaccurag confidencecounterinto a
priority counterin the streambuffer. Maintainingthe prior-
ity counteris describedn moredetailin thenext section.

Onacachemiss,theaccurag confidencecounterin the

predictiontableis usedto guidestreambuffer allocation.If

theaddresgpredictionconfidencdevel of theloadis above
anallocationthresholdijt is allowedto contendor astream
buffer. Our resultssuggesthat a thresholdvalue of 1 is

appropriatefor our benchmarksuite. In addition,aload is

only allocateda streambuffer if thereis atleastonestream
buffer whosepriority confidencecounteris lessor equalto
the accuracy confidencecounterof the load. If the load’s
accurag confidencds lower thanall of the streambuffers
priority confidencethena streambuffer will not be allo-

catedfor it.

4.4 Stream Buffer Priority

The predictorand bus createa resourceconstraint,since
there are potentially several stream buffers which have
empty entries,or have predictedaddressesvaiting to be
prefetched. We examinetwo approachegor determining
which streambuffer shouldgetaccesgo the predictorand
L1-L2 buseachcycle.

The first heuristicis Round-Robingiving eachbuffer
an equalchanceat performinga predictionor prefetch. A
pointeris keptto thelaststreambuffer to performa predic-
tion andanothempointerfor thelastentryto issuea prefetch.
Thestreanbuffersarethensequentiallyexaminedn round-
robin order, looking for a buffer with an entry in needof
predictionor a predictedentryreadyto be prefetched.

The secondheuristic usesPriority Countes to guide
which streambuffer getsto performthe next predictionor
prefetch.Everytime thereis alookupandthe streambuffer
getsa hit, the priority counteris incrementedy a constant
value (2 in our implementation). To enablethe reuseof
streambuffers that had high confidencebut outlived their
usefulnessafterseveralallocationrequestgi.e. datacache
misseghatalsomissin streambuffers)we decremeneach
streambuffer’s priority counterby a valueof 1. We found
using10L1 datacachemissesasouragingperiodprovided
decentresults.Whendeterminingwhich streambuffer gets
to usethepredictoror performaprefetch thestreambuffers
areexaminedin theorderfrom highestpriority to lowest.If
thereare several streambuffers that are at the sameconfi-
dencdevel, we useanLRU policy to chooseghewinner. As
describedn section4.3 whena streambuffer is allocated,
the accurag confidences copiedinto the streambuffer’'s
priority counter This cutsdown thecontentiortime of load
thathasprovento be predictable.

In addition, as alsodescribedn the prior section,the
priority counteris usedto guide streambuffer allocation
when using accurag confidenceto guide allocation. A
streambuffer will only bere-allocatedor adatacachemiss
if the load’s predictionaccurag confidences greaterthan
or equalto a streambuffer’s priority counter Therefore,
streambuffers that are performing useful prefetcheswill
stayallocatedandhave alongerlifetime.

Program |
health

Description |

A hierarchicalhealth-caresystemsimulatortaken from
the OldenBenchmarlksuite(input: 3 500).

burg A programthatgenerates fasttreeparserusingBURS
technology |t is commonlyusedto construcoptimalin-
structionselectordor usein compilercodegeneration.
Theinput usedwasa grammarthatscribesthe VAX in-
structionarchitecture.

A constraintsolution systemwhich is implementedin
C++,with analundanceof shortlived heapobjects.

gs Ghostscriptis an implementationof Adobe Systems’
PostScript(tm) language. The input run converts a
PostScripfile into ajpeg.

sis Synthesiof synchronousndasynchronousircuits (in-
put: simplify). It includesa numberof capabilitiessuch
asstateminimizationandoptimization.Theprogramhas
approximatelyl72,000lines of sourcecodeanda good
dealof pointerarithmetic.
Simulatesisotropic,homogeneouturbulencein a cube
with periodicboundaryconditionsin x,y,z coordinatedi-
rections(input: ref).

deltablue

turb3d

Table1: Descriptionof bendimarksused.

45 TLB Trandation and Prefetching

As we storethevirtual effectiveaddres®f aloadin ourpre-
dictor, we needto translatehisto a physicaladdresdefore
we accessnemory On a prefetch,we accesghedataTLB
for the translationand performa replacemenif necessary
In essencethis amountsto TLB prefetching[27]. How-
ever, we did not obsene ary benefitsor performancdosses
causedy this approachasthe benchmarksve have used
hadonly asmallnumberTLB missesTheTLB translations
couldpotentiallybestoredwith eachstreanbuffer whenthe
streambuffer is allocated.Thena TLB lookupwould only
needo beperformedvhenthenext virtual prefetchaddress
goesoutsidethecurrentpageboundary

5 Methodology

The simulatorusedin this studywasderivedfrom the Sim-
pleScalar/Alpha3.0 tool set[5], a suite of functionaland
timing simulationtools for the Alpha AXP ISA. Thetim-
ing simulatorexecuteonly userlevel instructionsperform-
ing a detailedtiming simulationof anaggressie 8-way dy-
namicallyschedulednicroprocessowith two levels of in-
structionanddatacachememory Simulationis execution-
driven,includingexecutiondown ary speculatie pathuntil
thedetectiorof afault, TLB miss,or branchmis-prediction.
To perform our evaluation, we collected results for
the programsshovn in Table 1. The programswere
compiled on a DEC Alpha AXP-21164 processorusing
the DEC FORTRAN, C and C++ compilersunderOSF/1
V4.0 operating systemusing full compiler optimization
(-4 -ifo). Table2 shavs the numberof instructions
simulated| 1 datacachemissrate, percentof executedin-

program || #inst | %L1 | %Ids | %sts | IPC | L1-L2 | L2-M

(Milry MR %hus | %bus
health 33| 265| 36.0| 14.2 | 0.62 385 0.5
burg 300 65| 19.1| 18.7 | 191 19.5 4.8
deltablue 96 | 16.7 | 28.9 9.9 | 1.22 39.3 4.1
gs 300 20| 19.2 6.8 35 6.8 0.9
sis 300 3.7 | 287 | 128 | 1.94 12.2 0.9
turb3d 300 65| 233 | 16.2| 2.54 26.2 13.7

Table 2: Baselineresultsshowingthe numberof instruc-
tions simulated,L1 data cache missrate, percentof exe-
cutedinstructionsthat were loads and stores, the IPC for

ead program, and the percentof cyclesthe bus wasbusy
fromthelL1to L2, andthebusfromthe L2 to mainmemory
were busy

structionsthatwereloadsandstoresthe IPC for eachpro-
gram,andthe percentof cyclesthe busfrom thelL1 to L2,
andthe bus from the L2 to main memorywere busy (oc-
cupied). Tur b3d wasfastforwarded1.3 billion instruc-
tions[30] beforegatheringstatistics.

5.1 BasdlineArchitecture

Our baselinesimulationconfiguratiormodelsa next gener
ation out-of-orderprocessomicroarchitecture.We've se-
lectedthe parameterdo captureunderlyingtrendsin mi-
croarchitecturalesign. The processohasa large window
of execution;it canfetch up to 8 instructionsper cycle. It
hasa 128 entry re-orderbuffer with a 64 entry load/store
buffer. To compensatéor the addedcompleity of disam-
biguatingloadsandstoresin alarge executionwindow, we
increasedhestoreforwardlateng to 2 cycles.

To make surethat the prefetchingspeedupsve report
are from actualprefetchingbenefitand not from compen-
satingfor aconserativememorydisambiguatiomolicy, we
implementegerfectstoresetg11]. Perfectstoresetscause
loadsto only bedependentn storesvhichwrite to thesame
memory i.e whenthey areactuallydependeninstructions.
In thisway loadswill notbe heldup by falsedependencies
makingthe prefetchelook better The performancaediffer-
encebetweerthetwo schemess exploredin section6.

In the baselinearchitecture thereis an 8 cycle mini-
mum branchmis-predictionpenalty The processohas8
integerALU units,4-load/storaunits,2-FPadders2-integer
MULT/DIV, and2-FPMULT/DIV. Thelatenciesare: ALU
1 cycle,MULT 3cycles,IntegerDIV 12cycles,FPAdder2
cycles,FP Mult 4 cycles,andFP DIV 12 cycles. All func-
tional units, exceptthe divide units, arefully pipelinedal-
lowing a new instructionto initiate executioneachcycle.
We usea McFarling gsharepredictor[20] to drive our fetch
unit. Two predictionscanbe madeper cycle with up to 8
instructiondetched.

We rewrote the memory hierarchyin SimpleScalato

bettermodelbus occupanyg, bandwidth,and pipelining of
the secondevel cacheandmainmemory For the majority
of ourresults,the L1 instructioncacheis a 32K 2-way as-
sociative cachewith 32-bytelines. The baselineresultsare
run with a 32k 4-way associatie datacachewith 32-byte
lines. A 1 MegabyteunifiedL2 cacheis simulatedwith 64-
bytelines. TheL2 cachehasa lateny of 12 cycles,andis
pipelinedthreeaccessedeep.Themainmemoryhasanac-
cesgimeof 120cycles.Thel 1 to L2 buscansupportup to
8 bytesper processocycle whereaghe L2 to memorybus
cansupport4 bytespercycle.

6 Prefetching Performance

This sectioncomparegredictordirectedstreambuffersto
the bestperformingprior streambuffer approach. This is
the pc-basedstride streambuffers of Farkaset. al. [13],
which wasdescribedn section3. We call their approach
PC-Stride where datacachemissedloadsare kept track
of in a 256 entry 4-way associatie stride addressredic-
tion table. On a miss,the predictedstrideis copiedinto the
streambuffer to guidethe predictions.We examinedusing
PCstridetableslargerthan256 entry, but they providedlit-
tle to noimprovement.

For our PSBarchitectureye alsousea 256 entry4-way
strideaddrespredictiontableto filter stridepredictionsout
of a 2K entry Markov table. We usea differentialMarkov
table as describedn section4.2, whereeachentryin the
Markov tableis only 16-bits (total table size of 4Kbytes).
The advantageof PSB over PC-Strideis that we can ac-
curatelyfollow non-stridebasedmisspatterns.Resultsare
shavn for PSBfor all four combinationsof the allocation
filter and priority scheduler Theseare (1) two missallo-
cationfilter with round-robingscheduling(2Miss-RR),(2)
two missallocationfilter with priority confidenceschedul-
ing (2Miss-Priority),(3) confidenceallocationwith round-
robin scheduling(ConfAlloc-RR),and(4) confidenceallo-
cationwith priority scheduling(ConfAlloc-Priority). For
the accurag confidencecounterstoredin our stridetable,
we useda saturatingvalue of 7, andfor the priority con-
fidencecounterin the streambuffers we useda saturating
confidencevalueof 12. SeeSection4 for the othervalues
usedfor theaccurag andpriority counters.

For both the PC-Strideand the PSB architecturesve
used 8 streambuffers, eachwith 4 entries. All stream
buffers are checled in parallelon a lookup. In addition,
when a streambuffer generatesa prediction, all stream
buffersarechecledto guaranteehatthe streambuffersdo
notfollow overlappingstreams.

For the addresgredictorswe use,we predictthe vir-
tual addressstreaminsteadof the physicaladdressstream,
andwe performTLB translationson thoseaddressewhen
performingthe prefetch. Sincewe only insertloadsinto
thestridePC-tableon a cachemiss,we only requireasmall

256entrystridePC-tableto captureall thecritical loadsthat
miss. Finally, we only storeandusecacheblock addresses
notthefull addresgor boththe strideandMarkov tables.

Figure5 shaws the speedupver the baselinearchitec-
ture IPC shawvn in Table 2 for PC-Strideandour predictor
directedstreambuffer configurationsResultsareshavn for
five pointerbasedapplicationsandonestride-basedrOR-
TRAN program.We ranseveral FORTRAN programsand
they all had similar performanceto the resultsshavn for
t ur b3d. Sincetheseprogramsaremostlystride-basedyur
PSBarchitecturesichiezesbasicallythe sameperformance
asthe PC-stridearchitecturegettingbenefitonly from the
addition of confidenceand scheduling. For pointer based
applicationspurresultsshav thatpredictordirectedstream
buffers canachiere significantspeedup$17% speedugor
del t abl ue and18% speedugor bur g) over usingPC-
strideguidedstreambuffers.

It canbe seenin Figure5 that confidenceallocationis
very importantfor bur g andsi s. The reasonwhy per
formancedggradesfor si s whenusing 2Miss filter allo-
cationfor our approachs dueto streamthrashing. Using
the confidencecountersto guide allocation,allows stream
buffer allocationto concentrat®n highly predictabldoads,
andavoidsreplacingstreambuffersthatarereceving a lot
of hits. Streamthrashingis a seriousproblem for pro-
gramswith largeamountsf missingloadsasis the casein
bothlarge programsandtight innerloopswhich arehighly
software pipelined. Performingloop unrolling and soft-
warepipeliningincreaseshe numberof loadinstructionsin
the program which candegradethe performancef stream
buffers. If an architecturenasstreambuffers, a loop with
ahardwarepredictablereferencestreammay achieve better
performanceperformingno loop unrolling, andinsteaduse
thestreambuffersto hidetheloadlateng.

Figure6 shavstheprefetchingaccurag for thedifferent
configurationexaminedwhereprefetchingaccuray is the
percentagef all prefetcheshatwereusedby theprocessar
Allowing the streambuffer to follow non-stridepredictions
canincreasehe prefetchingaccurag by almosta factorof
2 for del t abl ue whenusingconfidenceallocation.

Figure7 shavsthecachemissratesfor the baselineand
prefetchingarchitecturesWe definea cachemissasanac-
cessto a cacheblock whichis not currentlyresidentin the
cachej.e. accesset in-flight datacountascachemisses.
We have foundthistrackingof cachemissego bemorerep-
resentatie of thesystembehaior thansimply checkingthe
cachetagsandMSHRsfor a hit.

The total impact of the systemcan be seenin fig-
ure 8 which shaws the averageload lateng for the differ-
entbenchmarksandtechniques.For del t abl ue, we re-
move 4 full cyclesfrom the averagelateng, and 3 cycles
for bur g. Even a moderatereductionin averagelateny
canproducea significantperformancémpactandthisis re-
flectedin the speedupsbtained.

Figure 9 shows the percentof bus utilization for both
thebusfromthelL1 to L2, andthebusfrom theL2 to main
memory This revealsaninterestingcharacteristiof si s.
Whenconfidencas notemployed,theprefetchespendshe
majority of its time issuinguselesgprefetchrequestdo the
L2 cachedueto streanbuffer thrashing.Thebusutilization
risesby afactorof four andtheaccurag dropssignificantly

By farthelargestconsumer®f L1 to L2 bandwidthare
del t abl ue, andheal t h, andit is for theseprograms
which streambuffer prioritizationschedulingperformedhe
best.Theschedulingf prefetchesllows the streanmbuffers
that are mostlikely to hit to use the bandwidthfirst, al-
lowing thesehigh confidenceprefetchego cover morela-
teng. Streambuffer priority schedulingprovided an addi-
tional speedumf 11% for del t abl ue whenconfidence
wasusedin conjunction.

The speedupthat we are achieving is dueto the hid-
ing of lateny associatedvith capacityproblemsin the L1
cache. This is shavn by figure 10, wherewe look at the
performanceor 16K 4-way, 32K 2-way, and 32K 4-way
cache. Theresultsshav the speedumbtainedfor the dif-
ferent prefetchingtechniquesover a baselinearchitecture
with the samecacheconfiguration. It canbe seenthatthe
speedupbtainedis independenbf cachesize over a rea-
sonablesetof configurations.

6.1 Perfect Disambiguation Results

As mentionedearlier we simulatedthe effects of perfect
load-storedisambiguation.The IPC resultswith andwith-
out perfectmemorydisambiguatiorfor the baselinearchi-
tectureandour proposedchemearepresenteéh Figurell.
For no disambiguation(NoDis), a load waits to issueun-
til all prior storeshave issued. Perfectstoresets[11] pro-
vides a decentspeedupfor the baselinearchitecturefor
del t abl ue andsi s. However it yields little improve-
mentin conjunctionwith prefetchingfor all programsex-
ceptforsi s.

7 Summary

We choseto focuson streambuffers becausef their abil-
ity to follow addresstreamsndependenodf whatthe fetch
streamis doing. Prior streambuffer architecturesverelim-
ited to following down a streamusing a fixed stride [13],
which limits their benefit for commercial pointerbased
applications. To go beyond this limit we presenteda
new streambuffer architecture(PredictorDirected Stream
Buffer) to follow non-stridestreams.In addition, we pre-
senteda new streambuffer allocationandpriority schedul-
ing techniquébasedn confidence.

It shouldbenotedthatany addrespredictorcanbeused
to guide the predictedprefetchstreamfor our predictor
directedstreambuffer. Due to spaceconstraintswe only

50%

a @ PC-Stride O2Miss-RR O2Miss-Priority B ConfAlloc-RR I!CoanIIoc-Priority‘
S 9 —
3 40% — —
S 20% e 4 o
o b R " i 4
%) .EEM b4 [P e
= Ok A o I
< 20% ot e . / :'-'E:::i
o L1 L il [T pe o / Lt 4
o 10% L2714 i L7204 e[o / e
a o2 i o .3-'.»1 P : ?/ Eft M
il Iy bes Y
0% /I / vl A L VA [Ged K | ERes
burg deltablue gs sis turb3d

Figure 5: Percentspeedumver baseusingprior PC-strideprefetding andour PredictorDirectedStreamBuffers.

100% - - . . — ..
- PC-Stride O2Miss-RR O2Miss-Priority B2 ConfAlloc-RR M ConfAlloc-Priority
Q 04 |
3 80% oo
> -4
8 60% -
g ik '8
€ 40% - i) e Hir
o b2 L -4 e a4 e
o o o 4 o’ L o L4
o 20% - =oid M " T
a o -:.'_-‘ 14 L%l .:_‘_.“"1 .:_‘_.“"1
L2 bl -4 e w el v
0% e T 2 T = T = 1
health burg deltablue gs sis turb3d

Figure 6: Prefetd accuracy. Thisis the numberof prefethesuseddividedby the numberof prefethesmade

60% -

® 50 ‘lBase & PC-Stride O2Miss-RR O2Miss-Pri E Conf-RR I!CoanIIoc-Priority‘

2 50% +

T R

T 409 - 1

2 e

£ 30% - % :

[0} =i kr

£ 20% ¢ 5ig

S 10% - e : e _
0% | e W ! e WoTEe TER

health burg deltablue gs sis turb3d

Figure 7: Data cache missrates(whee in-flight cacheblodks countasa miss).

m

[}

— 12

2 ‘lBase @ PC-Stride O2Miss-RR O2Miss-Pri B Conf-RR I!CoanIIoc-Priority‘
O _

\5 10

c 8-

2

3 67 i 7

g 4 i g

o T g

e 24 e e

< il e =

g) 0 _] i :) :

< health deltablue gs sis

Figure 8: Average latencyof a load in cyclesfor thedifferentarchitectures.

100%
80%
60%
40%
20%

0%

L1 to L2 Bus Utilization

_ L1 to L2 Bus Utilization —e— L2 to Mem Bus Utilization _ 20%

c

(@)

=

@©

N

1 0f =

rw 15% 35

/ 10% 3

i o >

i m

| 504 £

1 / - HEEEE ES /6 q)

=

i _ Al - - - - - AL - B B 0% 8

gz s 2leE R T 8IS ESIER B2 EEE AL -4 A A ~

3 3|8 ©\GIBI2EI5|DD G8E|5IDD 8 8E AR E AR —

0123 012]2/8]8| |¢12/2/818| |¢|212/18/8| 1912/1218/8] 1¢12/28|S

alNIN QNN 0NN alNIN 0O lN N 0NN
health burg deltablue sis turb3d

Figure 9: Thepercentof cyclesthebuswasbusy Thel1-L2 busutilization is shownwith bars usingtheleft axis,andthel.2
to Main Memorybus utilization usesheright axis.

50% -

N
N
>

Percent Speedup

0% -

30% -
20% -
10% ~

16K [32K | 32K | 16K | 32K [32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K | 16K | 32K | 32K
4-w | 2-w | 4-w | 4-w | 2-W | 4-w | 4-w | 2-W | 4-W | 4-W | 2-W | 4-W | 4-w | 2-W | 4-W | 4-w | 2-W | 4-W | 4-w | 2-W | 4-w | 4-w | 2-W | 4-w | 4-w | 2-W | 4-w | 4-w | 2-W | 4-W | 4-w | 2-W | 4-w | 4-w | 2-w | 4-w

PC-Stride ConfAlloc- PC-Stride ConfAlloc- PC-Stride ConfAlloc- PC-Stride ConfAlloc- PC-Stride ConfAlloc- PC-Stride ConfAlloc-
Priority Priority Priority Priority Priority Priority

5
‘l Base-NoDis P1Base-Dis O ConfAlloc-Priority-NoDis O ConfAlloc-Priority-Dis ‘
4
3 a
2 |
N 2
04 o/ / s /

health burg deltablue gs sis turb3d

Figure 10: PercentSpeedup/arying the Cache Sizeand Associativity

health burg deltablue gs sis turb3d

Figure 11: Performanceresultswith (Dis) andwithout(NoDis) perfectstore sets(perfectdisambiguation).

presentedesultsfor usinga stride-filteredMarkov address
predictorto guide streambuffer prefetching. The Markov
predictorwas a differential Markov predictorwhosedata
sizewasonly 4Kbytes. We foundthis predictorto perform

betterthanotherrecentlyproposecdcontext [28] andcorre-
latedipredictorq2] for dataprefetching.

For stride-basedapplications(e.g., FORTRAN pro-
grams), predictordirected stream buffers provided simi-
lar performanceo stride-basedtreambuffers. For the 5
pointerbasedapplicationsve examined predictordirected
streambuffers provide a 30% speedun averageover no
prefetching,and 10% averagespeedupver usingthe best
performingprior streambuffer architecture.

Acknowledgments

Wewouldlik eto thanktheanorymousreviewersfor provid-
ing usefulcommentson this paper This work wasfunded
in part by NSF CAREER grant No. CCR-9733278,by
DARPA/IT O undercontractnumberDABT63-98-C-0045,
anda grantfrom CompagComputerCorporation.

References

[1] T. AlexanderandG. Kedem. Distributed prefetch-ffer/cacle de-
sign for high performancememorysystems.In Proceedingof the
Secondinternational Symposiunon High-RerformanceComputer
Architectue, February1996.

[2] M. Bekerman,S.JourdanR. RonenG. KirshenboimL. Rappoport,
A. Yoaz,andU Weiser Correlatedoad-addresgredictors.In 26th
Annual International Symposiunon ComputerArchitectue, May
1999.

[3] A. BerrachedL. CoraorandP. Hulina. A decoupledaccesskecute
architecturdor efficient accesssf structurediata. In In the Hawaii
InternationalConfeenceon SystenServicesJanuaryl993.

[4] B. Black, B. Mueller, S. Postal,R. Rakvie, N. Utamaphethaiand
J. P. Shen. Load executionlateny reduction. In 12th International
Confeenceon Supecomputing Junel998.

[5] D.C.BurgerandT. M. Austin. Thesimplescalatool set,version2.0.
TechnicalReportCS-TR-97-1342University of Wisconsin,Madi-
son,Junel997.

[6] M.J.Charng andT.R. Puzak. Prefetchingand memorysystembe-
havior of thespec9%enchmarlsuite. IBM Journal of Reseach and
Development41(3),May 1997.

[7] M.J.Charng andA.P. Reeves. Generalizectorrelationbasechard-
ware prefetching. TechnicalReportEE-CEG-95-1 Cornell Univer
sity, February1995.

[8] T-F. ChenandJ-L.Baer Effective hardvare-basedlataprefetching
for high performancerocessorslEEE Transactionon Computes,
5(44):609-623May 1995.

[9] T.F.ChenandJ.L.Baer Reducingnemorylatengy via non-blocking
andprefetchingcaches.In Proceeding®of the Fourth International
Confeenceon Architectual Supportfor ProgrammingLanguaes
andOpenting System$ASPLOS-IV)pages51-61,0ctoberl992.

[10] C.ChiandC.Cheung.Hardware-drven prefetchingor pointerdata
references.In In the ACM International Confeenceon Supecom-
puting pages377-384,Junel998.

[11] G.ChrysosandJ.Emer Memorydependencpredictionusingstore
sets. In 25th Annual International Symposiunon ComputerArchi-
tectue, Junel998.

[12] R. J. Eickemgrer and S. Vassiliadis. A load instructionunit for
pipelinedprocessors.IBM Journal of Reseath and Development
37:547-564July 1993.

[13] K. FarkasP. Chaw, N. Jouppi,andZ. Vranesic.Memory-systenue-
sign considerationgor dynamically-schedulegrocessors.In 24th
Annual International Symposiuron ComputerArchitectue, June
1997.

[14] K. Farkasand N. Jouppi. Compleity/performancetradeofs with
non-blockingloads. In 21st Annual International Symposiunon
ComputerArchitectue, pages211-222 April 1994.

[15] M. Farrensand A.Pleszkun. Implementatiorof the pipe processor
IEEE ComputeyJanuaryl991.

[16] J.GonzaleandA. Gonzalez Speculatie executionvia addresgre-
diction and dataprefetching. In 11th International Confeenceon
Supecomputing pagesl 96—-203July 1997.

[17] G.P JonesandN.P. Topham. A comparisorof dataprefetchingon
anaccessiecoupledandsuperscalamachine.In 30thInternational
Symposiunon Microarchitectue, Decembef997.

[18] D. JosephandD. Grunwald. Prefetchingusingmarkov predictors.
In 24th Annualinternational Symposiunon ComputerArchitectue,
Junel997.

[19] N. Jouppi.Improving direct-mappedacheperformancéy theaddi-
tion of asmallfully associatie cacheand prefetchbuffers. In Pro-
ceedingf the 17th Annuallnternational Symposiunon Computer
Architectue, May 1990.

[20] S.McFarling. Combiningbranchpredictors. TechnicalReportTN-
36, Digital EquipmentCorporation, WesternResearch_ab, June
1993.

[21] T.C. Mowry, M.S. Lam, and A. Gupta. Designand evaluation of
a compiler algorithm for prefetching. In Proceedingf the Fifth
InternationalConfeenceon Architectural Supportfor Programming
LanguaesandOpeiating System$ASPLOS-V,)October1992.

[22] S.PalacharlaandR. Kessler Evaluatingstreambuffersassecondary
cacheeplacementn 21stAnnualinternationalSymposiuronCom-
puterArchitectue, April 1994.

[23] G. Reinman,B. Calder and T. Austin. Fetch-directednstruction
prefetching.In 32ndinternationalSymposiunon Microarchitectue,
November1999.

[24] G.ReinmanpB. Calder andT. Austin. A power efficient speculatie
fetch architecture. TechnicalReportUCSD-CS2000-065AJniver
sity of Califonia, SanDiego, June2000.

[25] A. Roth, A. Moshoros, andG. Sohi. Dependencéasedprefetch-
ing for linked datastructures.In Eigth InternationalConfeenceon
Architectual Supportfor ProgrammingLanguaes and Opemting
SystemsOctober1998.

[26] A. RothandG. Sohi. Effective jump-pointerprefetchingfor linked
datastructures. In 26th Annual International Symposiunon Com-
puterArchitectue, May 1999.

[27] A. Saulshiry, F. Dahlgren,and P. Stenstrom. Receng-basedtbl
preloading. In 27th Annual International Symposiunon Computer
Architectue, June2000.

[28] Y. SazeidesandJ. E. Smith. The predictabilityof datavalues. In
30thInternationalSymposiunon Microarchitectue, page248-258,
Decembed997.

[29] Y. SazeideandJ.E. Smith.Modelingprogrampredictability In 25th
Annual International Symposiuron ComputerArchitectue, June
1998.

[30] T. Sherwood and B. Calder Time varying behaior of programs.
Technical Report UCSD-CS99-630,University of Califonia, San
Diego, August1999.

[31] J.E.SmithandW.-C.Hsu. Prefetchingn supercomputenstruction
cachesln Proceeding®f Supecomputing November1992.

[32] K. Wangand M. Franklin. Highly accuratedatavalue prediction
usinghybrid predictors.In 30th AnnuallnternationalSymposiunon
Microarchitectue, Decembetfl997.

[33] C.YangandA. Lebeck. Pushvs. pull: Datamovementfor linked
datastructures.In In the ACM International Confeenceon Super
computing June2000.

