
OS and Compiler Considerations
in the Design of the IA-64 Architecture

Rumi Zahir (Intel Corporation)
Dale Morris, Jonathan Ross (Hewlett-Packard Company)
Drew Hess (Lucasfilm Ltd.)

This is an electronic reproduction of “OS and Compiler Considerations in the
Design of the IA-64 Architecture” originally published in ASPLOS-IX (the Ninth
International Conference on Architectural Support for Programming Languages
and Operating Systems) held in Cambridge, MA in November 2000.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to

sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1

Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than

republish, to post on servers, or to redistribute to lists, requires prior specific permis-

(212) 869-0481, or permissions@acm.org.
ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000

OS and Compiler Considerations
in the Design of the IA-64 Architecture

Rumi Zahir Jonathan Ross Dale Morris Drew Hess
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95054

Hewlett-Packard Company
19447 Pruneridge Ave.
Cupertino, CA 95014

Lucas Digital Ltd.
P.O. Box 2459

San Rafael, CA 94912

rumi.zahir@intel.com jonathan_ross@hp.com dale_morris@hp.com dhess@ilm.com

ABSTRACT
Increasing demands for processor performance have out-

stripped the pace of process and frequency improvements, pushing
designers to find ways of increasing the amount of work that can
be processed in parallel. Traditional RISC architectures use hard-
ware approaches to obtain more instruction-level parallelism, with
the compiler and the operating system (OS) having only indirect
visibility into the mechanisms used.

The IA-64 architecture [14] was specifically designed to
enable systems which create and exploit high levels of instruction-
level parallelism by explicitly encoding a program’s parallelism in
the instruction set [25]. This paper provides a qualitative summary
of the IA-64 architecture features that support control and data
speculation, and register stacking. The paper focusses on the func-
tional synergy between these architectural elements (rather than
their individual performance merits), and emphasizes how they
were designed for cooperation between processor hardware, com-
pilers and the OS.

1. INTRODUCTION
A significant portion of the increase in processor performance

over the last decade has come from advances in instruction-level
parallel execution. Most of this benefit has been attained through
hardware-centric approaches, such as superscalar out-of-order pro-
cessor designs [21,20,24], which hide the mechanisms for parallel-
ism from the operating system, and, to some extent, from the
compiler as well. This has constrained the scope over which opti-
mizations for parallelism can be performed, and has increased the
complexity of microprocessor design. At the same time, memory
latencies, measured in terms of processor clocks, have been
increasing. This has fueled the need for more innovative
approaches to the hiding of load latencies, in order to achieve
higher degrees of parallelism [29,1].

The architecture design goal for IA-64 was to address these
technology trends with a synergistic hardware/software approach
in which the processor hardware, the compiler, and the operating

system collaborate to deliver higher-performance systems. This
approach led to a set of mechanisms with simple hardware that are
under direct control by the compiler (which can consider larger
portions of a program in the discovery and creation of parallel
work). Interaction with the OS was carefully designed to support
efficient state save/restore, and to integrate speculation features.
This allows the OS to set policy on which types of events are to be
handled speculatively, and which are to be deferred.

The intent of this paper is to provide insight into the synergis-
tic interaction between IA-64 architecture features such as control
speculation, data speculation, and the IA-64 register stack. At the
time of writing, IA-64 platforms, operating systems and compilers
are in prototype phase and are undergoing a rapid rate of change in
maturity. As a result, this paper provides a qualitative description
rather than a quantitative assessment of the discussed mechanisms.
The paper emphasizes functional architecture design consider-
ations and how (as opposed to how well) the discussed features
allow compilers and the operating system to collaborate with the
processor hardware to expose greater levels of instruction-level
parallelism.

2. CONTROLLING CONTROL
SPECULATION
Unlike out-of-order superscalar micro-processors, in which

the hardware decides at run time when and what to speculate, spec-
ulation in IA-64 is controlled by the compiler. Hoisting instruc-
tions ahead of their memory data dependences is termed data
speculation, and is the topic of a later section in this paper. Hoist-
ing instructions ahead of their control dependences is termed con-
trol speculation, and is discussed here.

Control flow dependences have long been recognized as one
of the fundamental barriers to increased instruction level parallel-
ism [19,4]. Without explicit architecture support, a compiler can
move a load instruction outside of its basic block only if the
address is known to be safe (global variables or procedure local
stack variables), or if the reference is guaranteed to occur (in both
branches of an if-then-else, or in common code after a join etc.)
[23]. Architectural support for limited control speculation comes in
two flavors: cache line prefetch instructions and non-faulting
loads. Cache line prefetch instructions are supported by IA-64 and
other architectures [14,28,17,12]; they move the addressed data
item into the processor caches as long as no exceptions occur.
Non-faulting loads, provided by the SPARCTM V9 architecture
[28], write the target register with the loaded value when there is
no exception or return 0 for failed speculation.

IA-64 extends control speculation to allow speculative loads
to addresses which cannot be guaranteed to be safe and allows
additional speculative computation on the load values. As
described in [8], this is possible because load values are read into
registers, and, unlike non-faulting loads, values derived from a
failed speculative load can be identified without ambiguity.

IA-64 enables control speculation by defining ld.s (specula-
tive load) and chk.s (speculation check) instructions. Exceptions
caused by speculative loads are handled specially. A failed ld.s
will cause a deferred exception token (called a NaT) to be written
to the ld.s’s target register instead of causing a programmer visible
exception1. NaTs are encoded out of band2 and propagate to all
consuming instructions’ target registers to positively identify
deferred exceptions for any speculative computation3. The ability
to control speculate not just load instructions, but entire computa-
tion chains is a significant improvement over existing compiler-
driven control speculation mechanisms.

To validate control speculative computations, the compiler
inserts a chk.s instruction in the basic block where the original
(non-speculative) load would have been4. The value checked can
be the speculatively loaded value, or any of the results derived
from it. The chk.s specifies a source register and the address of
compiler generated speculation recovery code. If a NaT is found in
the chk.s source register, the processor branches to the specified
recovery code. Speculation recovery code is automatically gener-
ated by the compiler as a normal part of control speculation opti-
mizations, and is not specified by the programmer.

Deferral is the term we use to describe writing a deferred
exception token to a target register so we can deal with the specu-
lation exception later5. Speculative loads, deferred exception
tokens and speculation check instructions are the foundation for
control speculation in IA-64. The performance increase from con-
trol speculation is significantly influenced by exception deferral
strategies. We could choose to have the processor hardware defer
all ld.s exceptions or have the operating system defer only pro-

grammer visible ld.s exceptions and resolve all others. Rather than
choosing one extreme strategy or the other, we believe that higher
performance is possible if combined compiler and operating sys-
tem knowledge is used in the exception deferral process, allowing
some exceptions to be quickly deferred by the processor (without
OS intervention) and some to be resolved by the operating system.

2.1 Deferral and the Compiler Usage Model
IA-64 distinguishes two classes of speculative exception

deferral. Eager deferral occurs when an exception is deferred
before determining whether the exception can be resolved without
a programmer visible exception1. Minimal deferral occurs only
after determining that an exception would have been visible to the
programmer. All other exceptions are resolved by the operating
system and are not deferred.

Different classes of exception deferral are useful for different
code generation models. Code generated for the recovery model
includes non-speculative versions of code to be executed when the
speculative path fails (the non-speculative path is compiler-gener-
ated speculation recovery code). Eager deferral is allowed in the
recovery model because any failed speculative computation can be
re-computed by recovery code. Another code generation model,
called no-recovery, does not include speculation recovery code or
chk.s instructions6. Each speculated load exists only in speculative
form so any exception which can be resolved must be resolved
when the speculative load is executed.7 Only minimal deferral is
allowed in this model.

Speculation optimizations can be more aggressive in the
recovery model because eagerly deferred exceptions aren’t as
expensive as minimally deferred exceptions. Consider a specula-
tive reference to an un-allocated address. An operating system can
search page table entries and eagerly defer in under 100 cycles if
the page table entry is not found. If eager deferral is not supported
a considerably longer code path (tens of thousands of cycles) is
required to search high level virtual memory meta-structures
before determining that the address is not allocated.

The primary benefit of the no-recovery model is smaller static
and dynamic code size, since chk.s instructions and speculation
recovery code do not need to be generated. This model is particu-
larly valuable if the speculative and the non-speculative address
footprint of the code are similar [22].

The deferral usage model is controlled by the compiler and
recorded in the load module as an attribute of generated code. The
load module for a text segment with no recovery code indicates
that only minimal deferral is supported. The operating system
reads these attributes at program load time and sets an exception
deferral field in page table entries (eventually loaded into instruc-
tion TLB entries; see box 1 in Figure 1). Since the deferral
attribute is per page, the scheme works well for real world pro-
grams composed of multiple compilation units which may use dif-
ferent deferral models. When the instruction TLB entry specifies
that only minimal deferral is allowed, the processor and operating
system only defer if they cannot resolve the exception.

1. Speculative operations must not change the results of the pro-
gram. Programmer visible exceptions (i.e., program termina-
tion or execution of programmer specified exception handling
code) can change program results, so speculative instruction
exceptions can not generate programmer visible exceptions
until we determine that the non-speculative version of the pro-
gram would also have generated a programmer visible excep-
tion.

2. NaT stands for “Not-a-Thing” and denotes the presence of a
deferred exception. Like poison bits described in [11], the NaT
is an additional register bit in integer registers. In floating-point
registers, NaT is expressed as an unused encoding.

3. Arithmetic and floating-point operations can all be safely spec-
ulated, including floating-point computations which may
underflow, overflow etc. Multiple floating-point status fields
control exception handling and status reporting for concurrent
chains of floating-point operations, some of which may be
speculative.

4. The concept of placing the program counter value of the failing
speculative load into the target register, and possibly using this
information to enable an inline recovery mechanism [22] was
studied, but we felt the cache load datapath was too timing crit-
ical to permit this, plus the inline recovery approaches we con-
sidered placed restrictions on the concurrent speculation of
multiple, related chains of instructions.

5. TLB misses or TLB access bit violations are typical examples
of ld.s exceptions which can be deferred.

6. In the no recovery model, checking is done implicitly. Non-
speculative instructions, such as stores, trigger a fault if a
source register indicates a deferred exception.

7. Since the load is speculative the result may never be consumed,
so the exception cannot be treated as fatal at this point.

2.2 An Example of Control Speculation
Consider the following code, where a, b and c are pointers of

type int, passed into a function being compiled:
foo (int *a, int *b, int *c, BOOLEAN *flag) {

if (*flag) *a = *b + *c;
...

Let us further assume that the compiler, in generating code
for this statement, cannot determine whether a speculative derefer-
ences of *b and *c would be safe optimizations.

For the recovery model, this would translate to the following
IA-64 assembly:

ld1 rf = [rflag]
ld4.s rt1 = [rb]
ld4.s rt2 = [rc];;
add rs = rt1, rt2
...
cmp.ne p1 = rf, r0;;

reenter1:
(p1) chk.s rs, fixup_code1
(p1) st4 [ra] = rs

...
fixup_code1:

ld4 rt1 = [rb]
ld4 rt2 = [rc];;
add rs = rt1, rt2
br reenter1;;

The loads are split into two ld.s instructions and a chk.s. The
ld.s instructions and their dependent instruction are moved in
advance of the computation of the test of flag. When a ld.s is exe-
cuted, if any exceptions are detected, the target register is marked
with a NaT. The add will propagate a NaT to rs if either of its oper-
ands has a NaT. Then after the test of flag has been done, if flag is
true, the chk.s will test register rs. If it is marked with a NaT, the
chk.s branches to the fixup code, which redoes the calculation (this
time, non-speculatively), and branches back. If there is no NaT, the
chk.s acts as a nop.

The same example in the no recovery model would look like
this:

ld1 rf = [rflag]
ld4.s rt1 = [rb]
ld4.s rt2 = [rc];;
add rs = rt1, rt2
...
cmp.ne p1 = rf, r0;;

(p1) st4 [ra] = rs

Here the behavior is the same, except that the OS ensures that
the ld.s instructions will mark their targets with a NaTs only if they
encounter some exception which would have been visible to the
programmer. Then, after the compare, if flag was true, the store
will check to see if rs is marked with a NaT. If not, it behaves nor-
mally; otherwise it generates a fault, signalling the exception
caused by one of the loads.

2.3 Working with Operating System
Optimizations
The operating system manages processor deferral mecha-

nisms and specifies its eager deferral policy using the processor
control register DCR. The DCR is only used for code compiled
with the eager deferral model and is designed to accelerate the exe-

cution of the specified OS policy. When eager deferral is allowed,
an operating system will achieve the best performance by eagerly
deferring some ld.s exceptions and resolving others.

It is common for operating system virtual memory managers
to use lazy evaluation techniques to manage paging resources, e.g.,
copy on access, reference bit tracking and zero-fill page allocation
[27]. When speculative references participate in these memory
management optimizations, we can improve system performance.
We would like to resolve exception conditions for speculative
operations if the resolution doesn’t take too long. Often the OS has
the best information about how long resolution will take. For
example, a TLB miss could mean that a process has referenced an
invalid address or it could mean that the virtual address is fine and
the OS just needs to add a missing TLB or page table entry. Both
situations look the same to hardware. For this example an OS
deferral policy could be to generate TLB miss interruptions for
speculative operations (no hardware deferral) and resolve the
exception if there is an address translation readily available or
defer the exception (software deferral) if there is no translation
available (e.g., on a page fault). The strategy to handle speculative
TLB miss exceptions will be particularly beneficial when a specu-
lative reference is the first reference to a particular location. This
happens when compiler heuristics identify speculative references
which are later consumed, and the speculative references can
increase the working set early enough to overlap long memory
latencies with other useful work.

In other situations, where there is a low probability that the
operating system will be able to resolve an exception, we can
improve performance by having the processor eagerly defer the
exception without causing an interruption. For example, an operat-
ing system would be better off with processor deferral of access
rights exceptions if most access rights violations are caused by ille-
gal memory references.

What then is the best way to identify which faults should be
eagerly deferred by the processor and which should cause interrup-
tions? Different operating systems will implement different virtual
memory optimizations, so it is unlikely that one setting will be
suitable for all operating systems.

An IA-64 operating system specifies its exception handling
strategy to the processor through a processor control register, the
DCR which contains exception specific deferral bits (see box 2 of
Figure 1). A ld.s exception will be deferred by the processor with-
out causing an interruption when two conditions are met: the DCR
bit for that exception is set and the ld.s’s instruction TLB entry
indicates that eager deferral is allowed.

One simple management scheme for the DCR is to set all the
bits (eager hardware deferral) for exceptions that are not useful for
virtual memory optimizations. Then the processor will defer these
exceptions without interruption. For example, an OS which knows
that an access rights violation usually indicates an invalid refer-
ence can set the “defer access rights faults” bit in the DCR which
tells hardware to perform the deferral without generating an inter-
ruption. The DCR mechanism is flexible enough that an operating
system can observe program behavior and dynamically choose
which exceptions to handle and which to defer.

An example of an operating system specific optimization is
TLB access bit handling. One operating system may choose to
track working sets with TLB access bits and another operating sys-
tem may choose to use access bits to deny access to a page. An
operating system tracking working sets could clear the “defer

access bit faults” DCR field to update TLB access bits for specula-
tive and non-speculative references. An operating system using
access bits to deny access to a page would set the DCR field so the
processor would quickly defer all ld.s access bit exceptions since
they probably indicate an illegal reference.

2.4 Knowing when to quit
Once an interruption is taken it is often useful to defer the

exception if it can’t be quickly resolved. Consider a TLB miss
which can be caused by a number of situations other than an illegal
reference. The TLB miss could happen because the hardware page
table walker didn’t find the page table entry, the referenced page is
on a page-out list but still in memory, the address is marked for
copy-on-reference, or marked for zero fill page allocation. An
operating system will have to choose which cases it can resolve
quickly and which it should defer.

When the processor executes a ld.s it can tell by the instruc-
tion encoding that the instruction is speculative, and it can tell
from the ld.s’s instruction TLB entry whether the compilation
model supports eager deferral. An operating system also needs to
know these two things to decide if and when an exception can be
deferred. An IA-64 processor’s Interruption Status Register (ISR)
has two fields which indicate whether the interrupting instruction
is speculative and what the deferral model is for its code page. The
combination of these bits allows an operating system to quickly
determine whether eager deferral is allowed for any interruption
(see box 3 of Figure 1).

2.5 Making it safe
Like many other architectures, IA-64 supports memory

mapped I/O. Reads from some memory mapped I/O locations have
side effects, e.g., clearing a pending interrupt. Other memory
mapped I/O locations may only respond to specific addresses in a
page and generate a bus error when other addresses within the page

are referenced. Control speculation would be a much weaker (and
sometimes useless) mechanism if ld.s instructions could cause
unexpected side effects or bus errors.

Since the addresses used by ld.s instructions are inherently
unsafe, IA-64 processors automatically defer all ld.s to memory
mapped I/O locations (identified by their TLB memory attribute),
and return a NaT to the target register. This gives a compiler the
crucial ability to safely issue speculative loads without any address
qualification.

2.6 Section Summary
This section discussed some of the IA-64 control speculation

mechanisms and interactions between the processor, the compiler,
and the operating system. Key attributes are the ability to speculate
entire chains of computation and the support for sophisticated
hardware/software exception deferral strategies. The provided
mechanisms make control speculation efficient and safe enough
that compilers can use speculation with partial information and
still be confident that correctness is guaranteed and performance is
improved.

3. ARCHITECTING DATA SPECULATION
Another barrier to scheduling loads early is a lack of informa-

tion about data dependencies in memory [6]. Programs commonly
access memory through pointers, which often makes it impossible
for the compiler to determine statically which location in memory
is being referenced. If a memory store and a subsequent memory
load are to be scheduled by the compiler, the load cannot be sched-
uled in advance of the store unless the compiler can prove that the
two do not reference the same location. Frequently, the compiler
has excellent indications that the accesses will be non-overlapping,
but cannot be 100% certain1. This uncertainty constrains the com-
piler’s ability to schedule code optimally.

Figure 1. Enabling different speculation exception deferral models

OS receives interruption
information from ISR, e.g.
was excepting instruction
a speculative load or not?
does the excepting code

contain recovery code or not?

ISR
(Interrupt Status

Register)

Object code on
external storage.
Compiler marks

object files
according to their
recovery model.

Compiler/Application Operating System Processor Hardware

2

3

1
Processor
detects

speculative

Hardware
Deferral?

no yes

Return
NaT to
register

Instruction TLB
entry for

ld.s code page

load

excepting

Deliver
exception
to OS

DCR
(Default

Control Register)

Load/Store Unit

OS loader reads program,
and marks page table entries

of code pages to indicate
desired recovery model.

OS communicates its deferral
policy to processor

by setting appropriate
DCR control register bits.

3.1 Architecture for Data Speculation
IA-64 provides a data speculation mechanism for scheduling

a load in advance of one or more stores which may possibly refer-
ence the same location in memory. Conflict detection is based on
earlier work described in [22,10]. When the compiler wishes to
schedule a load ahead of some number of earlier, potentially-over-
lapping stores, it splits the load into two instructions: an advanced
load (ld.a), which is scheduled early, and a advanced load check
(chk.a), which is scheduled after the stores.

The advanced load works just like a normal load, except that
it also records information into a hardware structure called an
Advanced Load Address Table (ALAT). The information recorded
includes the target register number, the memory address used, and
the size of the access. The ALAT is then used to track information
about the overlap of an advanced load with one or more stores.
When a store instruction is executed, the hardware compares the
store address/size to the addresses/sizes in all of the entries in the
ALAT, and for any that overlap, the ALAT is modified to indicate
a collision.

The chk.a instruction is a PC-relative branch, where the
ALAT collision indication is the branch condition. If there was a
collision, the chk.a branches to recovery code generated by the
compiler. The recovery code re-does the load, and then branches
back to the main body of the program.

The chk.a instruction also encodes a register number, which
corresponds to the target register of the corresponding advanced
load. This allows for multiple outstanding data speculative loads.

3.2 ALAT Design Considerations
One issue that came up early in the development of this data

speculation mechanism was how to efficiently implement and
manage the ALAT state. Making the mechanism visible to soft-
ware brought up some questions:
• How much state was needed? Could we avoid defining an

architectural limit to the number of outstanding advanced
loads?

• How would this state be saved and restored on context
switch?

• How would misaligned data accesses be handled, to properly
detect collisions?
The key realization in addressing these issues was that colli-

sion detection did not have to be perfect, as long as a true collision
always triggered recovery. Since the recovery code would always
give the correct answer, we could allow the ALAT to indicate
speculation failure even when there had not been an address over-
lap. This is the same realization that Gallagher et. al. came to at the
same time [9]. Data speculation is thus a probabilistic optimiza-
tion, both from the compiler’s perspective, and also in hardware.
Unlike with control speculation, data speculation requires that
there be recovery code, since a failed data speculation does not
represent a program error, but only an unsuccessful optimization.

3.3 Flexible ALAT Implementation
When a store collides with an address in the ALAT, the way

the ALAT records the collision is to simply delete the matching

entry. The absence of an entry, then, is the indication of specula-
tion failure.

From a processor implementation standpoint, this provides
considerable flexibility. The information retained in the ALAT
need not be perfect or complete, provided that it always correctly
indicates speculation failure when an actual overlap occurs. As a
result, the ALAT may indicate false collisions which affect perfor-
mance but not correctness. This allows interesting area/perfor-
mance trade-offs to be made for the ALAT.

For example, the number of entries which the ALAT can hold
is implementation dependent. The ALAT need only have enough
entries for those loads the compiler has marked as advanced (as
opposed to out-of-order designs which typically must have an
entry for all outstanding loads). If software exceeds the imple-
mented number of ALAT entries, performance degrades, but cor-
rectness is maintained.

This flexibility also allows the ALAT to compress the address
information in its entries. Rather than holding full addresses, the
ALAT can be built to store hashed addresses (values derived from
a hash function applied to the addresses). Since a hashed value of
an address can be much smaller than the address itself, this
approach make each ALAT entry smaller. At the expense of some
amount of false collisions, this provides hardware designers signif-
icant flexibility:
• Higher degrees of hashing enable a very small ALAT imple-

mentation (in die area and cycle time).
• More address bits (less hashing) and a larger number of

entries allow high-end ALAT implementations to increase
ALAT performance (at the cost of increased die area and,
possibly, cycle time)
Speculatively executing loads in advance of prior stores is

something that out-of-order processors naturally do [21,20,24,18].
The advantage of a compiler-driven data speculation mechanism is
that it can provide similar capabilities with a smaller structure
(fewer entries) and in a much simpler in-order pipeline, e.g., in the
ItaniumTM processor [26].

3.4 An Example of Data Speculation
Consider the following code:
foo (char *a, int *p) {

*a = 1;
b = *p + 5;
...

Let us assume that the compiler, in generating code for this
function, does not have enough information to know if a and p
point to the same memory. Since a and p point to variables of dif-
ferent type, it is likely that they do not point to the same location in
memory (although the compiler cannot be sure of this). This would
translate to the following IA-64 assembly:

ld4.a rt = [rp];;
add rs = rt, 5
...
st1 [ra] = 1
chk.a rt, fixup_code2

reenter2:
...

fixup_code2:
ld4 rt = [rp];;
add rs = rt, 5
br reenter2;;

1. Some simple examples when overlap is unlikely (but possible)
are when the load and store are pointers to different data types,
or if one is a pointer, and the other is a reference to a global
variable.

When the ld.a is executed, an entry is inserted into the ALAT.
When the store executes, the ALAT performs a comparison to
check whether the address of the store might overlap with the
range loaded by the ld.a. If so, the entry is removed. When the
chk.a is executed, it looks for an entry in the ALAT corresponding
to register rt. If none is found, it branches to the fixup code, which
redoes the load (this time getting the updated value) and the add,
and branches back.

Because the ALAT allows for apparent collisions even when
no actual collision occurred, recovery code is always required for
data speculation.

3.5 Managing ALAT State
In most cases, a ld.a will be followed by a single chk.a (after

which the corresponding ALAT entry is no longer useful). How-
ever, another example of where data speculation is very effective is
in loops, where it is often desirable to speculate loop-invariant
loads out of a loop (even when there are stores in the loop which
potentially overlap with such loads). At runtime, a ld.a will be exe-
cuted once, followed by the repeated execution of the correspond-
ing chk.a for each loop iteration.

This brings up a question of replacement policy in the ALAT.
How would hardware know when an entry was no longer needed
and could be replaced?

The compiler has the needed information about when an
ALAT entry is useful, and when it is no longer needed. It encodes
this information in the chk.a instruction in the form of an ALAT
management hint. The hint specifies to either remove the ALAT
entry after the chk.a completes (chk.a.clr), or to leave it in place
(chk.a.nc).

3.6 OS and Multi-processor Considerations
The fact that an ALAT miss implies a collision implies that

no ALAT state needs to be saved and restored on a context switch.
The OS uses the invalidate ALAT instruction (invala), which
deletes all entries in the ALAT. This causes any data speculation
calculations that were outstanding at the time of the process con-
text switch to trigger recovery when the program is again sched-
uled to run, but compared to the overall context-switch overhead,
this is a small effect. The invalidation is necessary so that the next
process run does not see stale ALAT entries from the previous pro-
cess.

Since IA-64 supports virtual address aliasing (where multiple
virtual addresses all map to the same physical location in mem-
ory), the ALAT performs its comparisons on physical addresses
(or, more accurately, hashes of physical addresses). As a result,
physical address remapping events also need to be reflected in the
ALAT state. To accomplish this, the TLB-purge instruction ptc.ga
searches the ALAT and removes matching entries (like a store, but
with the match performed on a page granularity).

To allow the compiler to freely use data speculation in multi-
threaded applications, the ALAT is defined to be MP-coherent:
stores from other processors also force matching entries to be
deleted from a given processor’s ALAT. This is accomplished by
piggy-backing ALAT coherence on the mechanisms already in
place for cache coherence. (E.g., in a snoopy cache system, when a
line is evicted from a cache, any corresponding ALAT entries are
also removed.) ALAT lookups also obey memory ordering con-
straints which enables speculation across multi-processor synchro-
nization barriers [7].

3.7 Section Summary
Scheduling loads early, in order to hide their longer latency, is

an optimization that is widely applied, both through compiler
scheduling and by out-of-order execution hardware. Similar to
control speculation, the compiler can data speculate not only the
load, but can hoist a whole chain of dependent instructions in
advance of any number of possibly-conflicting stores. The data
speculation mechanism in IA-64 allows this speculation to be set
up by the compiler, with recovery code generated by the compiler,
and then executed on simple, in-order hardware. The representa-
tion of a collision as the absence of an ALAT entry allows hard-
ware the flexibility of trading off die area and circuits vs.
performance, and allows the OS to manage the state simply by
clearing it on a context switch.

4. COMPILER/PROCESSOR
INTERACTION THROUGH THE
REGISTER STACK
The IA-64 architecture provides 128 integer registers. Regis-

ters r0 - r31 are always visible to software and are called static reg-
isters. These are similar to the set of 32 general registers available
in most RISC architectures. The upper 96 registers, r32 - r127, are
stacked. Each procedure can have its own variable size register
stack frame1. Using the alloc instruction, which typically appears
at the beginning of a procedure, the compiler explicitly communi-
cates to the processor how many stacked registers it will use. Any
number of stacked registers, from 0 to 96, can be allocated. The
register stack allows the compiler and the processor to coopera-
tively optimize and, sometimes, altogether eliminate, stacked reg-
ister fills and spills.

4.1 Register Stack Operation
When a new thread of execution is spawned, either the appli-

cation runtime support libraries or the operating system sets aside a
portion of the thread’s address space for register stack spills; this
memory area is called the register stack backing store.

When the compiler allocates new registers to the current
frame using the alloc instruction, the processor checks the stacked
register file for available registers. Stacked registers which are not
part of the current or any previous frame, and stacked registers
which are part of a previous frame but whose contents have
already been spilled to the backing store (clean registers), can be
used immediately without generating any memory traffic. If the
compiler requests more registers than are currently available for
immediate use, some registers containing live values from previ-
ous frames (dirty registers) must be spilled to the backing store so
that they can be allocated to the current frame. When a sufficient
number of registers have been spilled, instruction execution con-
tinues with the instruction following the alloc. The processor state
machine which provides this functionality is called the register
stack engine (RSE).

The RSE performs a similar function on procedure call
returns. Any register values from the returned-to stack frame
which are not present in the register stack (e.g., because the regis-

1. Note that this register stack is different than, and in addition to,
the memory stack that other architectures traditionally used for
local variables and procedure parameters. In IA-64 only large
non-scalar local variables and address exposed variables are
allocated on the memory stack [15].

ter was used by a child procedure) will have been spilled to the
backing store. The processor fills just enough registers to complete
the previous frame, and then instruction execution resumes at the
target of the branch return.

4.2 Opportunistic Register Spills and Fills
IA-64 compilers do not need to perform explicit spill/fill of

stacked registers across procedure call boundaries, because the
RSE dynamically determines when and how many stacked regis-
ters must be spilled or filled. This can reduce critical path length
through the code, since no explicit stacked register fill/spill
instructions are required.

Due to the hysteresis in procedure call/return behavior of
many applications, often no register stack spills or fills will be nec-
essary at all. Compilers in architectures with a flat register file
must be pessimistic and spill any preserved registers which are
used by a procedure and may have been used by parent procedures,
even if those registers do not actually contain live values. Inter-
procedural register allocation can reduce this effect, but typically it
cannot altogether eliminate it, especially in environments with
dynamic linking or late binding [5,13,30].

Furthermore, it is possible to implement stacked register files
larger than the minimum requirement of 96 physical registers. The
number of registers implemented is bound only by the desired
access time of the register file structure and the latency of the
renaming mechanism. Automatic register renaming across proce-
dure call boundaries allows larger stacked register files to further
reduce the number of register spills and fills performed versus a
machine with fewer registers. Each individual procedure only sees
at most 96 stacked registers, but the compiler-driven register
renaming makes the additional physical registers visible to the par-
ent’s child procedures. Out-of-order implementations of other
architectures with flat register files already provide more physical
registers than their architectural limit1, but no software-visible
renaming mechanism is available, so software on these architec-
tures must perform spills and fills when it runs out of architectural
register names, irrespective of physical register availability.

Unlike the AM29000TM and SPARCTM processor register
window mechanisms [2,28], which require software intervention
when registers must be spilled or filled, the IA-64 RSE performs
spill/fill operations in hardware. This allows IA-64 processors to
avoid unnecessary pipeline flushes that throw away potentially
useful work. As processors with wider and deeper pipelines are
developed, the amount of thrown away work increases, and pipe-
line flushes become increasingly expensive.

Another advantage of the IA-64 RSE is that registers which
are not part of the current stack frame are not visible to software.
This allows an “eager” RSE to asynchronously spill/fill registers to
and from the backing store in memory. For example, an eager RSE
can make use of unused memory bandwidth to spill dirty registers
to the backing store, making them available for instant reclamation
when the next alloc instruction requires additional registers. Like-
wise, an eager RSE can opportunistically fill unused registers from
the backing store, making them available for instant use when a
subsequent branch return restores the stack frame to which the reg-

isters belong. A well-designed eager RSE can increase the effec-
tive size of the register stack, and may reduce the number of stall
cycles required for register spilling and filling.

4.3 Section Summary
The IA-64 architecture’s register stack simplifies the com-

piler’s job by reducing the need for inter-procedural register allo-
cation; it reduces the number of register spills and fills required by
a program; and permits the processor to speculatively spill and fill
registers in the background in order to reduce the overhead of pro-
cedure calls.

5. SYSTEM MANAGEMENT OF THE
REGISTER STACK
The previous section describes the interaction between IA-64

processor hardware and the compiler through the register stack.
Register allocation and deallocation is synchronous with program
execution. Asynchronous events are handled by the operating sys-
tem and require additional mechanisms for managing the register
stack across multiple contexts.

When an IA-64 application is interrupted, the processor trans-
fers control to the OS for interruption handling. The interrupted
context’s register stack state may contain dirty registers. What hap-
pens to these dirty registers depends on which type of interruption
occurred.

5.1 Heavyweight Interruption Handlers and Stack
Tearing
Less frequent or performance-insensitive interruptions, such

as debug faults, are serviced by heavyweight interruption handlers.
These handlers are often too complicated to handle in assembly
code alone, so they call routines written in a higher level program-
ming language (e.g., C). To support a single compilation model for
register usage, independent of the type of code being compiled
(application or OS), the compiler may use the register stack in
these routines exactly like it uses the register stack in application
code.

Since the register stack can be programmed by non-privileged
code, the OS can not rely on the state of the register stack when an
interruption occurs and the OS must take precautions before using
it. For example, an interrupted user-space stack switch could leave
the register stack in an inconsistent state (or a malicious program
may have intentionally set the backing store to an invalid memory
location). It is also possible that the interruption itself may have
been raised by an exception associated with a backing store loca-
tion. The architected register stack switch mechanisms allow the
OS to switch the backing store to a trusted location and later
restore the register stack back to its interrupted state no matter
what that state was at the time of interruption. The location at
which the interrupted context’s backing store is switched away
from is called the “tear point”.

After the backing store is switched, any registers which are
spilled by the RSE will be written to the kernel backing store. This
includes all the application’s stacked registers which were dirty at
the time of the backing store switch. Part of the suspended con-
text’s state, then, may actually end up on the kernel backing store2.

When returning to the interrupted context, the OS must
restore the register stack to its state prior to the backing store
switch. The exit routine executes a loadrs instruction, which fills
any registers that were dirty when the backing store was switched

1. E.g., the Alpha instruction set defines 32 integer and 32 float-
ing-point registers. However, to keep its functional units busy,
the out-of-order Alpha 21264 processor actually implements 80
integer and 72 floating-point registers [18].

(these belong to the interrupted context), and frees all other stacked
registers. Next, the routine restores the original tear point of the
interrupted context’s backing store. Finally, the interruption han-
dler executes a return-from-interruption (rfi) instruction, which
will fill any registers that were part of the current frame of the
interrupted context, but may have been spilled to the interrupted
context’s backing store prior to the backing store switch. When the
current frame is completely filled, the interrupted instruction
resumes execution.

5.2 Stack Flushes
On a context switch to another user thread, the OS must flush

the register stack to the kernel backing store using the flushrs
instruction. In this case, the stack flush ensures that registers
belonging to the kernel or to the prior user thread are not spilled
onto the switched-to thread’s backing store, where they could be
read and modified by that thread.

5.3 Lightweight Interruption Handlers
As outlined above, switching the backing store requires a

non-trivial amount of work. Therefore, it should only be done
when absolutely necessary.

Frequently occurring interruptions, such as TLB misses, must
be handled swiftly in order to minimize their overhead. In the IA-
64 architecture, these handlers are architected such that they can
run without using the register stack, obviating the need for a back-
ing store switch. These routines are written entirely in assembly
code and can make use of IA-64’s banked register set, which pro-
vides an additional 16 static registers to the OS. The banked regis-
ter set is activated automatically by the processor upon
interruption, overlaying the static registers r16 - r31 which were
visible to the interrupted context. Typically, the only memory loca-
tions which need to be touched by a lightweight handler are OS
data structures such as the page tables.

The alternate register bank, combined with interruption con-
trol registers which capture interruption-related state, make it pos-
sible for IA-64 processors to deliver low-latency responses to
high-frequency interruptions. Contrast this mechanism to that of
other architectures, such as IA-32 [16], which automatically
pushes interruption state into memory and require handlers to spill
general registers to memory to make room for computations.

5.4 Section Summary
An operating system can not rely on the register stack state

when an interruption occurs. Frequently executed lightweight
interruption handlers can use a set of banked registers that allows
them to avoid the overhead of backing store switches. For handlers
which use the register stack, the OS must switch the backing store
to a trusted location before it can make use of the register stack. An
architected mechanism is provided that enables the OS to specify a
safe location for saving and restoring all interrupted context. This
eliminates the need to flush the stack on protection domain cross-
ings, and permits the OS to safely handle untrusted application
backing stores.

6. SPECULATING ACROSS PROCEDURE
CALLS
The control and data speculation mechanisms described ear-

lier in this paper work in conjunction with the register stack to
allow for speculative execution across procedure calls. The desire
to schedule loads early often makes it very attractive to move
loads, and even dependent computations, ahead of logically prior
calls to other procedures. After the called procedure returns, the
speculation is then checked, and execution continues (or recovery
code is invoked).

6.1 Speculation and the Register Stack
For control speculation, the NaT is stored along with the cor-

responding integer register, as an additional bit. When the RSE
stores registers from previous stack frames, it collects their NaT
bits in an application register (RNAT). After 63 registers are stored
to the backing store, the collection of NaT bits is stored. This pro-
cess is reversed when the RSE reloads those registers; the collec-
tion of NaT bits is restored to the RNAT register, and as each
subsequent register value is restored, the corresponding NaT value
is obtained from that RNAT register and written along with the
data value.

For data speculation, entries in the ALAT are tagged with the
target register of the ld.a which created the entry. The register
stack mechanism already remaps the register numbers used in
instructions to physical register numbers, and the ALAT uses these
physical register numbers for its entry tags. This allows the ALAT
to track outstanding advanced loads from earlier stack frames. If
the stack grows to the point that registers need to be re-used for a
new stack frame, the ALAT can simply invalidate any entries cor-
responding to the registers being written out. However, the register
tag in the ALAT entries can also be augmented with a few addi-
tional bits which allow the ALAT to track advanced loads over a
larger number of stack frames than can be physically held in the
register file. When the called procedures return, the speculatively
loaded value will be restored from the backing store, and if no
overlapping stores have occurred, the ALAT will indicate that the
data speculation was successful.

Thus, the information about speculation in a given procedure
is maintained across procedure calls, allowing the compiler to use
these optimizations safely over a broader scope.

6.2 Bringing it all together
Let’s take an example of speculation across a procedure call,

and see how control and data speculation, along with the register
stack, work together. Consider the following code:

foo (int *b, int *c) {
int a;
if (bar()) a = *b + *c;
...

Assume that the loads of *b and *c are on the performance-
critical path for this code, and that the compiler does not have visi-
bility into bar(). Speculating these loads ahead of the call will
require control speculation as well as data speculation (since we
may not know whether bar() might modify the memory pointed to
by b or c). Here’s the IA-64 code for this:

2. Debuggers and signal handlers need to see a particular thread’s
complete state and may need to take additional steps, such as
copying the “torn off” part of the thread’s register stack state
from the kernel backing store into the thread’s backing store.

ld4.sa rt1 = [rb] // load into stacked
ld4.sa rt2 = [rc] // registers
...
br.call bar;;
cmp.ne p1 = ret0, r0 // non-zero bar() return?
add rs = rt1, rt2;;

(p1) chk.a rt1, fixup_code3
(p1) chk.a rt2, fixup_code3;;
reenter3:

...
fixup_code3:

ld4 rt1 = [rb]
ld4 rt2 = [rc];;
add rs = rt1, rt2
br reenter3;;

This allows the loads to be started before the call to bar(), and
therefore their load latency can overlap with the execution of bar().
bar() will have its own stack frame (perhaps including the same
register numbers as are assigned to rt1 and rt2), however the
ALAT tracks physical registers and stack frames, so there will be
no false aliasing of ALAT state between these two loads and any
advanced loads done within bar().

On returning from the call, we check both of the loads. If
either of them has a problem (either a deferred exception or a
potential collision with some store in foo()), the chk.a will branch
to the fixup code, which re-executes the sequence.

6.3 Section Summary
The frequency of procedure calls is increasing in many inter-

esting programming environments [3]. The design of the register
stack, and its relationship to speculation allows IA-64 compilers to
speculate loads and dependent computation chains across calls to
procedures, even when the compiler has less than perfect knowl-
edge of the procedure being called. Deferred exception informa-
tion for control speculative loads is automatically saved and
restored by the register stack mechanism. ALAT information about
data speculative loads is retained across procedure calls, provided
the callee does not itself consume all of the ALAT’s resources. If it
does, the caller’s ALAT entries are removed, which simply trig-
gers recovery for the corresponding loads when the caller is
returned to.

7. SUMMARY
This paper has focussed on how IA-64 architecture features

enable the processor hardware, the compiler and the operating sys-
tem to collaborate to expose higher levels of instruction-level par-
allelism. The IA-64 control speculation capabilities allow the
compiler and the operating system to support a variety of different
compilation models and exception deferral strategies. The IA-64
data speculation architecture involved careful software/hardware
architecture design trade-offs that manifest themselves in collabo-
rative ALAT management in compilers and operating systems.
The IA-64 register stack engine allow the compiler and the operat-
ing system to communicate actual register usage to the processor,
which, as a result, can manage register spill/fill more effectively.
Combined, the three mechanisms allow compiler-driven specula-
tion to be applied across multiple basic blocks, multiple procedure
calls, and even multi-processing synchronization barriers. This
flexibility allows the compiler to hoist significant chunks of com-

putation and create code with significantly higher levels of explicit
instruction-level parallelism.

8. ACKNOWLEDGEMENTS
The authors would like to thank the following individuals for

their valuable feedback and crucial improvement suggestions:
Jerry Huck, Allan Knies, Weihaw Chuang, Yong-Fong Lee, Hans
Mulder, Shashikant Rao, and Carol Thompson.

9. REFERENCES
[1] Abraham S.G., R.A. Sugumar, D. Windheiser, B.R. Rau and

R. Gupta, “Predictability of Load/Store Instruction Latencies,”
Proceedings of the 26th Annual International Symposium on
Microarchitecture , November 1993.

[2] Advanced Micro Devices, Am29000 32-Bit Streamlined
Instruction Processor Users Manual, 1988.

[3] Calder B., D. Grunwald and B. Zorn, “Quantifying Behavioral
Differences Between C and C++ Programs,” Journal of Pro-
gramming Languages , pp. 313-351, Vol. 2, No. 4, 1994.

[4] Chang P.P., N.J. Warter, S.A. Mahlke, W.Y. Chen, and W.W.
Hwu, “Three Architectural Models for Compiler-Controlled
Speculative Execution,” IEEE Transactions on Computers,
Vol. 44, No. 4, April 1995, pp. 481-494.

[5] Chow F.C., “Minimizing Register Usage Penalty at Procedure
Calls,” Proceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation, June 1988.

[6] Deutsch A., “Interprocedural may-alias analysis for pointers:
Beyond k-limiting,” Proc. of the ACM SIGPLAN '94 Confer-
ence on Programming Language Design and Implementation,
pp. 230-241 (June 1994).

[7] Ebcioglu K., E.R. Altman, “DAISY: Dynamic Compilation
for 100% Architectural Compatibility,” 24th Annual Interna-
tional Symposium on Computer Architecture, pp. 26-37 (June
1997).

[8] Ertl M.A., A. Krall, “Delayed Exceptions — Speculative Exe-
cution of Trapping Instructions,” URL: http://www.comp-
lang.tuwien.ac.at/papers/ertl-krall94cc.ps.gz, in Compiler
Construction (CC '94), Springer LNCS 7861994, pp.158-171,
(April 1994).

[9] Gallagher D.M., W.Y. Chen, S.A. Mahlke, J.C. Gyllenhaal,
and W.W. Hwu, “Dynamic Memory Disambiguation Using
the Memory Conflict Buffer,” Proceedings of the 6th Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS-VI), pp. 183-195
(October 1994).

[10]Gharachorloo K., A. Gupta, and J. Hennessy, “Two Tech-
niques to Enhance the Performance of Memory Consistency
Models,” Proceedings of the 1991 International Conference
on Parallel Processing , Vol. I, Architecture, pp. 355-364,
CRC Press (August 1991).

[11]Hennessy J.L. and D.A. Patterson, Computer Architecture - A
Quantitative Approach, Published by Morgan Kaufman, Sec-
ond Edition, p.306 (1996).

[12]Hewlett Packard Company, “PA-RISC 2.0 Architecture”,
URL: http://devresource.hp.com/devresource/Docs/Refs/
PA2_0 (1995).

[13]Ho W., W-C. Chang and L.H. Leung, “Optimizing the Perfor-
mance of Dynamically-Linked Programs,” Proceedings of the
Winter USENIX Technical Conference (January 1995).

[14]Intel Corporation, “IA-64 Architecture Software Developer’s
Manual”, Volumes I-IV, URL: http://developer.intel.com/
design/ia-64/manuals/index.htm (January 2000).

[15]Intel Corporation, “IA-64 Software Conventions & Runtime
Architecture Guide,” URL: http://developer.intel.com/design/
ia-64/downloads/245358.htm (January 2000).

[16]Intel Corporation, “Intel Architecture Software Developer's
Manual,” URL: http://developer.intel.com/design/PentiumIII/
manuals/, Vol. 1-3 (2000).

[17]International Business Machines Inc., The PowerPC Architec-
ture: A Specification for a New Family of RISC Processors,
Published by Morgan Kaufman (1997).

[18]Keller J., “The 21264: A Superscalar Alpha Processor with
Out-of-Order Execution,” URL: http://www.digital.com/info/
semiconductor/a264up1/index.html, Microprocessor Forum
(October 1996).

[19]Lam M.S. and R.P. Wilson, “Limits of Control Flow on Paral-
lelism,” Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, pp. 47-57 (1992).

[20]Leibholz D. and R. Razdan, “The Alpha 21264: A 500 MHz
Out-of-Order Execution Microprocessor,” URL: http://
www.computer.org/proceedings/compcon/7804/
78040028abs.htm, Proceedings of COMPCON (1997).

[21]Lesartre G. and D. Hunt, “PA-8500: The Continuing Evolu-
tion of the PA-8000 Family,” URL: http://www.hp.com/ahp/
framed/technology/micropro/pa-8500/docs/8500.html, Pro-
ceedings of COMPCON, (1997).

[22]Mahlke S.A., W.Y. Chen, R.A. Bringmann, R.E. Hank, and
W.W. Hwu, “Sentinel Scheduling: A Model for Compiler-
Controlled Speculative Execution,” ACM Transactions on
Computer Systems, Vol. 11, No. 4, pp. 376-408 (November
1993).

[23]Muchnick S., Advanced Compiler Design and Implementa-
tion, Chapter 17.3, Published by Morgan Kaufman (1997).

[24]Papworth D.B., “Tuning the Pentium Pro Microarchitecture,”
IEEE Micro, Vol. 16, No. 2, pp. 8-15 (April 1996).

[25]Schlansker M.S. and B.R. Rau, “EPIC: Explicitly Parallel
Instruction Computing,” Computer, pp. 37-45 (February
2000).

[26]Sharangpani H., “Intel® Itanium™ Processor Microarchitec-
ture Overview,” URL: http://developer.intel.com/design/IA-
64/microarch_ovw/index.htm (October 1999).

[27]Silberschatz A., J. Peterson, P. Galvin, Operating System Con-
cepts, 4th Edition, Addison Wesley (1994).

[28]SPARC International, Inc., “SPARC V9 (64-Bit SPARC)
Architecture Book”, URL: http://www.sparc.com/stan-
dards.html (1999).

[29]Srinivasan S.T. and A.R. Lebeck, “Load Latency Tolerance In
Dynamically Scheduled Processors,” ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO) (November
1998).

[30]Wall D.W., “Register Windows vs. Register Allocation,” Pro-
ceedings of the SIGPLAN Conference on Programming Lan-
guage Design and Implementation (June 1988).

