
On Pipelining Dynamic Instruction Scheduling Logic

JaredStark
�

Mary D. Brown � YaleN. Patt �

MicroprocessorResearchLabs
�

Intel Corporation
jared.w.stark@intel.com

Dept.of ElectricalandComputerEngineering�
TheUniversityof Texasat Austin�

mbrown,patt� @ece.utexas.edu

Abstract

A machine’s performanceis the product of its IPC
(InstructionsPer Cycle) and clock frequency. Recently,
Palacharla, Jouppi,andSmith[3] warnedthat thedynamic
instructionschedulinglogic for currentmachinesperforms
an atomicoperation. Either you sacrificeIPC by pipelin-
ing this logic, therebyeliminatingits ability to executede-
pendentinstructionsin consecutivecycles.Or yousacrifice
clock frequencybynotpipeliningit, performingthisatomic
operation in a singlelong cycle. Bothalternativesare un-
acceptablefor highperformance.

This paper offers a third, acceptable, alternative:
pipelinedschedulingwith speculativewakeup. This tech-
niquepipelinestheschedulinglogic withouteliminatingits
ability to executedependentinstructionsin consecutivecy-
cles. With this technique, you sacrificelittle IPC, and no
clock frequency. Our resultsshowthat on the SPECint95
benchmarks,a machineusingthis techniquehasanaverage
IPC that is 13%greaterthantheIPC of a baselinemachine
that pipelinestheschedulinglogic but sacrificestheability
to executedependentinstructionsin consecutivecycles,and
within 2% of the IPC of a conventionalmachine that uses
singlecycleschedulinglogic.

1. Introduction

To achieve higherlevelsof performance,processorsare
being built with deeperpipelines. Over the past twenty
years,thenumberof pipelinestageshasgrown from 1 (In-
tel 286), to 5 (Intel486), to 10 (Intel PentiumPro), to 20
(Intel Willamette)[2, 6]. This growth in pipelinedepthwill
continueasprocessorsattemptto exploit moreparallelism.

As pipelinedepthsgrow, operationsthathadpreviously
taken only a singlepipelinestagearepipelined. Recently,
Palacharla,Jouppi,andSmith [3] stated:“Wakeupandse-
lect togetherconstitutewhat appearsto be an atomic op-
eration. That is, if they aredivided into multiple pipeline
stages,dependentinstructionscannotissuein consecutive

cycles.” They usethe word atomichereto imply that the
entireoperationmustfinish beforethewakeup/selectoper-
ationsfor dependentinstructionscanbegin. Thus,if depen-
dentinstructionsareto beexecutedin consecutivecycles—
whichis necessaryfor achieving thehighestperformance—
theschedulinglogic performsthis operationin onecycle.

This paperdemonstratesthat this logic canbepipelined
withoutsacrificingtheability to executedependentinstruc-
tionsin consecutivecycles.It introducespipelinedschedul-
ing with speculativewakeup, whichpipelinesthislogic over
2 cycleswhile still allowing back-to-backexecutionof de-
pendentinstructions.With this technique,deeperpipelines
and/orbigger instructionwindows canbe built. This will
allow processorsto exploit moreparallelism,andtherefore,
allow processorsto achievehigherperformance.

The paperdescribestwo implementationsof pipelined
schedulingwith speculative wakeupfor a genericdynami-
cally scheduledprocessor:the budgetimplementationand
thedeluxe implementation.Thebudgetmodelhasa lower
implementationcostthanthedeluxemodel,but notasgreat
an improvementin performance. The genericprocessor
and thesetwo implementationsareexamplesonly. There
aremany processormicroarchitectures,andmany possible
implementationsof pipelinedschedulingwith speculative
wakeup.We couldnot modelall of them.Nevertheless,we
hopethatby examiningthesesimpleexamples,microarchi-
tectswill be able to implementpipelinedschedulingwith
speculativewakeupon real-world microarchitectures.

The paperthencomparesthe IPC (InstructionsPerCy-
cle) of machinesusing thesetwo implementationsto the
IPC of a baselinemachinethat pipelinesthe scheduling
logic but sacrificestheability to executedependentinstruc-
tions in consecutive cycles. For the 8 SPECint95bench-
marks, the averageIPC of the machineusing the budget
implementationis 12% higher than the IPC of the base-
line machine,andthe IPC of themachineusingthedeluxe
implementationis 13% higher. This paperalsocompares
the IPC of machinesusing thesetwo implementationsto
the IPC of a conventionalmachinethat doesnot pipeline

the schedulinglogic. Both machineshave IPCs that are
within 3% of the IPC of the conventionalmachine. If the
critical path throughthe schedulinglogic limits the cycle
time for conventionalmachines,which is very likely if the
schedulingoperationisconsideredanatomicunit, thesetwo
implementationsof pipelinedschedulingwith speculative
wakeupmay allow a significantboost in clock frequency
with only a veryminor impacton IPC.

Thispaperis dividedinto six sections.Section2 presents
backgroundinformation necessaryfor understandingthis
study. Section3 describesconventionalinstructionschedul-
ing logic. Section4 describespipelinedschedulingwith
speculative wakeup. Section5 presentsthe experiments,
andSection6 providessomeconcludingremarks.

2. Background

This section presentsbackgroundinformation neces-
saryfor understandingour study. Section2.1 presentsour
pipelinemodel. Section2.2 introducessometerms. Sec-
tion 2.3introducestheschedulingapparatus.

2.1. Pipeline Model

Figure 1 shows the pipeline of a genericdynamically
scheduledprocessor. The pipelinehas7 stages:fetch,de-
code,rename,wakeup/select,registerread,execute/bypass,
and commit. Eachstagemay take more than one cycle.
For example,theexecute/bypassstageusuallytakestwo or
morecycles for loads: onecycle to calculatethe load ad-
dress,andoneor morecyclesto accessthecache.

BypassRead

wait in reservation stations

Fetch Decode Rename CommitSelect
Wakeup Register Execute

Figure 1. Processor Pipeline

In the fetch stage,instructionsarefetchedfrom the in-
structioncache. They are thendecodedand their register
operandsrenamed.Next, they arewritten into the reserva-
tion stationswherethey wait for theirsourceoperandsanda
functionalunit to becomeavailable.Whenthis occurs(that
is, an instructionwakesup andis selected),the instruction
is sentto a functionalunit for execution. Its registerval-
uesareeitherreadfrom the registerfile or bypassedfrom
earlier instructionsin the pipeline. After it completesex-
ecution,it waits in the reservation stationsuntil all earlier
instructionshavecompletedexecution.After this condition
is satisfied,it commits:it updatesthearchitecturalstateand
is deallocatedfrom thereservationstations.1

1Conventional machinesaggressively deallocatereservation stations.
Wedonotconsideraggressive deallocation,andsimplyassumethatreser-
vationstationsaredeallocatedatcommit.

Note that after an instructionis selectedfor execution,
several cyclespassbeforeit completesexecution. During
this time, instructionsdependenton it may be scheduled
(woken up and selected)for execution. Thesedependent
instructionsare scheduledoptimistically. For example,if
they dependonaload,they arescheduledassumingtheload
hits the cache. If the load misses,the dependentinstruc-
tions execute—spuriously—withoutthe load result. The
dependentinstructionsmustbe re-scheduled(andthus,re-
executed)oncetheloadresultis known.

2.2. Terminology

Figure2 showsapartialdataflow graph.Eachnoderep-
resentsanoperation.Thearrows enteringa noderepresent
thevaluesconsumedby theoperation.Thearrow exiting a
noderepresentsthevalueproducedby theoperation.

ADD

NEGXOR AND

Parents:

NOT

SUB MUL

Grandparents:

Figure 2. Example Data Flow Graph

The ADD operationconsumesthe valuesproducedby
its parents; i. e.,theSUBandMUL operations.TheADD’s
parentsconsumethe valuesproducedby its grandparents;
i. e., the SUB consumesthe valuesproducedby the XOR
and NEG operations,and the MUL consumesthe values
producedby the NOT and AND operations. The reverse
relationshipsalsohold: the ADD is the child of the SUB
andMUL operations;andthegrandchild of theXOR,NEG,
NOT, andAND operations.

2.3. Scheduling Apparatus

Threepiecesof logic areneededto performthedynamic
scheduling:renamelogic, wakeuplogic, andselectlogic.

Therenamelogic mapsaninstruction’sarchitecturalreg-
ister identifiersto physicalregisteridentifiers. This elimi-
natestheanti andoutputregisterdependenciesbetweenin-
structions.We assumethe mapis storedin a registerfile,
asdescribedby Palacharla,Jouppi,andSmith [3], andas
implementedin theMIPS R10000[5]. Accessingthis reg-
ister file with an architecturalregister identifier yields the
physicalregisteridentifierto which it is mapped.

The wakeup logic is responsiblefor waking up the in-
structionsthatarewaiting for their sourceoperandsto be-
comeavailable. For conventionalscheduling,this is ac-
complishedby monitoringeachinstruction’s parents.For
pipelinedschedulingwith speculative wakeup,it is accom-
plishedby monitoringeachinstruction’sparentsandgrand-
parents.Thewakeuplogic is partof thereservationstations.
Eachreservationstationentry(RSE)haswakeuplogic that
wakesup any instructionstoredin it.

Theselectlogic choosesinstructionsfor executionfrom
thepool of readyinstructions.We assumeeachfunctional
unit hasa set of dedicatedRSEs,as describedby Toma-
sulo [4]. Selectlogic associatedwith eachfunctionalunit
selectsthe instructionthat the functionalunit will execute
next. Theselectionis performedby choosingonereadyin-
structionfrom thefunctionalunit’ssetof dedicatedRSEs.

Figure3 will beusedto furtherdescribetheoperationof
theschedulingapparatus.It shows a microarchitecturethat
has8 functionalunitsand128RSEs.

Select
Logic

Select
Logic

RS1

Tag Buses

1FU

RS8

R16
G16

G1
R1

R16
G16

G1
R1

Register File

RSE16:

RSE1:

Rename

from Decode

FU8

Result Buses

Figure 3. Processor Microarchitecture

Eachfunctionalunit hasa dedicatedsetof 16 RSEs,se-
lect logic, a tag bus, and a result bus. The selectlogic
choosesthe instructionsthe functionalunit executesfrom
the RSEs. After an instructionis chosen,a tag associated
with theinstructionis broadcastover thetagbusto all 128
RSEs. This tag broadcastsignalsdependentinstructions
that the instruction’s result will soonbe available. After
an instructionexecutes,it broadcastsits resultover the re-
sultbusto theregisterfile andto any dependentinstructions
startingexecution.

After an instructionis fetched,decoded,and renamed,
it is written into a RSE.EachRSEhaswakeuplogic that
monitorsthetagbuses.For conventionalscheduling,when
thetagsof all theinstruction’sparentshavebeenbroadcast,

the RSEassertsits requestline. (The requestlines arela-
beledR1–R16.)For pipelinedschedulingwith speculative
wakeup,theRSEassertsits requestline, if, for eachof the
instruction’sparents,theparent’s taghasbeenbroadcastor
all the parent’s parents’tagshave beenbroadcast.The se-
lect logic for eachfunctionalunit monitorstherequestlines
of the functionalunit’s dedicatedsetof RSEs,andgrants
up to oneof theserequestseachcycle. (Thegrantlinesare
labeledG1–G16.)After arequestis granted,theinstruction
that generatedthe requestis sentto the functionalunit for
execution.In addition,thetagfor that instructionis broad-
castoverthetagbus.Theinstructioneitherreadsits register
valuesfrom theregisterfile or receivesthemfrom instruc-
tionsjust completingexecutionvia bypasses.

3. Conventional Scheduling

Sections3.1,3.2, and3.3 describethe implementations
of the rename,wakeup, and selectlogic for conventional
dynamicinstructionscheduling. Section3.4 givesan ex-
ampleof theoperationof conventional1-cycle scheduling,
andSection3.5 givesan exampleof the operationof con-
ventionalschedulingpipelinedover2 cycles.

3.1. Rename Logic

Registerrenamingperformstwo primary tasks:allocat-
ing physical registersfor the destinationsof instructions,
andobtainingthephysicalregisteridentifiersfor thesources
of instructions. An instructionreadsthe renamemap for
eacharchitecturalsourceregisterto obtainthephysicalreg-
ister identifier for that source. It alsowrites the identifier
of its allocatedphysicalregisterinto therenamemapentry
associatedwith its architecturaldestinationregister.

In a superscalarprocessor, a groupof instructionsmust
be renamedat the sametime. To detectdependenciesbe-
tweeninstructionsin the samegroup, the sourcesof each
instructionarecomparedto thedestinationsof all previous
instructionsin thesamegroup. If an instruction’s parentis
in its group,the identifierof thephysicalregisterallocated
to the parentoverridesthe identifier obtainedfrom the re-
namemap. Figure4 shows the dependency analysislogic
for thefirst threeinstructionsin agroup.

3.2. Wakeup Logic

After instructionshavebeenrenamed,they wait in reser-
vationstationsfor theirsourcesto becomeready. EachRSE
containsinformationabouteachof theinstruction’ssources,
suchasthe physicalregisteridentifier (tag) for the source,
whetherthe sourceis ready, and the numberof cycles it
takes the producerof the source’s value to execute. Fig-
ure 5 shows the stateinformationfor oneRSE.The fields

Phy_ID(Op1_src1)

Phy_ID(Op1_src2)

Phy_ID(Op2_src1)

Phy_ID(Op2_src2)

Phy_ID(Op3_src1)

Phy_ID(Op3_src2)

Phy_ID(Op1_dest)

Phy_ID(Op2_dest)

Phy_ID(Op3_dest)

from rename map
Physical identifiers Op3_destOp3_src2Op3_src1

Encoder
Priority

Encoder
Priority

Op2_destOp2_src2Op2_src1Op1_dest

Op2 Op2 Op2
Src1 Tag Src2 Tag Dest Tag

Op3Op3
Src1 Tag Src2 Tag Dest Tag

Op3
Src2 Tag

Op1
Src1 Tag

Op1
Dest Tag

Op1

Figure 4. Dependenc y Anal ysis Logic for Three Instructions

RSE SRC TAG M SHIFT R SRC TAG M SHIFT RDELAY DELAY

SELECT
LOGIC

DEST TAG

GrantRequest

Destination Tag Bus

Figure 5. Scheduling Logic for One Reservation Station Entr y

labeledSRCTAG containthe tagsof thesourceoperands.
The R (READY) bit for eachsourceis set if the datafor
thatsourceis availablein theregisterfile or is availablefor
bypassfrom a functionalunit.

In our machinemodel, instructionsbroadcasttheir tags
in thesamecycle they areselectedfor execution.Because
not all instructionshave the sameexecution latency, the
numberof cyclesbetweenthetime their tagsarebroadcast
andthetime their resultsareavailableis not constant.The
DELAY fieldsareusedto handlethisvariability. 2 For each
source,the DELAY field encodesthe numberof cycles—
relativeto somebase—betweenwhenthetagfor thesource
is broadcastandwhentheassociatedresultis available.We
will provide moredetailsshortly aboutthe actualnumber
that is encoded.For the logic implementationdescribedin
this paper, this numberis encodedas an invertedradix-1
value;e.g.,3 is representedby ‘1. . .1000’.

Figure6 shows the wakeuplogic of onesourcetag for
our machinemodel. It is similar to the MIPS R10000
wakeuplogic [5] but hasbeenmodifiedfor handlingmulti-
cycle operations.When the destinationtag of a parentis
broadcast,oneof the tag comparatorswill indicatethat a

2Alternative solutionsexist. For example,if eachfunctionalunit only
executesinstructionsthatall have thesamelatency, the tagbroadcastcan
simply bedelayedsothatit occursa fixednumberof cyclesbeforethere-
sult broadcast.This eliminatestheneedfor theDELAY fields. However,
if functionalunitscanexecuteinstructionsof differing latencies,this solu-
tion is unsuitableathighclockfrequencies:Multiple pipestagesmayneed
to broadcasttags,ratherthanjust one. Either thepipestageswill needto
arbitratefor tagbuses,or thenumberof tagbuseswill needto beincreased.

matchhasoccurred,and the M (MATCH) bit will be set.
TheMATCH bit is a sticky bit thatwill remainsetafterthe
tagmatch.On a tagmatch,theSHIFT field is loadedwith
thevaluecontainedin theDELAY field. TheSHIFTfield is
actuallycontainedin anarithmeticright shift register. The
MATCHbit is theshift enablefor thisregister. Theleastsig-
nificantbit of theSHIFTfield is theREADY bit mentioned
above. After theREADY bits for all sourceoperandshave
beenset,theinstructionrequestsexecution.

= OR

=

load

shift
SRC TAG M SHIFT R

Source is Ready

DELAY

Destination Tag Bus
Tag 1

Tag 8

Figure 6. Conventional Wakeup Logic

For a sourcewhoseproducerhasan N-cycle execution
latency, the DELAY field containsN-1 zerosin the least
significantbits of thefield. Theremainingbits areall setto
1. Thisallows theREADY bit to besetN-1 cyclesafterthe
match. For example,in our model,a load instructionthat
hits in the datacachetakes threecycles to execute. Sup-

posethe DELAY field is four bits. The DELAY field for
aninstructiondependenton a loadwould containthevalue
‘1100’. Whenthetagmatchfor the loadoccurs,this value
will be loadedinto the SHIFT field, and the MATCH bit
will be set. After two more cycles, the SHIFT field will
containthevalue‘1111’, and,assumingthe loadhit in the
cache,this sourcewill beready. For a sourceoperandwith
a1-cycle latency, theDELAY field will be‘1111’. As soon
asthereis a tagmatch,theREADY bit will beset,allowing
theinstructionto requestexecution.

Thevaluefor theDELAY field is obtainedfrom a table
in therenamestage.Thetablealsoprovidesvaluesfor the
MATCH bit andSHIFT field for whenthetagfor a source
is broadcastbeforethe instructionis written into the reser-
vation stations. This table is the analogueof the busy-bit
tablein the MIPS R10000[5]. For eachphysicalregister,
an entry in the tablestoresits DELAY field, MATCH bit,
andSHIFT field. Whena destinationtag is broadcast,the
MATCH bit andSHIFT field of theentrycorrespondingto
thetagis updatedjust like theMATCH bit andSHIFTfield
of thewakeuplogic for a matchingsourceoperand.

During decode,an instruction’s executionlatency is de-
termined. After the instruction’s register operandshave
beenrenamed,thetableentrycorrespondingto theinstruc-
tion’s physicaldestinationregisteris updated.Its DELAY
field is setto a valuederivedfrom the instruction’s execu-
tion latency, its MATCH bit is reset,and its SHIFT field
is setto 0. Eachof the instruction’s physicalsourceregis-
tersthenaccessesthe tableto determineits DELAY field,
MATCH bit, andSHIFTfield.

3.3. Select Logic

The selectlogic for eachfunctional unit grantsexecu-
tion to one ready instruction. If more than one instruc-
tion requestsexecution,heuristicsmaybeusedfor choosing
which instructionreceivesthe grant[1]. The inputsto the
selectlogic arethe requestsignalsfrom eachof the func-
tional unit’s RSEs,plusany additionalinformationneeded
for schedulingheuristicssuchaspriority information. Im-
plementationsof theselectlogicarediscussedelsewhere[3]
andwill notbecoveredin thispaper. As shown in Figure5,
whenbothREADY bitsareset,theinstructionrequestsexe-
cution. If theinstructionreceivesagrant,its destinationtag
is broadcaston the tagbus. Theexecutiongrantmustalso
be able to clear the MATCH, SHIFT, and READY fields
of the RSEso that the instructiondoesnot re-arbitratefor
selection.

3.4. Dependent Instruction Execution

In this implementationof conventionalschedulinglogic,
aninstructionwakesup in thelasthalf of aclockcycle,and

is potentiallyselectedin thefirst half of thenext clockcycle.
Notethatthewakeupandselectionof theinstructionstrad-
dlesa clock edge. If the instructionis selected,the grant
from theselectlogic gatesthe instruction’s destinationtag
onto the tag bus, which is thenfed to the tag comparators
of thewakeuplogic. Thus,thetasksof selection,tagbroad-
cast,andwakeupmustall occurwithin in onecyclein order
for dependentinstructionsto wakeupin consecutivecycles.

Figure 7 is an exampleof the conventionalscheduling
operation.It shows the pipelinediagramfor the execution
of the left threeinstructionsof the dataflow graphin Fig-
ure2. Thisscheduleassumeseachinstructionhasa 1-cycle
latency, andall otherparentsandgrandparentsof theADD
arealreadydone.In cycle1, theREADY bit for theXOR’s
last sourceis loadedwith a 1. In cycle 2, the XOR is se-
lectedfor execution.Its destinationtag is broadcaston the
tagbus,andtheMATCH, SHIFT, andREADY fieldsof its
RSEareclearedsothatit doesnot requestexecutionagain.
In this samecycle, the SUB matchesthe tag broadcastby
the XOR, anda 1 is loadedinto its READY bit. In cycle
3, theSUB is selected,it broadcastsits destinationtag,and
wakesup theADD.. . .

Select/
Broadcast

Execute/
Bypass

Execute/
Bypass

Execute/
Bypass

Select/
Broadcast

Select/
BroadcastWait

Wait

Wakeup

Wakeup

Wait

Reg Read

Wakeup

Reg Read

Reg Read

XOR:

ADD:

SUB:

Clock: Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Figure 7. Execution of a Dependenc y Chain
Using 1-Cycle Conventional Scheduling

3.5. Pipelined Conventional Scheduling Logic

To breaktheconventionalschedulinglogic into a2-cycle
pipeline, a latch must be addedin the path of the select
logic, tag broadcast,and wakeup logic. We will assume
theexecutiongrantfrom theselectlogic is latched.Hence
the selectlogic takesonecycle, andthe tag broadcastand
wakeuplogic takeonecycle.

Becausealatchhasbeeninsertedin whatwaspreviously
an atomic operation,there is a minimum of 2 cycles be-
tweenthe wakeup of dependentinstructions. If a parent
instructionhasa 1-cycle executionlatency, this will create
a 1-cycle bubblein theexecutionof thedependency chain.
If the parenttakestwo or morecyclesto execute,thebub-
ble can be avoided by using a different encodingfor the
DELAY field. For 2-stagepipelinedschedulinglogic, the
DELAY field for any 1-cycle or 2-cycleoperationshould
beencodedasall 1s.For a latency of N (N � 1) cycles,the

Broadcast/
Reg Read

Broadcast/
Reg Read

Broadcast/
Reg Read

Wakeup

Wait Wait

Select

WaitWait

Wait Wait

Wakeup

Match Tag Wakeup Select

Execute Execute

Execute

Execute

Execute

Select

ADD:

LOAD:

OR:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Clock:

Figure 8. Execution of a Dependenc y Chain Using 2-Cycle Pipelined Conventional Scheduling

DELAY field shouldcontainN-2 zerosin the leastsignifi-
cantbits,andtheupperbits wouldbesetto 1.

Figure 8 shows an example of executing the depen-
dency chainADD � LOAD � ORusing2-cyclepipelined
schedulinglogic. TheADD instructionwakesup in cycle1
andis selectedfor executionin cycle2. TheADD is thepar-
entof theLOAD, andhasa1-cycle latency, sotheLOAD’s
DELAY field is ‘1111’. In cycle 3, the ADD broadcasts
its tag. TheLOAD matches,loadsits SHIFT field with the
contentsof theDELAY field, andthuswakesup. Theload
instructionis selectedfor executionin cycle 4, andbroad-
castsits tagin cycle5. ThetagmatchtriggerstheORto set
its MATCH bit andloadtheSHIFT field with thecontents
of the DELAY field. Sincethe LOAD is a 3-cycle opera-
tion, the contentsof the DELAY field for the OR’s source
would be‘1110’. At theendof cycle 6, thevalue‘1111’ is
shiftedinto theOR’sSHIFTfield, andtheORwakesup. In
cycle7, theORis selectedfor execution.Notethatbecause
theADD is a1-cycleoperation,thereis a1-cyclebubblebe-
tweentheADD andtheLOAD. However, thereis nobubble
betweenthe LOAD andthe OR sincethe extra scheduling
cycle is hiddenby theexecutionlatency of theLOAD.

4. Pipelined Scheduling with Speculative
Wakeup

In the last section,we showed that pipelining the con-
ventionalschedulinglogic introducespipelinebubblesbe-
tweendependentinstructions.In thissection,weshow how
to pipelinethis logic over two cycleswithout having these
bubbles.

Here is a brief overview of this technique: If the par-
entsof aninstruction’sparenthave beenselected,thenit is
likely that the parentwill be selectedin the following cy-
cle (assumingthe parent’s parentsare1-cycle operations).
Thus,for schedulinglogic pipelinedover2 cycles,thechild
canassumethatwhenthetagsof thegrandparentpair have
beenreceived,theparentis probablybeingselectedfor exe-
cutionandwill broadcastits tagin thefollowing cycle. The
child canthenspeculatively wakeupandbeselectedthecy-
cle after its parentis selected.Becauseit is not guaranteed
thattheparentwill beselectedfor execution,thewakeupis
only speculative.

Sections4.1, 4.2, and4.3 describeimplementationsof
the rename,wakeup, and selectlogic for this scheduling
mechanism.Section4.4 givesan exampleof the schedul-
ing operation. Section4.5.1discussesan implementation
thatreducestheamountof logic andstatethatis keptin the
reservation stations. Section4.5.2 shows that scheduling
with speculativewakeupalsoworksfor machinesthathave
instructionre-execution.

4.1 Rename Logic

For pipelinedschedulingwith speculative wakeup, the
renamelogic is responsiblefor determiningthedestination
tagsof the instruction’s grandparentsaswell as the desti-
nation tagsof its parents. The grandparentsare required
for speculativewakeup,which will bedescribedin thenext
section.At theendof rename,eachof the instruction’s ar-
chitecturalsourceregister identifiershasbeenreplacedby
a parent’s destinationtag,and thesetof destinationtagsof
thatparent’sparents.

To do this, therenamemapmustbemodified.Eachmap
entry is extendedso that, in additionto the original phys-
ical register identifier, it containsthe set of identifiersof
thephysicalregistersthatareneededto computethevalue
of the physicalregisterspecifiedby the original identifier.
That is, for the instructionthat updatedthe entry, the en-
try containsthe instruction’s destinationtag,andthesetof
destinationtagsof theinstruction’sparents.

At thebeginningof rename,aninstruction’sarchitectural
sourceregisteridentifiersareusedto index therenamemap.
Eachrenamemaplookupyieldsoneof theinstruction’spar-
ent’s destinationtag,andthe setof destinationtagsof that
parent’s parents. At the end of rename,the instruction’s
destinationtagis known, andthedestinationtagsof thein-
struction’s parentsareknown. This informationis usedto
updatethe mapentry whoseindex is equalto the instruc-
tion’sarchitecturaldestinationregisteridentifier.

Thedependency analysislogicalsoneedsto bemodified.
For conventionalscheduling,when thereis a dependency
betweentwo instructionsin thegroupof instructionsbeing
renamed,thedestinationtagof theearlierinstructionmust
beselectedasthesourcetagof thelater, dependentinstruc-
tion. This ensuresthat the dependentinstructionhasthe

correctdestinationtagfor its parent.For pipelinedschedul-
ing with speculativewakeup,thelogic mustalsoensurethat
thedependentinstructionhasthecorrectdestinationtagsfor
thatparent’s parents.Note that thecorrectdestinationtags
for thatparent’sparentsaresimply theparent’ssourcetags.

To accountfor this,thesetof destinationtagsfor apartic-
ular parent’sparentsis determinedby a MUX. An example
of oneof theseMUXes is shown in Figure9. TheMUX in
this figure selectsthe sourcetagsof the third instruction’s
first parent; i. e., it selectsthe first two grandparenttags.
Theinputsto thisMUX comefrom therenamemapandthe
outputsof the MUXes shown in Figure4. The first input
to the MUX is the setof destinationtagsfor the parent’s
parentsthatwerereadfrom therenamemap,andis selected
whentheparentis not in thegroup. In Figure9, this input,
labeledParentIDs(Op3 src1), comesfrom the sameentry
of therenametableasPhy ID(Op3 src1)shown in Figure4.
The secondinput to the MUX is the setof sourcetagsfor
thefirst instructionin thegroup,andis selectedif thepar-
entis thefirst instructionin thegroup.Thethird inputto the
MUX is thesetof sourcetagsfor thesecondinstructionin
thegroup,andis selectedif theparentis thesecondinstruc-
tion in thegroup. Thecontrol for this MUX is thesameas
thecontrolusedfor theMUX to selectthethird instruction’s
first sourcetag shown in Figure4. Hence,this MUX adds
at mostoneinput-to-outputdelayto thecritical pathof the
renamelogic. (Thecontrolfor theMUX is determinedwell
beforetheinputarrives.)

{Op1_src1 Tag, Op1_src2 Tag}

{Op2_src1 Tag, Op2_src2 Tag}

Parent_IDs(Op3_src1)

{Op3_GP1 Tag, Op3_GP2 Tag}

Control
Op3_src1 MUX

Figure 9. A Grandparent MUX

4.2. Wakeup Logic

The reservation stationscontainwakeup logic for par-
entsandgrandparents.Thewakeuplogic for eachsourceis
identicalto thatexplainedin Section3.2.As in theconven-
tional 2-cycle pipelinedschedulinglogic, theDELAY field
for eachparentcontainsN-2 zerosin the leastsignificant
bits,andonesin theotherbits,whereN is theexecutionla-
tency of theparent.TheDELAY field for eachgrandparent
containsN-1 zerosin the leastsignificantbits, andonesin
theotherbits,whereN is thelatency of thegrandparent.

Not all parent and grandparentfields are used for
wakeup. If a parentinstructionis a multi-cycle operation,
thenthe fields for its parentscanbe ignored;that is, their

RSEfields canbe marked invalid. Insteadonly the tag of
the multi-cycle parentwill be used. As explainedin Sec-
tion 3.5, thereis no pipelinebubblebetweentheexecution
of a multi-cycle parentand its child for 2-cycle pipelined
schedulinglogic.

Figure10showshow theREADY bits for theparentand
grandparenttagsareusedto form therequestsentto these-
lect logic. A requestis generatedwhen the instructionis
speculatively ready. As shown, an instructionis specula-
tively readywhen,for eachparent,theparent’s parentsare
readyor theparentis ready.

GP1 R GP2 R P1 R GP3 R GP4 R P2 R DEST TAG

LOGIC
SELECT

Destination Tag Bus

Request
Grant

LATCH

Confirm

Figure 10. Speculative Wakeup Logic

Althoughthelogic pathto therequestline shown in this
figurehastwo additionalgatescomparedto the implemen-
tation shown in Figure5, this pathcould be shortenedby
takingadvantageof thefact thatno morethanfour sources
areneededfor wakeup. If a parentis a multi-cycle opera-
tion, then the RSEfield for the parentcanbe copiedinto
oneof thegrandparentfieldsbeforeplacingthe instruction
in thereservationstation. In this case,a 4-inputAND gate
would replacetheAND-OR-AND path.

4.3 Select Logic

The requestline shown in Figure10 only indicatesthat
theinstructionis speculatively ready, sotheconfirmline is
usedto verify that the instructionis readyto execute.The
confirm line is only assertedwhenall of the instruction’s
parentsareready, andis typically assertedonecycle after
therequestline. If therequesthasthehighestpriority, and
the confirm line is asserted,which meansthe instruction
is really (non-speculatively) ready, the requestis granted.
Otherwise,therequestis not granted.

False selectionoccurswhenever a requestis not con-
firmed. That is, if the requestline is asserted,andthecon-
firm line is not assertedonecycle later, falseselectionoc-
curs.Falseselectionis aperformanceproblemwhenit pre-
ventsa really readyinstructionfrom beingselected.This
only occurswhentherequestthatwasn’t confirmedhadthe
highestpriority andtherewerereallyreadyinstructionsthat
couldhavebeenselected.

For pipelinedschedulingwith speculativewakeup,anin-
structionandits parentscanasserttheir requestlinesat the

sametime. The machinemust guaranteethat the parents
areeventuallyselectedfor execution,otherwise,deadlock
canoccur. Therearemany waysto provide this guarantee.
Themostobvious is to useinstructionageto assignselec-
tion priorities; i. e.,older instructions(instructionsthatoc-
cur earlierin thedynamicinstructionstream)have priority
over youngerinstructions.Anotheris to usea roundrobin
schemeto assignselectionpriorities.

4.4. Dependent Instruction Execution

To illustratethe operationof pipelinedschedulingwith
speculativewakeup,considerthedependency graphin Fig-
ure 11a. All instructionsare1-cycle operationsexceptfor
theLOAD, which takes3 cycles.TheSUB instructionwill
wakeupon thetagbroadcastsof theOR,XOR, andLOAD
instructionssincethe AND is a 1-cycle operationand the
LOAD is a 3-cycle operation. The DELAY field for the
SUB’s first parent,theAND, will containthevalue‘1111’.
This field will only be usedfor confirmationafter selec-
tion hasoccurred. The DELAY fields for the SUB’s first
two grandparents,theOR andXOR, will containthevalue
‘1111’. TheDELAY field for theSUB’s secondparentwill
beencodedas‘1110’ sothattheSUBwill delayits wakeup
for at least1 cycle after the tagof theLOAD is broadcast.
The last two grandparentfields for theSUB aremarkedas
invalid, sincethey will not beused.

Broadcast/
Reg Read

Broadcast/
Reg Read

Broadcast/
Reg Read

Broadcast/
Reg Read

Wait

NOT:

AND:

SUB:

OR:

RS

RS

1

2

Wakeup

Select

Select

Select
(no grant)

Wakeup (false)
Select

Select

Execute

Execute

Select

Execute

Execute

Wakeup

Clock: Cycle 2Cycle 1 Cycle 3 Cycle 4 Cycle 5 Cycle 6

(b)

(a)

SUB

ADD

ANDNOT

OR

LOAD

XOR

Figure 11. Example of Speculative Wakeup

Figure11b shows an exampleof the schedulingopera-
tion of thisdataflow graphwhenfalseselectionoccurs.For
this example,assumethat the XOR, ADD, andLOAD in-
structionshave alreadyexecutedby cycle 1. Also assume
that all instructionsexceptthe SUB arein the samesetof

reservationstations(designatedby ���
), andtheSUB is in
a secondset(�����). (Thereareno extra delaysfor broad-
castingtagsor databetweensetsof reservationstationsin
this example.) In cycle 1, theOR is selectedfor execution
andtheAND andNOT wakeupon thetagbroadcastby the
OR’s lastparent.In cycle2, theSUBwakesupaftermatch-
ing the tagbroadcastby the OR. TheAND andNOT both
requestexecutionin this cycle, but only the NOT receives
anexecutiongrant. TheNOT andAND alsomatchthetag
broadcastby theOR instruction. In cycle 3, the AND and
SUBarebothselectedfor execution.In cycle4, theAND’s
selectionis confirmedandits tagis broadcast,but theSUB’s
selectionis not confirmed. This falseselectionmay have
preventedtheselectionof anotherinstructionin ����� in cy-
cle 3. TheSUB requestsexecutionagain,andtheselection
is confirmedin cycle5.

4.5. Implementation Considerations

4.5.1. Reducing the Cost of the Wakeup Logic. We as-
sumethe tag busesrunningthrougheachRSEsetthe size
of the reservationstations,andthat thewakeuplogic asso-
ciatedwith eachRSEcaneasilybe hiddenunderneathall
thesewires. If that is not the case,it is possibleto reduce
the numberof tags—andthus,sizeof the wakeuplogic—
requiredto performpipelinedschedulingwith speculative
wakeup. Two observationsarerequiredto understandhow
this canbedone.

The first: An instructioncanalwayswake up using its
parenttags.Thegrandparenttagsareonly providedfor per-
formancereasons.If some(or all) of themaremissing,the
machinestill functionscorrectly.

Thesecond:An instructionbecomesreadyfor execution
only afterall its parents’destinationtagshave beenbroad-
cast.If themachinecanpredictwhichparentwill finishlast,
it canuseonly the destinationtagsof thatparent’s parents
to becomespeculatively ready. Thatis, eachRSEwill have
the tagsof all the instruction’s parents,and,for the parent
thatwaspredictedto be last, the tagsof its parents.If the
predictionis wrong, the machinestill functionscorrectly:
theinstructionjust isn’t selectedassoonasit couldbe.

We useda simpleschemeto predictthelastparent.A 2-
bit saturatingcounterwasstoredalongwith eachinstruction
in the instructioncache.Whenan instructionwasfetched,
the upperbit of the counterspecifiedwhetherthe first or
secondparentwould finish last. During rename,only the
parentsof the parentthat waspredictedto finish last were
storedin the grandparentfields. While an instructionwas
in thereservationstations,it recordedwhichparentfinished
last.3 Whenthe instructioncommitted,it decrementedthe

3Actually, the only time the grandparentfields are usedis when the
parenthasa latency of 1 cycle. The instructionactuallyrecordedwhich
parentwith a1 cycle latency finishedlast.

counterif thefirst parentfinishedlast,andincrementedit if
thesecondparentfinishedlast.

4.5.2. Operation of Instruction Re-execution. The
scheduling logic presentedcan handle instruction re-
executionwithout any modification.As mentionedin Sec-
tion 2.1, thechild of a loadinstructionis scheduledassum-
ing theloadhits thecache.If theloadmisses,or if theload
is found to have a memorydependency on an earlierstore
instruction,theloadresultmaybedelayed.Whenthis hap-
pens,thechainof instructionsdependenton the loadmust
be re-scheduled.This is accomplishedby rebroadcasting
the load’s destinationtag on the tag bus. Whenthe tag is
rebroadcast,all childrenof theloadwill rewakesinceloads
are multi-cycle operations. All grandchildrenof the load
will eitherrewakeimmediately, or if thedependentparentis
amulti-cycleoperation,will rewakeafterthatparentbroad-
castsits tag. Hencethereis never a situationwherea de-
pendentof theloadis not rewakened.

5. Experiments

To measurethe impact of pipelining the scheduling
logic, we modeledfour machines: a baselinemachine,
whichusesconventionalschedulingpipelinedover2 cycles;
abudgetandadeluxemachine,whichuse2-cyclepipelined
schedulingwith speculativewakeup;andan idealmachine,
whichusesconventional1-cycleschedulinglogic. Thebud-
getmachineusesRSEsthatcanhold only two grandparent
tags. Last parentprediction is usedto selectwhich two.
Thedeluxe machineusesRSEsthatcanhold all grandpar-
enttags.As mentionedin Section3.5,thebaselinemachine
only introducespipeline bubbleswhen schedulingsingle-
cycleinstructions,notwhenschedulingmulti-cycleinstruc-
tions.

All machineswere 8-wide superscalarprocessorswith
out-of-orderexecution, configuredas shown in Table 1.
They required2 cyclesfor fetch,2 for decode,2 for rename,
1 for registerread,and1 for commit.Theidealmachinere-
quired 1 cycle for wakeup/select.The othersrequired2.
The executionlatenciesareshown in Table2. An instruc-
tion with a1-cycleexecutionlatency requiresaminimumof
10cyclesto progressfrom thefirst fetchstageto commit.

The machineswere simulatedusing a cycle-accurate,
execution-driven simulator for the Alpha ISA. Figure 12
shows the IPC of the four machinesover the SPECint95
benchmarks.The15%IPC differencebetweenthebaseline
andideal machinesrepresentsthe amountof performance
thatcanbegainedby usingpipelinedschedulingwith spec-
ulativewakeup.Thedeluxemachinegains86%of this dif-
ference.Onaverage,thedeluxemachineperforms13%bet-
ter thanthe baselinemachine,andwithin 2% of the ideal
machine.The budgetmachineperformswithin 1% of the

BranchPredictor 15-bit gshare,2048-entryBTB
InstructionCache 64KB 4-way setassociative (pipelined)

2-cycle directoryanddatastoreaccess
InstructionWindow 128RSE(16 for eachfunctionalunit)
ExecutionWidth 8 multi-purposefunctionalunits,only four

of whichsupportload/storeoperations
DataCache 64KB 2-way setassociative (pipelined)

2-cycle directoryanddatastoreaccess
Unified L2 Cache 1MB, 8-way, 7-cycle access

2 banks,contentionis modeled

Table 1. Machine Configuration

InstructionClass Latency (Cycles)

integerarithmetic 1
integermultiply 8, pipelined
fp arithmetic 4, pipelined
fp divide 16
loads 1 + dcachelatency
all others 1

Table 2. Instruction Class Latencies

gcc go� ijpeg� � li m88ksim perl� comp vortex
Benchmarks�

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline model
�
budget model
�
deluxe model
�
ideal model

Figure 12. Comparison of the Four Machines

deluxemachine.
The IPC differencesbetweenthe budget, deluxe, and

idealmachinesareprimarily dueto falseselectionscaused
by speculativewakeup.Falseselectionsonly impactIPC if
otherinstructionsthatwerereadyto executewereprevented
from executingdueto afalseselection.Figure13showsthe
amountof falseselectionsandschedulingopportunitieslost
dueto falseselectionsfor thebudgetanddeluxemachines.
This graphshows the fraction of schedulingopportunities
in which a selectionresultedin: (1) a falseselectionthat
preventeda readyinstructionfrom receiving an execution
grant,(2) a falseselection,but no instructionswereready,
and(3) acorrectselection.Thefourth case—theonly other
possiblecase—iswhenno instructionsrequestexecution.
Thefirst of eachpair of bars(barswith solid colors)show
thecyclebreakdown for thebudgetmachine.Thesecondof
eachpair (stripedbars)show thebreakdown for thedeluxe
machine.As thegraphshows,theselectionlogic for agiven

gcc� go� ijpeg� li� m88ksim� perl� comp� vortex�
Benchmarks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

F
ra

ct
io

n
of

 S
ch

ed
ul

in
g

O
pp

or
tu

ni
ti

es

Instructions really ready were selected
�
False Selection, no other ready instructions in reservation station
�
False Selection, a really ready instruction was prevented from executing

Figure 13. Selection Outcomes

depth 8� depth 16� depth 32� depth 64�
Reservation Station Depth

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

In
st

ru
ct

io
ns

 P
er

 C
yc

le

! ideal, 16-wide
deluxe, 16-wide
"
budget, 16-wide
#
baseline, 16-wide
#
ideal, 8-wide
deluxe, 8-wide
"
budget, 8-wide
#
baseline, 8-wide
#

Figure 14. Comparison of the Four Machines
for Diff erent Windo w Sizes

functionalunit awardedanexecutiongrant35%to 55%of
thetime. A readyinstructionwaspreventedfrom executing
dueto afalseselectiononly 1%to 7%of thetime. Notethat
thesemetricscannotbecomparedto IPCsincethey measure
bothnon-speculativeandspeculativeinstructions.

Thefrequency of falseselectionsis quitesensitive to the
amountof functional unit contention. Simulationsof the
four machinesusingboth8 and16functionalunitsandsev-
eral instructionwindow sizeswererun to demonstratethe
effectof this contentionon IPC.Thesimulationparameters
of the16-wideissuemachinesaresimilar to thoseof the8-
wide machinesexceptthat8 of the 16 functionalunits are
capableof executingloadandstoreinstructions.Figure14
shows the harmonicmeanof the IPC of the SPECint95
benchmarksfor all modelsusingbothissuewidthswhenthe
numberof RSEsfor each functionalunit is variedfrom 8 to
64. The machinemodelwith the mostcontentionfor exe-
cutionresourcesis the8-widemachinewith a512-entryin-
structionwindow. For thisconfiguration,pipelinedschedul-
ing with speculative wakeup gains65% of the difference
betweenthebaselineandidealmachines.

6. Conclusion

This paperdemonstratesthat the dynamic instruction
schedulinglogic can be pipelinedwithout sacrificing the
ability to executedependentinstructionsin consecutivecy-
cles. It introducedpipelinedschedulingwith speculative
wakeup, which pipelinesthis logic over 2 cycles. This
techniquesignificantlyreducesthecritical paththroughthis
logic while having only a minor impacton IPC. If thecrit-
ical paththroughthis logic limits theprocessorcycle time,
this techniqueallows microarchitectsto build higher per-
formancemachinesby enablinghigherclock frequencies,
deeperpipelines,andlargerinstructionwindows.

Acknowledgements

We especiallythankPaul Racunas,Jean-LoupBaer, and
theanonymousrefereesfor theircommentsonearlierdrafts
of this paper. This work was supportedin part by Intel,
HAL, andIBM. Mary Brown is supportedby an IBM Co-
operativeGraduateFellowship.

References

[1] M. Butler andY. Patt, “An investigationof the perfor-
manceof variousdynamicschedulingtechniques,” in
Proceedingsof the 25th Annual ACM/IEEE Interna-
tional SymposiumonMicroarchitecture, 1992.

[2] IA-32 Intel Architecture Software Developer’s Manual
With Preliminary Willamette Architecture Information
Volume1: BasicArchitecture, Intel Corporation,2000.

[3] S. Palacharla, N. P. Jouppi, and J. E. Smith,
“Complexity-effective superscalarprocessors,” in Pro-
ceedingsof the 24th Annual InternationalSymposium
on ComputerArchitecture, 1997.

[4] R. M. Tomasulo,“An efficient algorithm for exploit-
ing multiplearithmeticunits,” IBM Journalof Research
andDevelopment, vol. 11,pp.25–33,January1967.

[5] K. C. Yeager, “The MIPS R10000superscalarmicro-
processor,” IEEEMicro, vol. 16,no.2,pp.28–41,April
1996.

[6] A. Yu, Client Architecture for theNew Millennium, In-
tel Corporation,February2000. Spring2000Intel De-
veloperForumKeynotePresentation.

