On Pipelining Dynamic Instruction Scheduling L ogic

JaredStarkt MaryD. Browni YaleN. Patti

MicroprocessoResearch.abst
Intel Corporation
jared.wstark@intel.com

Abstract

A madine’s performanceis the product of its IPC
(Instructions Per Cycle) and clock frequency Recently
Palacharla, Jouppi,and Smith[3] warnedthatthedynamic
instructionschedulinglogic for currentmadinesperforms
an atomic opemation. Either you sacrificelPC by pipelin-
ing this logic, therebyeliminatingits ability to executede-
pendeninstructionsin consecutiveycles.Or yousacrifice
clodk frequencyby not pipeliningit, performingthis atomic
opemtionin a singlelong cycle Bothalternativesare un-
acceptabldor high performance

This paper offers a third, acceptable alternative:
pipelinedsdchedulingwith speculativewalkeup. This tech-
niguepipelinesthe schedulinglogic withouteliminatingits
ability to executedependeninstructionsin consecutivey-
cles. With this technique you sacrificelittle IPC, and no
clodk frequency Our resultsshowthat on the SPECint95
bendimarks a madineusingthistechniquehasanaverage
IPC thatis 13%greaterthanthe |IPC of a baselinemadine
that pipelinesthe schedulinglogic but sacrificesthe ability
to executedependeninstructionsin consecutiveyclesand
within 2% of the IPC of a corventionalmadine that uses
singlecyclesdedulinglogic.

1. Introduction

To achieve higherlevels of performanceprocessorsre
being built with deeperpipelines. Over the pasttwenty
yearsthe numberof pipelinestageshasgrown from 1 (In-
tel 286),to 5 (Intel486),to 10 (Intel PentiumPro), to 20
(Intel Willamette)[2, 6]. This growth in pipelinedepthwill
continueasprocessorattemptto exploit moreparallelism.

As pipelinedepthsgrow, operationghat had previously
taken only a single pipeline stageare pipelined. Recently
PalacharlaJouppi,and Smith [3] stated:“Wakeupandse-
lect togetherconstitutewhat appeardo be an atomic op-
eration. Thatis, if they aredivided into multiple pipeline
stagesdependeninstructionscannotissuein consecutie

Dept. of ElectricalandComputerEngineering;
The Universityof Texasat Austin
{mbrown,patf @ece.uteas.edu

cycles! They usethe word atomichereto imply thatthe
entireoperationmustfinish beforethe wakeup/selecbper
ationsfor dependeninstructionscanbegin. Thus,if depen-
dentinstructionsareto beexecutedn consecutie cycles—
whichis necessarfor achieving thehighestperformance—
theschedulingogic performsthis operationin onecycle.

This paperdemonstratethatthis logic canbe pipelined
without sacrificingthe ability to executedependeninstruc-
tionsin consecutie cycles. It introducegipelinedschedul-
ing with speculativavakeup which pipelinesthislogic over
2 cycleswhile still allowing back-to-baclkexecutionof de-
pendeninstructions.With this technique deeperpipelines
and/orbiggerinstructionwindows canbe built. This will
allow processorto exploit moreparallelism,andtherefore,
allow processoro achieve higherperformance.

The paperdescribeswo implementationsof pipelined
schedulingwith speculatie wakeupfor a genericdynami-
cally scheduledprocessorthe budgetimplementatiorand
the deluxe implementation.The budgetmodelhasa lower
implementatiorcostthanthe deluxe model,but notasgreat
an improvementin performance. The genericprocessor
andthesetwo implementationsare examplesonly. There
aremary processomicroarchitecturesandmary possible
implementationf pipelined schedulingwith speculatre
wakeup.We couldnot modelall of them.Neverthelessywe
hopethatby examiningthesesimpleexamplesmicroarchi-
tectswill be ableto implementpipelinedschedulingwith
speculatire wakeupon real-world microarchitectures.

The paperthencompareghe IPC (InstructionsPer Cy-
cle) of machinesusing thesetwo implementationgo the
IPC of a baselinemachinethat pipelinesthe scheduling
logic but sacrificeghe ability to executedependeninstruc-
tions in consecutie cycles. For the 8 SPECint95bench-
marks, the averagelPC of the machineusing the budget
implementationis 12% higher than the IPC of the base-
line machine andthe IPC of the machineusingthe deluxe
implementations 13% higher This paperalsocompares
the IPC of machinesusing thesetwo implementationgo
the IPC of a corventionalmachinethat doesnot pipeline

the schedulinglogic. Both machineshave IPCsthat are
within 3% of the IPC of the corventionalmachine. If the
critical path throughthe schedulinglogic limits the cycle
time for corventionalmachineswhich is very likely if the
schedulingoperatioris considerednatomicunit, thesewo
implementationof pipelined schedulingwith speculatre
wakeup may allow a significantboostin clock frequeny
with only avery minorimpacton IPC.

This paperis dividedinto six sections Section? presents
backgroundinformation necessaryfor understandinghis
study Section3 describegorventionalinstructionschedul-
ing logic. Section4 describespipelined schedulingwith
speculatie wakeup. Section5 presentsthe experiments,
andSection6 providessomeconcludingremarks.

2. Background

This section presentsbackgroundinformation neces-
saryfor understandingur study Section2.1 presentour
pipelinemodel. Section2.2 introducessometerms. Sec-
tion 2.3introduceshe schedulingapparatus.

2.1. Pipeline M odel

Figure 1 shows the pipeline of a genericdynamically
scheduledorocessar The pipelinehas7 stages:fetch, de-
code,renamewakeup/selectregisterread,execute/bypass,
and commit. Each stagemay take more than one cycle.
For example,the execute/bypasstageusuallytakestwo or
more cyclesfor loads: one cycle to calculatethe load ad-
dressandoneor morecyclesto accesshecache.

wait in reservation stations

Wakeup | Register | Execute X
Fetch Decode | Rename Select Read Bypass Commit

Figure 1. Processor Pipeline

In the fetch stage,instructionsare fetchedfrom the in-
structioncache. They arethendecodedandtheir register
operandsenamed.Next, they arewritten into the resena-
tion stationawherethey wait for their sourceoperandsnda
functionalunit to becomeavailable. Whenthis occurs(that
is, aninstructionwakesup andis selected)theinstruction
is sentto a functional unit for execution. Its registerval-
uesare eitherreadfrom the registerfile or bypassedrom
earlierinstructionsin the pipeline. After it completesex-
ecution,it waits in the resenation stationsuntil all earlier
instructionshave completedexecution.After this condition
is satisfiedjt commits:it updateghearchitecturaktateand
is deallocatedrom theresenationstations?!

1Conventional machinesaggressiely deallocatereseration stations.
We do not consideraggressie deallocationandsimply assumehatreser
vation stationsaredeallocatedat commit.

Note that after an instructionis selectedfor execution,
several cycles passbeforeit completessxecution. During
this time, instructionsdependenbn it may be scheduled
(woken up and selected)for execution. Thesedependent
instructionsare scheduledptimistically. For example, if
they dependnaload,they areschedulecssumingheload
hits the cache. If the load misses,the dependeninstruc-
tions execute—spuriously—withouthe load result. The
dependeninstructionsmustbe re-scheduledandthus,re-
executed)oncetheloadresultis known.

2.2. Terminology

Figure2 shovs a partialdataflow graph.Eachnoderep-
resentsaan operation.The arrows enteringa noderepresent
thevaluesconsumedy the operation.The arrow exiting a
noderepresentshe valueproducedoy the operation.

Grandparents:

Parents:

Figure 2. Example Data Flow Graph

The ADD operationconsumeghe valuesproducedby
its parents i. e.,theSUBandMUL operationsThe ADD’s
parentsconsumethe valuesproducedby its grandpaents
i. e.,the SUB consumesghe valuesproducedby the XOR
and NEG operations,and the MUL consumesghe values
producedby the NOT and AND operations. The reverse
relationshipsalso hold: the ADD is the child of the SUB
andMUL operationsandthegranddild of theXOR, NEG,
NOT, andAND operations.

2.3. Scheduling Apparatus

Threepiecesof logic areneededo performthedynamic
schedulingrenamdogic, wakeuplogic, andselectiogic.

Therenamdogic mapsaninstructionsarchitecturateg-
isteridentifiersto physicalregisteridentifiers. This elimi-
natesthe anti andoutputregisterdependenciebetweenn-
structions. We assumeéhe mapis storedin a registerfile,
asdescribedby Palacharla,Jouppi,and Smith [3], andas
implementedn the MIPS R10000[5]. Accessinghis reg-
ister file with an architecturalregisteridentifier yields the
physicalregisteridentifierto which it is mapped.

The wakeup logic is responsibleor waking up the in-
structionsthat are waiting for their sourceoperandgo be-
come available. For conventionalscheduling,this is ac-
complishedby monitoring eachinstructions parents. For
pipelinedschedulingwith speculatie wakeup,it is accom-
plishedby monitoringeachinstructions parentsandgrand-
parentsThewakeuplogicis partof theresenationstations.
Eachresenationstationentry (RSE)haswakeuplogic that
wakesup ary instructionstoredin it.

The selectlogic choosesnstructionsfor executionfrom
the pool of readyinstructions. We assumesachfunctional
unit hasa setof dedicatedRSEs, as describedby Toma-
sulo[4]. Selectlogic associatedvith eachfunctionalunit
selectsthe instructionthat the functional unit will execute
next. The selectionis performedby choosingonereadyin-
structionfrom thefunctionalunit’s setof dedicatedRSEs.

Figure3 will beusedto furtherdescribethe operationof
the schedulingapparatuslt shavs a microarchitecturéhat
has8 functionalunitsand128 RSEs.

from Decode

| Rename |
) | —R1 | —R1
RSE1: L et I P
° Select Select
. RS Logic i RS Logic
i |—{R16 —{R16
RSE1S: ~—1G16 ~—1G16
Tag Buses 4——: i
| Register File
FU, (XX} FUg

o

Result Buses <%

fe—

Figure 3. Processor Microarchitecture

Eachfunctionalunit hasa dedicatedsetof 16 RSEs,se-
lect logic, a tag bus, and a result bus. The selectlogic
chooseghe instructionsthe functional unit executesfrom
the RSEs. After aninstructionis chosen,a tag associated
with theinstructionis broadcasbver thetagbusto all 128
RSEs. This tag broadcastsignalsdependeninstructions
that the instruction’s resultwill soonbe available. After
aninstructionexecutesjt broadcastés resultover the re-
sultbusto theregisterfile andto arny dependeninstructions
startingexecution.

After aninstructionis fetched,decodedand renamed,
it is written into a RSE.EachRSE haswakeuplogic that
monitorsthetag buses.For conventionalschedulingwhen
thetagsof all theinstructions parentshave beenbroadcast,

the RSE assertsts requestine. (Therequestines arela-

beledR1-R16.) For pipelinedschedulingwith speculatre
wakeup,the RSEassertsts requestine, if, for eachof the
instruction’s parentsthe parents tag hasbeenbroadcasor

all the parents parents'tagshave beenbroadcast.The se-
lectlogic for eachfunctionalunit monitorstherequestines
of the functional unit’s dedicatedset of RSEs,and grants
up to oneof theserequesteachcycle. (Thegrantlinesare
labeledG1-G16.)After arequests grantedtheinstruction
that generatedhe requests sentto the functionalunit for

execution.In addition,the tagfor thatinstructionis broad-
castoverthetagbus. Theinstructioneitherreadsts register
valuesfrom theregisterfile or recevesthemfrom instruc-
tionsjustcompletingexecutionvia bypasses.

3. Conventional Scheduling

Sections3.1, 3.2, and 3.3 describethe implementations
of the rename,wakeup, and selectlogic for cornventional
dynamicinstructionscheduling. Section3.4 gives an ex-
ampleof the operationof corventionall-cycle scheduling,
and Section3.5 givesan exampleof the operationof con-
ventionalschedulingpipelinedover 2 cycles.

3.1. Rename Logic

Registerrenamingperformstwo primarytasks:allocat-
ing physicalregistersfor the destinationsof instructions,
andobtainingthephysicalregisteridentifiersfor thesources
of instructions. An instructionreadsthe renamemap for
eacharchitecturabourceregisterto obtainthe physicalreg-
ister identifier for that source. It alsowrites the identifier
of its allocatedphysicalregisterinto therenamemapentry
associateavith its architecturablestinatiorregister

In a superscalaprocessara groupof instructionsmust
be renamedat the sametime. To detectdependenciebe-
tweeninstructionsin the samegroup, the sourcesof each
instructionarecomparedo the destination®f all previous
instructionsin the samegroup. If aninstructions parentis
in its group,theidentifier of the physicalregisterallocated
to the parentoverridesthe identifier obtainedfrom the re-
namemap. Figure4 shows the dependeng analysislogic
for thefirst threeinstructionsin agroup.

3.2. Wakeup Logic

After instructionshave beenrenamedthey wait in reser
vationstationgfor their sourceto becomeaeady EachRSE
containdnformationabouteachof theinstructionssources,
suchasthe physicalregisteridentifier (tag) for the source,
whetherthe sourceis ready andthe numberof cyclesit
takes the producerof the sources valueto execute. Fig-
ure 5 shows the stateinformationfor one RSE. The fields

Physical identifiers
from rename map | |

Phy_ID(Op1_srcl)—
Phy_ID(Op1_src2)
Phy_ID(Op2_srcl)

Phy_ID(Op2_src2)

Opl_dest Op2_srcl Op2_src2 Op2_dest Op3_srcl Op3_src2 Op3_dest
|
Ey
Priority Priority

Phy_ID(Op3_srcl)

Encoder| Encoder|

Phy_ID(Op3_src2)

Phy_ID(Op1_dest)

Phy_ID(Op2_dest)

Phy_ID(Op3_dest)

Op1 Op1 Op1 Op2
Srcl Tag Src2 Tag DestTag Srcl Tag

\7_/4 %F %F\

Src2 Tag

Op2 Op2 Op3 Op3 Op3
Dest Tag Srcl Tag Src2 Tag Dest Tag

Figure 4. Dependency Analysis Logic for Three Instructions

RSE [srRcTAG|M[sHIFT'R | DELAY [src TAG| M [sHIFTIR | pELAY [DEST TAG

Reques SELECT Grant

Destination Tag Bus

LOGIC

Figure 5. Scheduling Logic for One Reservation Station Entry

labeledSRCTAG containthe tagsof the sourceoperands.
The R (READY) bit for eachsourceis setif the datafor
thatsources availablein theregisterfile or is availablefor
bypasgrom afunctionalunit.

In our machinemodel,instructionsbroadcastheir tags
in the samecycle they areselectedor execution. Because
not all instructionshave the sameexecution lateng, the
numberof cyclesbetweerthetime their tagsarebroadcast
andthetime their resultsareavailableis not constant.The
DELAY fieldsareusedto handlethis variability. > For each
source,the DELAY field encodeghe numberof cycles—
relative to somebase—hbetweewhenthetagfor the source
is broadcasaindwhenthe associatedesultis available. We
will provide more detailsshortly aboutthe actualnumber
thatis encoded.For the logic implementatiordescribedn
this paper this numberis encodedas an invertedradix-1
value;e.g., 3 is representetly ‘1...1000'.

Figure 6 shows the wakeuplogic of one sourcetag for
our machinemodel. It is similar to the MIPS R10000
wakeuplogic [5] but hasbheenmodifiedfor handlingmulti-
cycle operations. Whenthe destinationtag of a parentis
broadcastpne of the tag comparatorswill indicatethata

2Alternative solutionsexist. For example,if eachfunctionalunit only
executesnstructionsthatall have the samelateny, the tagbroadcastan
simply bedelayedsothatit occursa fixed numberof cyclesbeforethere-
sult broadcastThis eliminatesthe needfor the DELAY fields. However,
if functionalunits canexecuteinstructionsof differing latenciesthis solu-
tion is unsuitableat high clock frequenciesMultiple pipestagesnayneed
to broadcastags,ratherthanjust one. Either the pipe stageswill needto
arbitratefor tagbusesprthenumberof tagbuseswill needto beincreased.

matchhasoccurred,andthe M (MATCH) bit will be set.
The MATCH bit is a sticky bit thatwill remainsetafterthe
tag match. On atag match,the SHIFT field is loadedwith

thevaluecontainedn theDELAY field. TheSHIFT field is

actuallycontainedn anarithmeticright shift register The
MATCH bit is theshift enablefor thisregister Theleastsig-

nificantbit of the SHIFT field is the READY bit mentioned
above. After the READY bits for all sourceoperandsave

beenset,theinstructionrequestgxecution.

Tag 1
Destination Tag Bus

Tag 8

SHIFT | R ‘

Source is Ready

Figure 6. Conventional Wakeup Logic

For a sourcewhoseproducerhasan N-cycle execution
lateng/, the DELAY field containsN-1 zerosin the least
significantbits of thefield. The remainingbits areall setto
1. Thisallowsthe READY bit to besetN-1 cyclesafterthe
match. For example,in our model,a load instructionthat
hits in the datacachetakesthreecyclesto execute. Sup-

posethe DELAY field is four bits. The DELAY field for
aninstructiondependentn aloadwould containthe value
‘1100'. Whenthetag matchfor theload occurs,this value
will be loadedinto the SHIFT field, andthe MATCH bit
will be set. After two more cycles, the SHIFT field will

containthevalue‘1111’, and,assuminghe load hit in the
cachethis sourcewill beready For a sourceoperandwith
al-cyclelateng, the DELAY field will be‘1111’. As soon
asthereis atagmatch,the READY bit will beset,allowing
theinstructionto requesexecution.

The valuefor the DELAY field is obtainedfrom atable
in therenamestage.Thetablealsoprovidesvaluesfor the
MATCH bit andSHIFT field for whenthetagfor a source
is broadcasbeforethe instructionis written into the reser
vation stations. This tableis the analogueof the busy-bit
tablein the MIPS R10000[5]. For eachphysicalregister,
an entry in the table storesits DELAY field, MATCH bit,
and SHIFT field. Whena destinationtag is broadcastthe
MATCH bit andSHIFT field of the entry correspondindo
thetagis updatedustlike the MATCH bit andSHIFT field
of thewakeuplogic for amatchingsourceoperand.

During decodeaninstructions executionlateng is de-
termined. After the instructions register operandshave
beenrenamedthetableentry correspondingo the instruc-
tion’s physicaldestinatiorregisteris updated.lts DELAY
field is setto a valuederived from the instructions execu-
tion latengy, its MATCH bit is reset,andits SHIFT field
is setto 0. Eachof the instructions physicalsourceregis-
tersthenaccessethe tableto determineits DELAY field,
MATCH bit, andSHIFT field.

3.3. Select Logic

The selectlogic for eachfunctional unit grantsexecu-
tion to one ready instruction. If more than one instruc-
tion requestexecution heuristicanaybeusedfor choosing
which instructionrecevvesthe grant[1]. Theinputsto the
selectlogic arethe requestsignalsfrom eachof the func-
tional unit's RSEs,plus any additionalinformationneeded
for schedulingheuristicssuchaspriority information. Im-
plementationsf theselectogic arediscusse@lsavhere[3]
andwill notbecoveredin this paper As shovn in Figure5,
whenbothREADY bitsareset,theinstructionrequestexe-
cution. If theinstructionrecevvesa grant,its destinatiortag
is broadcasbn thetag bus. The executiongrantmustalso
be ableto clearthe MATCH, SHIFT, and READY fields
of the RSE so that the instructiondoesnot re-arbitratefor
selection.

3.4. Dependent I nstruction Execution

In thisimplementatiorof conventionalschedulingogic,
aninstructionwakesup in thelasthalf of a clock cycle,and

is potentiallyselectedn thefirst half of thenext clockcycle.
Notethatthe wakeupandselectionof theinstructionstrad-
dlesa clock edge. If the instructionis selected the grant
from the selectlogic gatesthe instructions destinationtag
onto the tag bus, which is thenfed to the tag comparators
of thewakeuplogic. Thus,thetasksof selectiontagbroad-
cast,andwakeupmustall occurwithin in onecyclein order
for dependeninstructiongo wakeupin consecutie cycles.
Figure 7 is an exampleof the conventionalscheduling

operation. It shaws the pipeline diagramfor the execution
of the left threeinstructionsof the dataflow graphin Fig-
ure2. This scheduleassumegachinstructionhasa 1-cycle
lateng/, andall otherparentsandgrandparentsf the ADD
arealreadydone.In cycle 1,the READY bit for the XOR’s
last sourceis loadedwith a 1. In cycle 2, the XOR is se-
lectedfor execution. Its destinationtagis broadcasbn the
tagbus,andthe MATCH, SHIFT, andREADY fieldsof its
RSEareclearedsothatit doesnotrequesexecutionagain.
In this samecycle, the SUB matcheghe tag broadcasby
the XOR, anda 1 is loadedinto its READY bit. In cycle
3,the SUBis selectedit broadcastés destinatiortag,and
wakesupthe ADD....

Clock: Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Select/ Execute/
XOR: | Wakeup |grgadcast | Re9 Read Bypass
. Select/ Execute/
SUB: Wait Wakeup | groadcast | Re9 Read Bypass
) . . Select/ Execute/
ADD: Wait Wait Wakeup | groadcast | Red Read Bypass

Figure 7. Execution of a Dependency Chain
Using 1-Cycle Conventional Scheduling

3.5. Pipelined Conventional Scheduling Logic

To breakthecornventionalschedulindogicinto a 2-cycle
pipeline, a latch must be addedin the path of the select
logic, tag broadcastand wakeup logic. We will assume
the executiongrantfrom the selectlogic is latched.Hence
the selectlogic takesone cycle, andthe tag broadcasand
wakeuplogic take onecycle.

Becauselatchhasbeeninsertedn whatwaspreviously
an atomic operation,thereis a minimum of 2 cycles be-
tweenthe wakeup of dependeninstructions. If a parent
instructionhasa 1-cycle executionlatengy, this will create
a 1-cycle bubblein the executionof the dependeng chain.
If the parenttakestwo or more cyclesto execute,the bub-
ble can be avoided by using a different encodingfor the
DELAY field. For 2-stagepipelinedschedulinglogic, the
DELAY field for any 1-cycle or 2-cycleoperationshould
beencodedasall 1s. For alateng of N (N > 1) cycles,the

Clock: Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle6 Cycle7 Cycle 8 Cycle 9
ADD: | Wakeup | Select |Broadcast/| gyocyte
Reg Read
LOAD:| Wait Wait Wakeup | Select |Broadcast| gyocute | Execute | Execute
Reg Read
OR:| Wait Wait Wait Wait | Match Tag| Wakeup | Select |Broadcast/| gyocyte
Reg Read

Figure 8. Execution of a Dependency Chain Using 2-Cycle Pipelined Conventional Scheduling

DELAY field shouldcontainN-2 zerosin the leastsignifi-
cantbits, andthe upperbits would be setto 1.

Figure 8 shavs an example of executing the depen-
deng/ chainADD — LOAD — ORusing2-cycle pipelined
schedulindogic. The ADD instructionwakesupin cycle 1
andis selectedor executionin cycle2. The ADD isthepar
entof the LOAD, andhasa 1-cycle lateng/, sothe LOAD’s
DELAY field is ‘1111'. In cycle 3, the ADD broadcasts
its tag. The LOAD matchesl|oadsits SHIFT field with the
contentof the DELAY field, andthuswakesup. Theload
instructionis selectedor executionin cycle 4, andbroad-
castdts tagin cycle 5. Thetagmatchtriggersthe OR to set
its MATCH bit andloadthe SHIFT field with the contents
of the DELAY field. Sincethe LOAD is a 3-cycle opera-
tion, the contentsof the DELAY field for the OR’s source
wouldbe‘1110’. At theendof cycle 6, thevalue'1111’ is
shiftedinto the OR’s SHIFT field, andthe OR wakesup. In
cycle7,the ORis selectedor execution.Notethatbecause
theADD isal-cycleoperationthereis a1-cyclebubblebe-
tweenthe ADD andtheLOAD. However, thereis nobubble
betweenthe LOAD andthe OR sincethe extra scheduling
cycleis hiddenby the executionlateng of the LOAD.

4. Pipelined Scheduling with Speculative
Wakeup

In the last section,we shaved that pipelining the con-
ventionalschedulingogic introducespipeline bubblesbe-
tweendependeninstructions.In this sectionwe shav how
to pipelinethis logic over two cycleswithout having these
bubbles.

Hereis a brief overview of this technique:If the par
entsof aninstruction’s parenthave beenselectedthenit is
likely that the parentwill be selectedn the following cy-
cle (assuminghe parents parentsare 1-cycle operations).
Thus,for schedulindogic pipelinedover 2 cycles,the child
canassumehatwhenthetagsof the grandparenpair have
beenreceved,theparents probablybeingselectedor exe-
cutionandwill broadcasits tagin thefollowing cycle. The
child canthenspeculatrely wakeupandbe selectedhe cy-
cle afterits parentis selected Becauset is not guaranteed
thatthe parentwill be selectedor execution thewakeupis
only speculatie.

Sections4.1, 4.2, and 4.3 describeimplementationof
the rename,wakeup, and selectlogic for this scheduling
mechanism.Section4.4 givesan exampleof the schedul-
ing operation. Section4.5.1 discusse@n implementation
thatreduceghe amountof logic andstatethatis keptin the
resenation stations. Section4.5.2 shaws that scheduling
with speculatie wakeupalsoworksfor machineghathave
instructionre-execution.

4.1 Renamelogic

For pipelinedschedulingwith speculatre wakeup, the
renamdogic is responsibldor determiningthe destination
tagsof the instructions grandparentaswell asthe desti-
nationtagsof its parents. The grandparentsre required
for speculatre wakeup,whichwill bedescribedn the next
section.At the endof renamegachof the instructions ar
chitecturalsourceregisteridentifiershasbeenreplacedoy
a parents destinationtag, andthe setof destinationtagsof
thatparents parents.

To dothis, therenamemapmustbe modified. Eachmap
entry is extendedso that, in additionto the original phys-
ical register identifier, it containsthe set of identifiers of
the physicalregistersthatare neededo computethe value
of the physicalregister specifiedby the original identifier.
Thatis, for the instructionthat updatedthe entry, the en-
try containsthe instruction’s destinationtag, andthe setof
destinatiortagsof theinstructions parents.

At thebeginningof renameaninstructionsarchitectural
sourceregisteridentifiersareusedto index therenamemap.
Eachrenamemaplookupyieldsoneof theinstructions par
ent’s destinationtag, andthe setof destinatiortagsof that
parents parents. At the end of rename,the instructions
destinatiortagis known, andthe destinatiortagsof thein-
structions parentsareknown. This informationis usedto
updatethe map entry whoseindex is equalto the instruc-
tion’s architecturablestinatiorregisteridentifier.

Thedependenganalysidogic alsoneedgo bemodified.
For corventionalscheduling,whenthereis a dependeng
betweertwo instructionsin the groupof instructionsbeing
renamedthe destinationtag of the earlierinstructionmust
be selectedasthe sourcetagof thelater, dependeninstruc-
tion. This ensureghat the dependentnstructionhasthe

correctdestinatiortagfor its parent.For pipelinedschedul-
ing with speculatre wakeup,thelogic mustalsoensurethat
thedependeninstructionhasthecorrectdestinatiortagsfor
that parents parents.Note thatthe correctdestinationtags
for thatparents parentsaresimply the parents sourcetags.

To accounfor this, thesetof destinatiortagsfor apartic-
ular parents parentds determinecy a MUX. An example
of oneof theseMUXes is shovn in Figure9. The MUX in
this figure selectsthe sourcetagsof the third instructions
first parent;i. e., it selectsthe first two grandparentags.
Theinputsto thisMUX comefrom therenameanapandthe
outputsof the MUXes shavn in Figure4. The first input
to the MUX is the setof destinationtagsfor the parents
parentghatwerereadfrom therenamemap,andis selected
whenthe parentis notin the group. In Figure9, this input,
labeledParentIDs(Op3srcl) comesfrom the sameentry
of therenamedableasPhy ID(Op3_src1)shonnin Figure4.
The secondnput to the MUX is the setof sourcetagsfor
thefirst instructionin the group,andis selectedf the par
entis thefirstinstructionin thegroup. Thethird inputto the
MUX is the setof sourcetagsfor the secondnstructionin
thegroup,andis selectedf the parentis thesecondnstruc-
tion in the group. The controlfor this MUX is the sameas
thecontrolusedfor theMUX to selecthethird instructions
first sourcetag shavn in Figure4. Hence,this MUX adds
at mostoneinput-to-outputdelayto the critical pathof the
renamdogic. (Thecontrolfor theMUX is determinedvell
beforetheinputarrives.)

{Op2_srcl Tag, Op2_src2 Tagy—
{Op1_srcl Tag, Opl_src2 Ta
Parent_IDs(Op3_srcl

Op3_srcl MUX
Control

{Op3_GP1 Tag, Op3_GP2 Tag}

Figure 9. A Grandparent MUX

4.2. Wakeup Laogic

The resenation stationscontainwakeup logic for par
entsandgrandparentsThe wakeuplogic for eachsourceis
identicalto thatexplainedin Section3.2. As in the corven-
tional 2-cycle pipelinedschedulingogic, the DELAY field
for eachparentcontainsN-2 zerosin the leastsignificant
bits, andonesin the otherbits, whereN is the executionla-
teng of theparent. The DELAY field for eachgrandparent
containsN-1 zerosin the leastsignificantbits, andonesin
theotherbits, whereN is thelateng of thegrandparent.

Not all parent and grandparentfields are used for
wakeup. If a parentinstructionis a multi-cycle operation,
thenthe fields for its parentscanbe ignored;thatis, their

RSEfields canbe marked invalid. Insteadonly the tag of
the multi-cycle parentwill be used. As explainedin Sec-
tion 3.5, thereis no pipelinebubble betweenthe execution
of a multi-cycle parentandits child for 2-cycle pipelined
schedulindogic.

Figure10shavs how the READY bits for the parentand
grandparentagsareusedto form therequessentto the se-
lect logic. A requestis generatedvhenthe instructionis
speculatiely ready As shawn, an instructionis specula-
tively readywhen,for eachparentthe parents parentsare
readyor theparentis ready

.GPlR.GPZR. P1R .GP3R.GP4R. P2R .DESTTAG‘

Reques
Confirm
SELECT — Grant |,
LOGIC LATCH

Destination Tag Bus

Figure 10. Speculative Wakeup Logic

Althoughthelogic pathto the requestine shown in this
figure hastwo additionalgatescomparedo theimplemen-
tation shawvn in Figure5, this path could be shortenecdby
taking advantageof the factthatno morethanfour sources
areneededor wakeup. If a parentis a multi-cycle opera-
tion, thenthe RSEfield for the parentcanbe copiedinto
oneof the grandparentields beforeplacingthe instruction
in the resenationstation. In this case,a 4-inputAND gate
wouldreplacethe AND-OR-AND path.

4.3 Select Logic

The requestine shavn in Figure 10 only indicatesthat
theinstructionis speculatiely ready sothe confirmline is
usedto verify thatthe instructionis readyto execute. The
confirm line is only assertedvhenall of the instructions
parentsareready andis typically assertecnecycle after
therequestine. If the requesthasthe highestpriority, and
the confirm line is assertedwhich meansthe instruction
is really (non-speculatiely) ready the requestis granted.
Otherwise therequesis notgranted.

False selectionoccurswhenever a requestis not con-
firmed. Thatis, if therequestine is assertedandthe con-
firm line is not assertednecycle later, falseselectionoc-
curs. Falseselectionis a performanceroblemwhenit pre-
ventsa really readyinstructionfrom being selected. This
only occurswhentherequesthatwasnt confirmedhadthe
highestpriority andtherewerereally readyinstructionghat
couldhave beenselected.

For pipelinedschedulingvith speculatre wakeup,anin-
structionandits parentscanassertheir requestinesatthe

sametime. The machinemustguaranteehat the parents
are eventually selectedfor execution,otherwise,deadlock
canoccut Therearemary waysto provide this guarantee.
The mostobviousis to useinstructionageto assignselec-
tion priorities; i. e.,olderinstructions(instructionsthat oc-
cur earlierin the dynamicinstructionstream)have priority
over youngerinstructions.Anotheris to usea roundrobin
schemedo assignselectionpriorities.

4.4. Dependent I nstruction Execution

To illustrate the operationof pipelinedschedulingwith
speculatre wakeup,considerthe dependenggraphin Fig-
ure 11a. All instructionsare 1-cycle operationsxceptfor
the LOAD, whichtakes3 cycles. The SUB instructionwill
wakeupon thetagbroadcastef the OR, XOR, andLOAD
instructionssincethe AND is a 1-cycle operationandthe
LOAD is a 3-cycle operation. The DELAY field for the
SUB'sfirst parentthe AND, will containthevalue‘1111’.
This field will only be usedfor confirmationafter selec-
tion hasoccurred. The DELAY fields for the SUB’s first
two grandparentghe OR and XOR, will containthe value
‘1111'. TheDELAY field for the SUB’s seconcparentwill
beencodedis'1110’ sothatthe SUBwill delayits wakeup
for at least1 cycle afterthe tag of the LOAD is broadcast.
Thelasttwo grandparenfields for the SUB aremarked as
invalid, sincethey will notbeused.

¢/
ORONO
ONONC
(=)

@

Clock: Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6
OR: | Select |Broadcastf gyoc e
Reg Read
RS NOT: | Wakeup | Select |Broadcastf gyecyte
1 Reg Read
AND: | Wakeup | S€leCt | geject | Broadeas gyocte
(no grant) Reg Read
RSZ SUB: | Wait Wakeup | (false) | geect | Broadeast! gyecyte
Select Reg Read

(b)
Figure 11. Example of Speculative Wakeup

Figure 11b shavs an exampleof the schedulingopera-
tion of this dataflow graphwhenfalseselectioroccurs.For
this example,assumehat the XOR, ADD, andLOAD in-
structionshave alreadyexecutedby cycle 1. Also assume
thatall instructionsexceptthe SUB arein the samesetof

resenationstationgdesignatedby R.S;), andtheSUBIsin

asecondset(RS>). (Thereareno extra delaysfor broad-
castingtagsor databetweensetsof resenation stationsin

this example.) In cycle 1, the OR is selectedor execution
andthe AND andNOT wakeupon thetagbroadcasby the
OR’slastparent.In cycle 2, the SUB wakesup aftermatch-
ing thetag broadcasby the OR. The AND andNQOT both
requestexecutionin this cycle, but only the NOT receves
anexecutiongrant. The NOT andAND alsomatchthetag
broadcasby the OR instruction. In cycle 3, the AND and
SUB arebothselectedor execution.In cycle 4,the AND’s

selectionis confirmedandits tagis broadcasthut the SUB’s

selectionis not confirmed. This falseselectionmay have
preventedthe selectionof anotherinstructionin RSs in cy-

cle 3. The SUB request®xecutionagain,andthe selection
is confirmedin cycle5.

4.5. Implementation Considerations

4.5.1. Reducing the Cost of the Wakeup Logic. We as-
sumethe tag busesrunningthrougheachRSE setthe size
of the resenation stations,andthatthe wakeuplogic asso-
ciatedwith eachRSE caneasily be hiddenunderneathall

thesewires. If thatis not the case,it is possibleto reduce
the numberof tags—andhus, size of the wakeuplogic—
requiredto perform pipelinedschedulingwith speculatre
wakeup. Two obsenationsarerequiredto understandow

this canbedone.

Thefirst: An instructioncan alwayswake up usingits
parentags.Thegrandparentagsareonly providedfor per
formancereasonslf some(or all) of themaremissing,the
machinestill functionscorrectly

Thesecond:An instructionbecomeseadyfor execution
only afterall its parents’destinatiorntagshave beenbroad-
cast.If themachinecanpredictwhichparenwill finishlast,
it canuseonly the destinatiortagsof that parents parents
to becomespeculatiely ready Thatis, eachRSEwill have
thetagsof all the instructions parents and, for the parent
thatwas predictedto be last, the tagsof its parents.If the
predictionis wrong, the machinestill functionscorrectly:
theinstructionjustisn’t selectecassoonasit couldbe.

We useda simpleschemedo predictthelastparent.A 2-
bit saturatingcountewasstoredalongwith eachinstruction
in the instructioncache.Whenan instructionwasfetched,
the upperbit of the counterspecifiedwhetherthe first or
secondparentwould finish last. During rename,only the
parentsof the parentthat was predictedto finish lastwere
storedin the grandparenfields. While aninstructionwas
in theresenationstationsjt recordedvhich parentfinished
last.® Whenthe instructioncommitted,it decrementethe

3Actually, the only time the grandparentfields are usedis whenthe
parenthasa lateny of 1 cycle. The instructionactuallyrecordedwhich
parentwith a1 cycle lateny finishedlast.

counterif thefirst parentfinishedlast,andincrementedt if
thesecondparentfinishedlast.

45.2. Operation of Instruction Re-execution. The
scheduling logic presentedcan handle instruction re-
executionwithout any modification. As mentionedn Sec-
tion 2.1,thechild of aloadinstructionis schedulecassum-
ing theload hitsthe cache.If theloadmissespr if theload
is foundto have a memorydependeng on an earlierstore
instruction theloadresultmaybe delayed Whenthis hap-
pens,the chainof instructionsdependenbn the load must
be re-scheduled.This is accomplishedy rebroadcasting
the load’s destinationtag on the tag bus. Whenthe tagis
rebroadcastll childrenof theloadwill rewake sinceloads
are multi-cycle operations. All grandchildrenof the load
will eitherrewakeimmediatelyorif thedependenparentis
amulti-cycle operationwill rewake afterthatparentbroad-
castsits tag. Hencethereis never a situationwherea de-
pendenbf theloadis notrewakened.

5. Experiments

To measurethe impact of pipelining the scheduling
logic, we modeledfour machines: a baselinemachine,
whichusescorventionalschedulingipelinedover?2 cycles;
abudgetanda deluxemachinewhich use2-cycle pipelined
schedulingwith speculatre wakeup;andanideal machine,
whichusesconventionall-cycle schedulingogic. Thebud-
getmachineusesRSEsthatcanhold only two grandparent
tags. Last parentpredictionis usedto selectwhich two.
The deluxe machineusesRSEsthat canhold all grandpar
enttags.As mentionedn Section3.5,thebaselinemachine
only introducespipeline bubbleswhen schedulingsingle-
cycleinstructionsnotwhenschedulingnulti-cycle instruc-
tions.

All machineswere 8-wide superscalaprocessorsvith
out-of-order execution, configuredas shovn in Table 1.
They required? cyclesfor fetch,2 for decode? for rename,
1 for registerread,and1 for commit. Theidealmachinere-
quired 1 cycle for wakeup/select. The othersrequired?2.
The executionlatenciesareshavn in Table2. An instruc-
tion with a 1-cycle executionlateng requiresaminimumof
10cyclesto progresdrom thefirst fetch stageto commit.

The machineswere simulatedusing a cycle-accurate,
execution-drizen simulator for the Alpha ISA. Figure 12
shaws the IPC of the four machinesover the SPECInt95
benchmarksThe 15%IPC differencebetweernthebaseline
andideal machinegepresentshe amountof performance
thatcanbe gainedby usingpipelinedschedulingwith spec-
ulative wakeup. The deluxe machinegains86% of this dif-
ference Onaveragethedeluxe machinegperformsl3%bet-
ter thanthe baselinemachine,and within 2% of the ideal
machine. The budgetmachineperformswithin 1% of the

BranchPredictor 15-bitgshare2048-entryBTB

InstructionCache 64KB 4-way setassociatie (pipelined)
2-gycle directoryanddatastoreaccess
InstructionWindow | 128RSE(16 for eachfunctionalunit)
ExecutionWidth 8 multi-purposedunctionalunits, only four
of which supportioad/storeoperations
DataCache 64KB 2-way setassociatie (pipelined)

2-gycle directoryanddatastoreaccess
1MB, 8-way, 7-cycle access
2 banks contention's modeled

Unified L2 Cache

Table 1. Machine Configuration

[InstructionClass | Lateny (Cycles) |

integerarithmetic | 1

integer multiply 8, pipelined

fp arithmetic 4, pipelined

fp divide 16

loads 1+ dcachdateny
all others 1

Table 2. Instruction Class Latencies

401 m baseline model

= budget model
= deluxe model
= ideal model

3.5+

3.0

2.5+

2.0

Instructions Per Cycle

gee go ijpeg li m88ksim perl comp vortex

Benchmarks

Figure 12. Comparison of the Four Machines

delwe machine.

The IPC differencesbetweenthe budget, deluxe, and
idealmachinesare primarily dueto falseselectionsaused
by speculatie wakeup. Falseselectiononly impactIPC if
otherinstructionghatwerereadyto executewereprevented
from executingdueto afalseselection.Figurel3shavsthe
amountof falseselectionandschedulingopportunitiedost
dueto falseselectiondor the budgetanddeluxe machines.
This graphshaows the fraction of schedulingopportunities
in which a selectionresultedin: (1) a falseselectionthat
preventeda readyinstructionfrom receving an execution
grant,(2) a falseselection,but no instructionswereready
and(3) acorrectselection.Thefourth case—thenly other
possiblecase—iswhen no instructionsrequestexecution.
Thefirst of eachpair of bars(barswith solid colors)shov
thecycle breakdavn for thebudgetmachine.Theseconf
eachpair (stripedbars)shav the breakdevn for the deluxe
machine As thegraphshaws,theselectionogic for agiven

== Instructions really ready were selected
= False Selection, no other ready instructions in reservation station

g =m False Selection, a really ready instruction was prevented from executing
E 055

=4

g 0.50

S 3

S 0.45

OQ 0.40-]

E? 0.35- -
S 0304 /
B o025 %
=

& 0.204 %
-

S 0.15 %
& 0.0 %
G o0s] 7
N i
L 0.00- L

gec go ijpeg li m8aksim perl coimp vortex
Benchmarks

Figure 13. Selection Outcomes

3.8+
3.6

3.4 e
) 3.2 ‘,_._-.'-"‘ A
o5 304
> 2.8
O 264
o 244) .
a 224 -- ideal, 16-wide
@ 204 --+-- deluxe, 16-wide
© 1;2: -->-- budget, 16-wide
B 14 --a-- baseline, 16-wide
E 1.2 —e— ideal, 8-wide
< é:g: —+— deluxe, 8-wide
0.6 —=<— budget, 8-wide
8-‘; —a— baseline, 8-wide
0.0
depth 8 depth 16 depth 32 depth 64

Reservation Station Depth

Figure 14. Comparison of the Four Machines
for Different Windo w Sizes

functionalunit awvardedan executiongrant35%to 55% of
thetime. A readyinstructionwaspreventedfrom executing
dueto afalseselectioronly 1%to 7% of thetime. Notethat
thesemetricscannotbecomparedo IPC sincethey measure
bothnon-speculatie and speculativenstructions.

Thefrequeng of falseselectionss quite sensitve to the
amountof functional unit contention. Simulationsof the
four machinesisingboth8 and16 functionalunitsandser-
eralinstructionwindow sizeswererun to demonstrateéhe
effect of this contentionon IPC. The simulationparameters
of the 16-wideissuemachinesaresimilar to thoseof the 8-
wide machinesexceptthat 8 of the 16 functionalunits are
capableof executingload andstoreinstructions.Figure14
shavs the harmonicmeanof the IPC of the SPECInt95
benchmarks$or all modelsusingbothissuewidthswhenthe
numberof RSEsfor ead functionalunit is variedfrom 8 to
64. The machinemodelwith the mostcontentionfor exe-
cutionresourcess the 8-wide machinewith a512-entryin-
structionwindow. For thisconfigurationpipelinedschedul-
ing with speculatie wakeup gains65% of the difference
betweerthe baselineandidealmachines.

6. Conclusion

This paperdemonstrateghat the dynamic instruction
schedulinglogic can be pipelined without sacrificing the
ability to executedependeninstructionsin consecutie cy-
cles. It introducedpipelined schedulingwith speculatre
wakeup, which pipelinesthis logic over 2 cycles. This
techniquesignificantlyreduceghecritical paththroughthis
logic while having only a minor impacton IPC. If thecrit-
ical paththroughthis logic limits the processocycle time,
this techniqueallows microarchitectgo build higher per
formancemachinesby enablinghigher clock frequencies,
deepempipelinesandlargerinstructionwindows.

Acknowledgements

We especiallythankPaul RacunasJean-LouBaer and
theanorymousrefereedor theircommenton earlierdrafts
of this paper This work was supportedin part by Intel,
HAL, andIBM. Mary Brown is supportecby anIBM Co-
operatie Graduate~ellowship.

References

[1] M. ButlerandY. Patt, “An investigationof the perfor-
manceof variousdynamicschedulingtechniques$, in
Proceedingsof the 25th Annual ACM/IEEE Interna-
tional Symposiunon Microarchitecture, 1992.

[2] IA-32 Intel Architecture Softwae Developers Manuall
With Preliminary Wilamette Architecture Information
\Volumel: BasicArchitecture, Intel Corporation2000.

[3] S. Palacharla, N. P. Jouppi, and J. E. Smith,
“Complexity-effective superscalaprocessors,in Pro-
ceedingsof the 24th Annual International Symposium
on ComputerArchitecture, 1997.

[4] R. M. Tomasulo,“An efficient algorithm for exploit-
ing multiple arithmeticunits; IBM Journal of Reseath
andDevelopmentvol. 11, pp. 25-33,Januaryl967.

[5] K. C. Yeager “The MIPS R10000superscalamicro-
processat IEEE Micro, vol. 16,n0.2, pp.28-41 April
1996.

[6] A. Yu, Client Architectuie for the New Millennium, In-
tel Corporation February2000. Spring2000Intel De-
veloperForumKeynotePresentation.

