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Abstract

This paper examines the area, power, performance, and de-
sign issues for the on-chip interconnects on a chip multipro-
cessor, attempting to present a comprehensive view of a class
of interconnect architectures. It shows that the design choices
for the interconnect have significant effect on the rest of the
chip, potentially consuming a significant fraction of the real
estate and power budget. This research shows that designs
that treat interconnect as an entity that can be independently
architected and optimized would not arrive at the best multi-
core design. Several examples are presented showing the need
for careful co-design. For instance, increasing interconnect
bandwidth requires area that then constrains the number of
cores or cache sizes, and does not necessarily increase perfor-
mance. Also, shared level-2 caches become significantly less
attractive when the overhead of the resulting crossbar is ac-
counted for. A hierarchical bus structure is examined which
negates some of the performance costs of the assumed base-
line architecture.

1 Introduction

High-performance processor architectures are moving to-
wards designs that feature multiple processing cores on a sin-
gle chip. These designs have the potential to provide higher
peak throughput, easier design scalability, and greater per-
formance/power ratios than monolithic designs. At least two
dual-core architectures [15, 16] are already on the market.

However, in spite of the growing trend to put multiple cores
on the die, a deep understanding is lacking in the literature of
the design space of the interconnection framework, and par-
ticularly how it interacts with the rest of the multi-core archi-
tecture. For a given number of cores, the “best” interconnec-
tion architecture in a given chip multiprocessing environment
depends on a myriad of factors, including performance objec-
tives, power/area budget, bandwidth requirements, technology,
and even the system software. This paper attempts to present a
comprehensive analysis of the design issues for a class of chip
multiprocessor interconnection architectures.

While interconnects are relatively well understood for con-
necting chips, multi-chip modules, and board-level nodes, con-
necting cores on the same chip presents a distinctly different
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problem. This is because power, area, latency, and bandwidth
are all first-order design constraints for on-chip interconnects.
Secondly, the design choices for the cores, caches, and inter-
connect interact to a much greater degree. For example, an
aggressive interconnect design consumes power and area re-
sources that then constrains the number, size, and design of
the cores and caches. Thus, unlike a conventional multipro-
cessor, performance is not necessarily maximized by the high-
est bandwidth interconnect available. Of course, the converse
is also true, that the number and type of cores (as well as on-
chip memory) also dictate requirements on the interconnect.
In fact, increasing the number of cores places conflicting de-
mands on the interconnect — requiring higher bandwidth while
decreasing available real estate.

In this paper, we model the implementation of several inter-
connection mechanisms and topologies, allowing us to quan-
tify their area, power, and latency overheads. We highlight
the various tradeoffs between performance and power, and be-
tween performance and area. We study the sensitivity of these
overheads to technology, pipeline depth, number of cores, and
onchip memory sizes. We also present one novel interconnec-
tion architecture which effectively exploits some of the behav-
iors identified by this research — a hierarchical bus structure
that reduces local communication overheads, at the expense of
cross-chip latencies. All of this work is done in the context of
important commercial workloads.

This study has three primary goals: (1) to study on-chip
interconnect architectures with detailed and accurate models
that go well beyond prior published work in this area, (2) to
use those models to explore the design space of interconnect
architectures, including crossbars, point-to-point connections,
bus architectures, and various combinations of those technolo-
gies at different widths, and (3) to demonstrate that neither the
core/cache architectures nor the interconnect architecture can
be derived independently, but that the best design is a result of
careful co-design of each of these elements.

The results of this research deliver several strong messages
for architects of future multi-core systems. First, the inter-
connect is a critical design element of a multi-core architec-
ture. On an 8-core processor, for example, the interconnect,
even under conservative assumptions can consume the power
equivalent of one core, take the area equivalent of three cores,
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and add delay that accounts for over half the L2 access latency.
Second, co-design of the cores, caches and interconnect is crit-
ical to achieving the best architecture. We show, for example,
one configuration where decreasing the bandwidth of the inter-
connect increases performance, due to the complex interplay
of performance and area on a chip multiprocessor. As another
example, when interconnect overheads are taken into account,
sharing L2 cache among multiple cores is significantly less at-
tractive than when these factors are ignored. Even with four-
way sharing of L2 caches, the interconnect can be as much as
a quarter of the chip area. In fact, we show repeatedly in this
research that design decisions made ignoring the impact of the
interconnect are often the opposite of the decision indicated
when these factors are properly accounted for.

The rest of this paper is organized as follows. Section 3 dis-
cusses the various interconnection mechanisms. Sections 4
and 5 discuss the methodological details for this study. Sec-
tions 6 and 7 present overhead analysis for various intercon-
nection mechanisms. Section 8 discusses scaling of these over-
heads as a function of technology and pipeline depth. An ex-
ample interconnection optimization is presented in Section 9.
Section 10 concludes.

2 Related Work

There have been several proposals and implementations of
high-performance chip multiprocessor architectures [5, 12, 15,
16]. The proposed interconnect for Piranha [5] was an intra-
chip switch. Cores in Hydra [12] are connected to the L2 cache
through a crossbar. In both cases, the L2 cache is fully shared.
IBM Power4 [15] has two cores sharing a triply-banked L2
cache. Connection is through a crossbar-like structure called
the CIU (core-interface unit).

In this paper, we consider bus-based and crossbar-based in-
terconnections. There have been recent proposals for packet-
based on-chip interconnection networks [13, 7, 25]. Packet-
based networks structure the top level wires on a chip and facil-
itate modular design. Modularity results in enhanced control
over electrical parameters and hence can result in higher per-
formance or reduced power consumption. These interconnec-
tions can be highly effective in particular environments where
most communication is local, explicit core-to-core communi-
cation. However, the cost of distant communication is high.
Due to their scalability, these architectures are attractive for a
large number of cores. The crossover point where these archi-
tectures become superior to the more conventional intercon-
nects studied in this paper is not clear, and is left for future
work.

There is a large body of related work evaluating tradeoffs
between bus-based and scalable shared memory multiproces-
sors, in the context of conventional (multiple-chip) multi-
processors. Some earlier implementations of the intercon-
nection networks for multiprocessors have been described in
[10, 31, 23, 27, 26, 11, 2, 22, 3]. However, on-chip intercon-
nects have different sets of tradeoffs and design issues. Thus,
the conclusions of those prior studies must be re-evaluated in

the context of on-chip multiprocessors with on-chip intercon-
nects.

3 Interconnection Mechanisms

In this paper, we study three interconnection mechanisms
that may serve particular roles in our interconnect hierarchy
— a shared bus fabric (SBF) that provides a shared connection
to various modules that can source and sink coherence traf-
fic, a point-to-point link (P2P link) that connects two SBFs in
a system with multiple SBFs, and a crossbar interconnection
system. Many different modules may be connected to these
fabrics, which use them in different ways. But from the per-
spective of the core, an L2 miss goes out over the SBF to be
serviced by higher levels of the memory hierarchy, another L2
on the same SBF, or possibly an L2 on another SBF connected
to this one by a P2P link. If the core shares L2 cache with
another core, there is a crossbar between the cores/L1 caches
and the shared L2 banks. Our initial discussion of the SBF in
this section assumes private L2 caches.

The results in this paper are derived from a detailed model
of a complex system, which are described in the next few
sections. The casual reader may want to skim Sections 3
through 5 and get to the results in Section 6 more quickly.

3.1 Shared Bus Fabric

A Shared Bus Fabric is a high speed link needed to communi-
cate data between processors, caches, 10, and memory within
a CMP system in a coherent fashion. It is the on-chip equiva-
lent of the system bus for snoop-based shared memory multi-
processors [10, 31, 23]. We model a MESI-like snoopy write-
invalidate protocol with write-back L2s for this study [4, 15].
Therefore, the SBF needs to support several coherence transac-
tions (request, snoop, response, data transfer, invalidates, etc.)
as well as arbitrate access to the corresponding buses. Due to
large transfer distances on the chip and high wire delays, all
buses must be pipelined, and therefore unidirectional. Thus,
these buses appear in pairs; typically, a request traverses from
the requester to the end of one bus, where it is queued up to be
re-routed (possibly after some computation) across a broadcast
bus that every node will eventually see, regardless of their po-
sition on the bus and distance from the origin. In the following
discussion a bidirectional bus is really a combination of two
unidirectional pipelined buses.

We are assuming, for this discussion, all cores have private
L1 and L2 caches, and that the shared bus fabric connects the
L2 caches (along with other units on the chip and off-chip
links) to satisfy memory requests and maintain coherence. Be-
low we describe a typical transaction on the fabric.

3.1.1 Typical transaction on the SBF

A load that misses in the L2 cache will enter the shared bus
fabric to be serviced. First, the requester (in this case, one of
the cores) will signal the central address arbiter that it has a
request. Upon being granted access, it sends the request over
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Figure 1. The assumed shared bus fabric.

an address bus (AB in Figure 1). Requests are taken off the
end of the address bus and placed in a snoop queue, await-
ing access to the snoop bus (SB). Transactions placed on the
snoop bus cause each snooping node to place a response on
the response bus (RB). Logic and queues at the end of the re-
sponse bus collect these responses and generate a broadcast
message that goes back over the response bus identifying the
action each involved party should take (e.g., source the data,
change coherence state). Finally, the data is sent over a bidi-
rectional data bus (DB) to the original requester. If there are
multiple SBFs (e.g., connected by a P2P link), the address re-
quest will be broadcast to the other SBFs via that link, and a
combined response from the remote SBF returned to the local
one, to be merged with the local responses.

Note that the above transactions are quite standard for any
shared memory multiprocessor implementing a snoopy write-
invalidate coherence protocol [4].

3.1.2 Elements of the SBF

The composition of the SBF allows it to support all the coher-
ence transactions mentioned above. We now discuss the pri-
mary buses, queues and logic that would typically be required
for supporting these transactions. Figure 1 illustrates a typical
SBEF. Details of the modeled design, only some of which we
have room to describe here, are based heavily on the shared
bus fabric in the Power 5 multi-core architecture [16].

Each requester on the SBF interfaces with it via request and
data queues. It takes at least one cycle to communicate in-
formation about the occupancy of the request queue to the re-
quester. The request queue must then have at least two en-
tries to maintain the throughput of one request every cycle.
Similarly, all the units that can source data need to have data
queues of at least two entries. Requesters connected to the
SBF include cores, L2 and L3 caches, 10 devices, memory
controllers, and non-cacheable instruction units.

All requesters interface to the fabric through an arbiter for the
address bus. The minimum latency through the arbiter depends
on (1) the physical distance from the central arbiter to the most
distant unit, and (2) the levels of arbitration. Caches are typi-
cally given higher priority than other units, so arbitration can
take multiple levels based on priority. Distance is determined
by the actual floorplan. Since the address bus is pipelined, the
arbiter must account for the location of a requester on the bus

in determining what cycle access is granted. Overhead of the
arbiter includes control signals to/from the requesters, arbitra-
tion logic and some latches.

After receiving a grant from the central arbiter, the requester
unit puts the address on the address bus. Each address re-
quest goes over the address bus and is then copied into multiple
queues, corresponding to outgoing P2P links (discussed later)
and to off-chip links. Being a broadcast bus, the address bus
spans the width of the chip. There is also a local snoop queue
that queues up the requests and participates in the arbitration
for the local snoop bus. Every queue in the fabric incurs at
least one bus cycle of delay. The minimum size of each queue
in the interconnect (there are typically queues associated with
each bus) depends on the delay required for the arbiter to stall
further address requests if the corresponding bus gets stalled.
Thus it depends on the distance and communication protocol
to the device or queue responsible for generating requests that
are sinked in the queue, and the latency of requests already in
transit on the bus. We therefore compute queue size based on
floorplan and distance.

The snoop bus can be shared, for example by off-chip links
and other SBFs, so it also must be accessed via an arbiter, with
associated delay and area overhead. Since the snoop queue is
at one end of the address bus, the snoop bus must run in the
opposite direction of the address bus, as shown in Figure 1.
Each module connected to the snoop bus snoops the requests.
Snooping involves comparing the request address with the ad-
dress range allocated to that module (e.g., memory controllers)
or checking the directory (tag array) for caches.

A response is generated after a predefined number of cycles
by each snooper, and goes out over the response bus. The de-
lay can be significant, because it can involve tag-array lookups
by the caches, and we must account for possible conflicts with
other accesses to the tag arrays. Logic at one end of the bidi-
rectional response bus collects all responses and broadcasts a
message to all nodes, directing their response to the access.
This may involve sourcing the data, invalidating, changing co-
herence state, etc. Some responders can initiate a data transfer
on a read request simultaneously with generating the snoop re-
sponse, when the requested data is in appropriate coherence
state. The responses are collected in queues. All units that can
source data to the fabric need to be equipped with a data queue.
A central arbiter interfacing with the data queues is needed to
grant one of the sources access to the bus at a time.

Bidirectional data buses source data. They support two dif-
ferent data streams, one in either direction. Data bandwidth
requirements are typically high.

It should be noted that designs are possible with fewer buses,
and the various types of transactions multiplexed onto the
same bus. However, that would require higher bandwidth (e.g.,
wider) buses to support the same level of traffic at the same
performance, so the overheads are unlikely to change signif-
icantly. We assume for the purpose of this paper that only
the above queues, logic and buses form a part of the SBF and
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contribute to the interconnection latency, power, and area over-
heads.

3.2 P2P Links

If there are multiple SBFs in the system, the connection be-
tween the SBFs is accomplished using P2P links. Multiple
SBFs might be required to increase bandwidth, decrease signal
latencies, or to ease floorplanning (all connections to a single
SBF must be on a line). For example, if a processor has 16
cores as shown in Figure 3, it becomes impossible to main-
tain die aspect ratio close to 1 unless there are two SBFs each
supporting 8 cores.

Each P2P link should be capable of transferring all kinds of
transactions (request/response/data) in both directions. Each
P2P link is terminated with multiple queues at each end. There
needs to be a queue and an arbiter for each kind of transaction
described above.

3.3 Crossbar Interconnection System

The previous section assumed private L2 caches, with com-
munication and coherence only occurring on L2 misses. How-
ever, if our architecture allows two or more cores to share L2
cache banks, a high bandwidth connection is required between
the cores and the cache banks. This is typically accomplished
by using a crossbar. It allows multiple core ports to launch
operations to the L2 subsystem in the same cycle. Likewise,
multiple L2 banks are able to return data or send invalidates to
the various core ports in the same cycle.

The crossbar interconnection system consists of crossbar
links and crossbar interface logic. A crossbar consists of ad-
dress lines going from each core to all the banks (required for
loads, stores, prefetches, TLB misses), data lines going from
each core to the banks (required for writebacks) and data lines
going from every bank to the cores (required for data reload
as well as invalidate addresses). A typical implementation,
shown in Figure 2, consists of one address bus per core from
which all the banks feed. Each bank has one outgoing data
bus from which all the cores feed. Similarly, corresponding to
each write port of a core is an outgoing data bus that feeds all
the banks.

Crossbar interface logic presents a simplified interface to the
instruction fetch unit and the Load Store Unit in the cores. It
typically consists of a load queue corresponding to each core
sharing the L2. The load queue sends a request to the L2 bank
appropriate to the request, where it is enqueued in a bank load
queue (BLQ) (one per core for each bank to avoid conflict be-
tween cores accessing the same bank). The BLQs must arbi-
trate for the L2 tags and arrays, both among the BLQs, as well
as with the snoop queue, the writeback queue, and the data
reload queue — all of which may be trying to access the L2
at the same time. After L2 access (on a load request), the data
goes through the reload queue, one per bank, and over the data
bus back to the core. The above description of the crossbar
interface logic is based on the crossbar implementation (also
called core interface unit) in Power4 [15] and Power5 [16].

Note that even when the caches (or cache banks) are shared,
an SBF is required to maintain coherence between various
units in the CMP system.

4 Modeling Area, Power, and Latency

Both wires and logic contribute to interconnect overhead.
This section describes our methodology for computing various
overheads for 65nm technology. The scaling of overheads with
technology as well as other design parameters is discussed in
Section 8.

4.1 Wiring Area Overhead

We address the area overheads of wires and logic separately.

The latency, area, and power overhead of a metal wire de-
pends on the metal layer used for this wire. Technology that
we consider facilitates 10 layers of metal, 4 layers in 1X plane
and 2 layers in the higher planes (2X, 4X and 8X) [17]. The
1X metal layers are typically used for macro-level wiring [17].
Wiring tracks in higher layers of metal are very expensive and
only used for time-critical signals running over a considerable
distance (several millimeters of wire).

We evaluate crossbar implementations for 1X, 2X and 4X
metal planes where both data and address lines use the same
metal plane. For our SBF evaluations, the address bus, snoop
bus, and control signals always use the 8X plane. Response
buses preferably use the 8X plane, but can use the 4X plane.
Data buses can be placed in the 4X plane (as they have more
relaxed latency considerations). All buses for P2P links are
routed in the 8X plane.

The area occupied by a bus is determined by the number of
wires times the effective pitch of the wires times the length.
We account for the case where the area of one bus (partially)
subsumes the area of some other bus in a different plane.
When buses are wired without logic underneath, repeaters and
latches are placed under the buses without incurring any ad-
ditional area overhead. However, when interconnection buses
are routed over array structures (e.g. cache arrays, directories
etc.), we account for the fact that the sub-arrays (or memory
macros) have to be shifted to make space for the placement of
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Metal | Pitch | Signal Wiring Repeater Repeater Latch Latch Channel Leakage Gate Leakage
Plane | (um) Pitch (zm) Spacing (mm) | Width(zm) | Spacing (mm) Height (um) | per repeater (uA) | per repeater(uA)
1X 0.2 0.5 04 0.4 1.5 120 10 2
2X 0.4 1.0 0.8 0.8 3.0 60 20 4
4X 0.8 2.0 1.6 1.6 5.0 30 40 8
8X 1.6 4.0 32 3.2 8.0 15 80 10

Table 1. Design parameters for wires in different metal planes

wire repeaters and latches. In this case the minimal repeater
and latch spacing is an essential parameter determining the
area overhead. We believe that 4X and 8X wires can be routed
over memory arrays. However, in section 7, we also evaluate
routing 1X and 2X over memory, even though we believe it to
be technologically more difficult.

Table 1 shows the signal wiring pitch for wires in different
metal planes for 65nm. These pitch values are estimated by
conforming to the considerations mentioned in [29].

The table also shows the minimum spacing for repeaters and
latches as well as their heights for computing the correspond-
ing area overheads. We model the height of the repeater macro
to be 15 um. The height of the latch macro given in the table
includes the overhead of the local clock buffer and local clock
wiring, but excludes the overhead of rebuffering the latch out-
put which is counted separately. The values in Table 1 are for
a bus frequency of 2.5 GHz and a bus voltage of 1.1 V. Analy-
sis for different bus frequencies can be found in Section 8.

4.2 Logic Area Overhead

Area overhead due to interconnection-related logic comes
primarily from queues. Queues are assumed to be imple-
mented using latches. We estimate the area of a 1-bit latch
used for implementing the queues to be 115 um? for 65nm
technology [30]. This size includes the local clock driver and
the area overhead of local clock distribution. We also esti-
mated that there is 30% overhead in area due to logic needed
to maintain the queues (such as head, tail pointers, queue by-
pass, overflow signaling, request/grant logic, etc.) [6].

The interconnect architecture can typically be designed such
that buses run over interconnection-related logic. The area
taken up due to wiring is usually big enough that it (almost)
subsumes the area taken up by the logic.

Because queues overwhelmingly dominate the logic area,
we ignore the area (but not latency) of multiplexors and ar-
biters. It should be noted that the assumed overheads can be
reduced by implementing queues using custom arrays instead
of latches.

4.3 Power

Power overhead comes from wires, repeaters, and latches.
For calculating dynamic dissipation in the wires, we optimisti-
cally estimate the capacitance per unit length of wire (for all
planes) to be 0.2 pF/mm [14]. Repeater capacitance is assumed
to be 30% of the wire capacitance [1]. The dynamic power
per latch is estimated to be 0.05 mW per latch for 2.5 GHz at
65 nm [30]. This includes the power of the local clock buffer

and the local clock distribution, but does not include rebuffer-
ing that typically follows latches.

Total dynamic power of a bus would depend on utilization
of the bus as well as the efficacy of clock gating. We assume
that in 30% of the unused cycles the latches will be gated off,
to be consistent with clock gating efficiencies typically quoted
for high-end microprocessors [6]. Even though the cycles of
inactivity are easier to predict in the fabric than in the core,
the physical distance between latches of the neighboring clock
stages is much larger in the fabric, which complicates the tim-
ing of the clock gate signals.

Repeater leakage is computed using the parameters given in
Table 1. For latches, we estimate channel leakage to be 20uA
per bit in all planes (again not counting the repeaters following
a latch). Gate leakage for a latch is estimated to be 2uA per bit
in all planes [1]. For computing dynamic and leakage power
in the queues, we use the same assumptions as for the wiring
latches.

4.4 Latency

The latency of a signal traveling through the interconnect is
primarily due to wire latencies, wait time in the queues for ac-
cess to a bus, arbitration latencies, and latching that is required
between stages of interconnection logic. Latency of wires is
determined by the spacing of latches. Spacing between latches
for wires is given in Table 1.

Arbitration can take place in multiple stages (where each
stage involves arbitration among the same priority units) and
latching needs to be done between every two stages. For
65 nm technology, we estimate that no more than four units
can be arbitrated in a cycle. The latency of arbitration also
comes from the travel of control between a central arbiter and
the interfaces corresponding to request/data queues.  Other
than arbiters, every time a transaction has to be queued, there
is at least a bus cycle of delay — additional delays depend on
the utilization of the outbound bus.

S Modeling multi-core architectures

For this study, we consider a stripped version of out-of-order
Power4-like cores [15]. We determine the area taken up by
such a core at 65nm to be 10mm?2. The area and power deter-
mination methodology is similar to the one presented in [19].
The power taken up by the core is determined to be 10W, in-
cluding leakage.

For calculating on-chip memory sizes, we use the Power5
cache density, as measured from die photos [16], scaled to
65nm. We determine it to be 1 bit per square micron, or
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0.125M B/mm?. For the purpose of this study, we consider
L2 caches as the only type of on-chip memory. We do not as-
sume off-chip L3 cache, but in 65nm systems, it is likely that
L3 chips would be present as well (the number of L3 chips
would be limited, however, due to the large number of pins
that every L3 chip would require), but we account for that ef-
fect using somewhat optimistic estimates for effective band-
width and memory latency. Off-chip bandwidth was modeled
carefully based on pincount [1] and number of memory chan-
nels (Rambus RDRAM interface was assumed).

Our models include the effects of not only L2 banks and
memory controllers, but also DMA controllers and Non-
cacheable Instruction Units (NCUs) on the die that can gen-
erate transactions. NCUs handle instructions like syncs, eieios
(enforce inorder execution of I/Os), TLB invalidates, partial
read/writes, etc., that are not cached and are directly put on the
fabric. Each core has a corresponding NCU. The assumptions
about these units are taken from Power 4 and Power 5 [15, 16]
designs.

We simulate a MESI-like [24, 15] coherence protocol, and all
transactions required by that protocol are faithfully modeled in
our simulations. We also model weak consistency [8] for the
multiprocessor, so there is no impact on CPI due to the latency
of stores and writebacks.

For performance modeling, we use a combination of detailed
functional simulation and queuing simulation tools [21]. The
functional simulator is used for modeling the memory subsys-
tem as well as the interconnection between modules. It takes
instruction traces from a SMP system as input and generates
coherence statistics for the modeled memory/interconnect sub-
system. The queueing simulator takes as input the modeled
subsystem, its latencies, coherence statistics and the inherent
CPI of the modeled core assuming perfect L2. It then gener-
ates the CPI of the entire system, accounting for real L2 miss
rates and real interconnection latencies. Traffic due to syncs,
speculation, and MPL (message passing library) effects is ac-
counted for as well. The tools and our interconnection models
have been validated against a real, implemented design.

The cache access times are calculated using assumptions
similar to those made in CACTI [28]. Memory latency is set to
500 cycles. The average CPI of the modeled core over all the
workloads that we use, assuming perfect L2, is measured to
be 2.65. Core frequency is assumed to be SGHz for the 65nm
studies. Buses as well as the L2 are assumed to be clocked at
half the CPU speed.

5.1 Workload

All our performance evaluations have been done using com-
mercial workloads, including TPC-C, TPC-W, TPC-H, Notes-
bench and others further described in [21]. The server work-
loads used represent such market segments as on-line trans-
action processing (OLTP), business intelligence, enterprise re-
source planning, web serving, and collaborative groupware.
These applications are large and function rich; they use a

large number of operating system services and access large
databases. These characteristics make the instruction and data
working sets large. These workloads are also inherently mul-
tiuser and multitasking, with frequent read-write sharing.

We use PowerPC instruction and data reference traces of the
workloads running under AIX. The traces are taken in a non-
intrusive manner by attaching a hardware monitor to a proces-
sor [9, 21]. This enables the traces to be gathered while the
system is fully loaded with the normal number of users, and
captures the full effects of multitasking, data sharing, inter-
rupts, etc. These traces contain even DMA instructions and
non-cacheable accesses.

6 Shared Bus Fabric Overheads, Performance,
and Design Considerations

This section examines the various overheads of the shared
bus fabric, and the implications this has for the entire multi-
core architecture. We examine floorplans for several design
points, and characterize the impact on the overall design and
performance of the processor of the area, power, and latency
overheads. This section demonstrates that the overheads of the
SBF can be quite significant. It also illustrates the tension be-
tween the desire to have more cores, more cache, and more
interconnect bandwidth, and how that plays out in total perfor-
mance.

In this section, we assume private L2 caches and that all the
L2s (along with NCUs, memory controllers, and IO Devices)
are connected using a shared bus fabric. We consider architec-
tures with 4, 8, and 16 cores. Total die area is assumed to be
constant at 400mm? due to yield considerations. Hence, the
amount of L2 per core decreases with increasing number of
cores. For 4, 8 and 16 cores, we evaluate multiple floorplans
and choose those that maximized cache size per core while
maintaining a die aspect ratio close to 1. In the default case,
we consider the width of the address, snoop, response and data
buses of the SBF to be 7, 12, 8, 38 (in each direction) bytes re-
spectively — these widths are determined such that no more
than 0.15 requests get queued up, on average, for the 8 core
case. We also evaluate the effect of varying bandwidths. We
can lay out 4 or 8 cores with a single SBE, but for 16 cores,
we need two SBFs connected by a P2P link. In that case, we
model two half-width SBFs and a 76 byte wide P2P link. Fig-
ure 3 shows the floorplans arrived at for the three cases. The
amount of L2 cache per core is SMB, 3MB and 0.5MB for 4, 8
and 16 core processors respectively. It must be mentioned that
the 16-core configuration is somewhat unrealistic for this tech-
nology as it would result in inordinately high power consump-
tion. However, we present the results here for completeness
reasons.

Wires are slow and hence cannot be clocked at very high
speeds without inserting an inordinately large number of
latches. For our evaluations, the SBF buses are cycled at half
the core frequency.
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Figure 3. Floorplans for 4, 8 and 16 core processors
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Figure 4. Area overhead for shared bus fabric.

6.1 Area

The area consumed by the shared bus fabric comes from
wiring and interconnection-related logic, as described in Sec-
tion 4. Wiring overhead depends on the architected buses and
the control wires that are required for flow control and arbitra-
tion. Control wires are needed for each multiplexor connected
to the buses and signals to and from every arbiter. Flow con-
trol wires are needed from each queue to the units that control
traffic to the queue.

Since data buses run in the 4X plane, the area taken up by
(76-byte) data buses is calculated as 2um x 76 x 8 x length,
which results in 24.32mm?. Address (7 bytes), snoop (12
bytes), response buses (8 bytes) as well as control wires (at
least 198 of them for the stated control architecture for 8 cores)
that run in the 8X plane can be routed over the data buses. In
this case, the area overhead of the data buses is subsumed by
that of the remaining buses. For 16 cores, the P2P links do not
result in direct area overhead because they can be routed over
L2 caches. However, reduction in the cache density (due to
bus latches and repeaters) does result in an area overhead.

Figure 5 shows the wiring area overhead for various proces-
sors. The graph shows the area overhead due to architected
wires, control wires, and the total. We see that area overhead
due to interconections in a CMP environment can be signifi-
cant. For the assumed die area of 400mm?, area overhead for
the interconnect with 16 cores is 13%. Area overhead for 8
cores and 4 cores is 8.7% and 7.2% of the die area, respec-
tively. Considering that each core is 10mm?, the area taken
up by the SBF is sufficient to place 3-5 extra cores, or 4-6 MB
of extra cache.

Total number of latches [ 33824 | 52000 | 108288
Area(in mm?) | 56 | 86 |
Table 2. Logic overhead

The graph also shows that area overhead increases quickly
with the number of cores. This result assumes constant width
architected buses, even when the number of cores is increased.
If the effective bandwidth per core is kept constant, overhead
would increase even faster.

The overhead due to control wires is high. Control takes up
at least 37% of SBF area for 4 cores and at least 62.8% of the
SBF area for 16 cores. This is because the number of con-
trol wires grows linearly with the number of connected units,
in addition to the linear growth in the average length of the
wires. Reducing SBF bandwidth does not reduce the control
area overhead, thus it constrains how much area can be re-
gained with narrower buses. Note that this argues against very
lightweight (small, low performance) cores on this type of chip
multiprocessor, because the lightweight core does not amortize
the incremental cost to the interconnect of adding each core.

Interconnect area due to logic is primarily due to the vari-
ous queues, as described in Section 4. Table 2 shows the area
overhead due to interconnect-related logic and the correspond-
ing breakdown. The area taken up by interconnection-related
logic increases superlinearly with the number of connected
units (note that the number of connected units is 14, 22 and
38 respectively for 4, 8 and 16 core processors). When going
from 8 to 16 cores, the logic-area overhead jumps because the
queues are required to support two SBFs and a P2P link. Note,
however, that the logic can typically be placed underneath the
SBF wires. Thus, under these assumptions the SBF area is
dominated by wires, but only by a small amount.

[ Number of cores [ 4 ] 8 [ 16 |
[ Number of data queue latches [ 28672 | 45056 | 92160 |
[ Number of request queue latches [ 3136 | 4928 [ 8512 |
[ Number of snoop queue latches [ 336 [ 33 [ 8% |
[ Number of Iatches for response bus queue [ 1680 | 1680 | 6720 |
| |
| |

17.94

6.2 Power

The power dissipated by the interconnect is the sum of the
power dissipated by wires and the logic. Figure 5 shows a
breakdown of the total power dissipation by the interconnect.

The graph shows that total power due to the interconnect can
be significant. The interconnect power overhead for the 16-
core processor is more than the combined power of two cores.
It is equal to the power dissipation of one full core even for
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Figure 5. Power overhead for shared bus fabric.

the 8 core processor. Power increases superlinearly with the
number of connected units. This is because of the (at least lin-
ear) increase in the number of control wires as well as the (at
least linear) increase in the number of queuing latches. There
is also a considerable increase in the bus traffic with the grow-
ing number of cores. Half the power due to wiring is leakage
(mostly from repeaters).

Contrary to popular belief, interconnect power is not always
dominated by the wires. The power due to logic can be, as in
this case, more than the power due to wiring.

6.3 Performance

For the chip multiprocessor consisting of four cores, the end
to end latency of the architected buses, except the data buses,
would be 6 processor cycles (as three latches would be re-
quired for 20mm wires running in the 8X plane). Similarly,
the latency of the data buses (routed in the 4X plane) would be
12 processor cycles.

Address arbitration would take 8 processor cycles, but the
request transfer between the central address arbiter and the re-
quest queues would take 8 processor cycles (two latches each
way — we assume central arbiters to be placed around the mid-
dle of the chip). Every queue would take at least one bus cy-
cle. Snoop response generation will take at least 20 processor
cycles (cache tag access and two latches). Generating a final
response will take 4 cycles (two latches). We also estimate that
an 8MB cache can be accessed in 46 cycles (includes array ac-
cess time, time to go through queues, arbitration overhead for
getting access to the array, etc.; note that L2 is assumed to be
cycled at half the core frequency). Accounting for all arbitra-
tion, bus latencies, queues, and the cache access, the minimum
(no contention) latency for a load for four cores is 124 cycles.
Even under these optimistic assumptions, the interconnect ac-
counts for over half the total latency to the L2 cache.

Figure 6 shows the per-core performance for 4, 8 and 16 core
architectures both assuming no interconnection overhead (zero
latency interconnection) and with interconnection overheads
modeled carefully. Single-thread performance (even assum-
ing no interconnection overhead) goes down as the number

[ performance assuming no interconnection overhead
I performance with interconnection overhead
= performance degradation

8
6
]
]
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Performance Degradation(%)
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Figure 6. Performance overhead due to shared bus
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of cores increases due to the reduced cache size per core. If
interconnect overhead is considered, then the performance de-
creases much faster. In fact, performance overhead due to in-
terconnection is more than 10% for 4 cores, more than 13%
for 8 cores and more than 26% for 16 cores.

In results to this point, we keep bus bandwidth constant. In
Figure 7, we show the single-thread performance of a core in
the 8 core processor case, when the width of the architected
buses is varied by factors of two. The graph also shows the
real estate saved compared to the baseline. We see that with
wide buses, the area costs are significant, and the incremen-
tal performance is minimal. On the other hand, with narrow
buses, the area saved by small changes in bandwidth is small,
but the performance impact is significant.

Alternatively, we could put that saved area to use. We ran
simulations that assume that we put that area back into the
caches. We find that over certain ranges, if the bandwidth
is reduced by small factors, the performance degradation can
be recovered using bigger caches. For example, decreasing
the bandwidth by a factor of 2 decreases the performance by
0.57%. But it saves 8.64mm?. This can be used to increase the
per-core cache size by 135KB. When we ran simulations using
new cache sizes, we observed a performance improvement of
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0.675%. Thus, we can decrease bus bandwidth and improve
performance (if only by small margins in this example), be-
cause the resulting bigger caches protect the interconnect from
a commensurate increase in utilization. On the other hand,
when bandwidth is decreased by a factor of 8, performance
decreases by 31%, while the area it saves is 15.12mm?2. The
area savings is sufficient to increase per core cache size by
only 240KB. The increase in cache size was not sufficient to
offset the performance loss in this case. Similarly, when dou-
bling interconnect bandwidth over our baseline configuration,
total performance decreased by 1.2% due to the reduced cache
sizes.

This demonstrates the importance of co-designing the in-
terconnect and memory hierarchy. It is neither true that the
biggest caches nor the widest interconnect give the best per-
formance; designing each of these subsystems independently
is unlikely to result in the best design. Similarly, the core itself
should be co-architected with the caches and interconnect, but
for this study we treat the cores as a constant.

7 Shared Caches and the Crossbar

The previous section presented evaluations with private L1
and L2 caches for each core, but many proposed chip mul-
tiprocessors have featured shared L2 caches, connected with
crossbars. Shared caches allow the cache space to be parti-
tioned dynamically rather than statically, typically improving
overall hit rates. Also, shared data does not have to be dupli-
cated. To fully understand the tradeoffs between private and
shared L2 caches, however, we find that it is absolutely critical
that we account for the impact of the interconnect.

7.1 Area and power overhead

The crossbar, shown in Figure 2, connects cores (with L1
caches) to the shared L2 banks. The data buses are 32 bytes
while the address bus is 5 bytes. Lower bandwidth solutions
were found to adversely affect performance and render sharing
highly unfruitful. In this section we focus on an 8-core proces-
sor with 8 cache banks, giving us the options of 2-way, 4-way,
and full (8-way) sharing of cache banks. Crossbar wires can
be implemented in the 1X, 2X or 4X plane. For almost 2x re-
duction in the latency, the wire thickness doubles every time
we go to a higher metal plane.

Figure 8 shows the area overhead for implementing different
mechanisms of cache sharing. The area overhead is shown for
two cases — one where the crossbar runs between cores and L2
and the other where the crossbar can be routed over L2. When
the crossbar is placed between the L2 and the cores, interfacing
is easy, but all wiring tracks result in area overhead. When
the crossbar is routed over L2, area overhead is only due to
reduced cache density to accommodate repeaters and latches.
However, the implementation is relatively complex as vertical
wires are needed to interface the core with the L2. We show
the results assuming that the L2 density is kept uniform (i.e.
even if repeaters/latches are dropped only over the top region
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Figure 8. Area overhead for cache sharing — results
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to maintain uniform density).

Cache sharing carries a heavy area overhead. If the total die-
area is around 400 mm?2, then the area overhead for an ac-
ceptable latency (2X) is 11.4% for 2-way sharing, 22.8% for
four-way sharing and 46.8% for full sharing (nearly half the
chip!). Overhead increases as we go to higher metal layers
due to increasing signal pitch values. When we assume that
the crossbar can be routed over L2, area overhead is still sub-
stantial; however, in that case it improves as we move up in
metal layers. At low levels the number of repeater/latches,
which must displace cache, is highest.

The point of sharing caches is to get the effect of having
more cache space. In this case, the cores can gain significant
real cache space by foregoing sharing, raising doubts about
whether sharing has any benefit. This is seen even more clearly
in the next subsection.

The high area overhead again suggests that issues of inter-
connect/cache/core codesign must be considered. For cross-
bars sitting between cores and L2, just two-way sharing re-
sults in an area overhead equivalent to more than the area of
two cores. Four-way sharing results in an area overhead of 4
cores. An 8-way sharing results in an area overhead of 9 cores.
If the same area were devoted to caches, one could instead put
2.75 MB, 5.5 MB and 11.6 MB of extra caches, respectively.

Figure 9 shows the corresponding power overhead. A break-
down is also provided for various sources of power dissipa-
tion. The graph shows that power overhead due to crossbars is
very significant. The overhead can be more than the power
taken up by three full cores for a completely shared cache
and more than the power of one full core for 4-way sharing.
Even for 2-way sharing, power overhead is more than half the
power dissipation of a single core. Hence, even if power is the
primary constraint, the benefits of the shared caches must be
weighed against the possibility of more cores or significantly
more cache.
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Leakage is a smaller fraction of the total power for cross-
bars than for SBFs; however, it is still significant — 18-20%
depending on the metal layer.

7.2 Performance

Because of the high area overhead for cache sharing, the to-
tal amount of on-chip caches decreases with sharing. We per-
formed our evaluations for the most tightly packed floorplans
that we could find for 8-core processors with different levels of
sharing. When the crossbar wires are assumed to be routed in
the 2X plane between cores and L2, total cache size is 20MB,
14MB and 4MB respectively for 2-way, 4-way and full shar-
ing. When crossbar is assumed to be routed over L2 (and as-
suming unifor cache density), the total cache size was 22MB
for 4X and 18.2MB for 2X. We also conducted experiments
assuming no crossbar area overhead to isolate the benefit of
sharing. Figure 10 shows results for a fixed on-chip cache
size (i.e. assuming no crossbar area overhead — crossbar la-
tency overhead is assumed, however). Figure 11 presents the
results for a fixed die area and cache sizes varied accordingly
(i.e. taking into account crossbar area overhead).

Figure 10 shows that cache sharing, in general, results in
higher performance than just having private caches if intercon-
nection area overheads are not considered. It also shows that
crossbar performance is very sensitive to the metal plane used
to implement it.

Figure 11, assumes a constant die area and considers inter-
connection area overhead. It shows that performance, even
without considering the interconnection latency overhead (and
hence purely the effect of cache sharing), either does not im-
prove or improves only by a slight margin. This is due to
reduced size of on-chip caches to accommodate the cross-
bar. If interconnect latencies are accounted for (higher shar-
ing means longer crossbar latencies), sharing degrades perfor-
mance even between two cores. Note that in this case, the con-
clusion reached ignoring interconnect area effects is opposite
that reached when those effects are considered.
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Figure 10. Evaluating cache sharing for a fixed cache
size for different crossbar implementations — no area
overhead is assumed

two_shared four_shared all_shared

@ performance assuming no interconnection overhead(2X crossbar
between cores and L2)

W performance with interconnection overhead(2X crossbar between
cores and L2)

O performance assuming no interconnection overhead(2X crossbar
routed over L2)

O performance with interconnection overhead(2X crossbar routed
over L2)

1 m performance with interconnection overhead(4X crossbar routed over|

L2)

all_private
Figure 11. Evaluating cache sharing for a fixed die-
area — area overhead taken into account
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Note that performance loss due to increased L2 hit latency
can be mitigated by using L2 latency hiding techniques, like
overlapping of L2 accesses or prefetching. Also, crossbar area
overhead can be reduced (and hence performance improved)
by implementing caches with non-uniform density. In fact,
we observed that two-way and four-way sharing improves per-
formance for the 4X crossbar implementation if the crossbar
is routed over memory and the L2 is allowed to have non-
uniform density. Sharing might also result in benefit for other
workloads with different working set and sharing behavior.
Also, the smaller the relative frequency of the bus, the less
prohibitive it is to implement L2 with large-scale sharing. For
example, if the crossbars are routed over L2 and are clocked
at one-fourth the core frequency, we observe that two-way
and four-way sharing improves performance on the 4X metal
plane.

However, our results definitely show that having shared
caches becomes significantly less desirable than previously ac-
cepted if interconnection overheads are considered. We be-
lieve that the conclusion holds, in general, for uniform ac-
cess time caches and calls for evaluation of caching strategies
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with careful consideration of interconnect overheads. Further
analysis needs to be done for intelligent NUCA (non-uniform
cache access) caches [18].

8 Scaling with Technology Parameters

All results to this point in the paper have been carefully pa-
rameterized to the 65 nm process. This section extends those
results to future technologies, and also considers the effect of
deeper pipelining (i.e., faster CPU clocks).

As technology shrinks, the repeater and latch spacings de-
crease, thereby increasing the latency overhead due to wires.
Going to deeper pipelines/faster clocks also decreases repeater
and latch spacings, as well as increased logic overhead (in
terms of cycles). Technology scaling and deeper pipelines also
increase perceived memory and cache access times. We used
ITRS scaling trends to compute the latencies for 45nm and
32nm technologies. Figure 12 shows the results for a fixed
die area (400 mm?) for 65nm, 45nm and 32nm. The results
are shown for the 8-core case. Each core has a private cache
of 3MB, 6MB and 10MB respectively for the three technolo-
gies. We assume the base CPI of the core (apart from memory
behavior) to remain the same for this study.

Figure 12 shows that with deeper pipelines for the same
technology, the interconnection overhead on performance in-
creases. For example at 65 nm, if the pipeline depth is changed
from 26FO4 to 10FO4, the interconnection overhead increases
by 30%. But for 45 nm, the corresponding change is 55%, and
for 32nm, 44.4%. Also, for the same die area, and for the
same pipeline depth, interconnection overhead increases with
technology. Overhead increase is due to increased latencies,
increased arbitration overhead, etc. Note that increased cache
size for better technologies leads to higher hit rates as well as
reduced traffic on the interconnect, but it is not sufficient to
hide the effect of the increased interconnect latencies. It must
be mentioned, however, that overall performance improves be-
cause of higher frequencies.
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9 Reducing interconnect latency — an alternate
architecture

The intent of this section is to apply one lesson learned from
the high volume of data gathered in this research. Our inter-
connect architectures to this point were highly driven by lay-
out. The SBF spans the width of the chip, allowing us to con-
nect as many units as possible in a straight line across the chip.
However, the latency overheads of a long SBF encourage us to
consider alternatives. This section describes a more hierarchi-
cal approach to interconnects, which can exploit shorter buses
with shorter latencies when traffic remains local. We will be
considering the 8-core processor again.

The effectiveness of such an approach will depend on the
probability that an L2 miss is serviced on a local cache (an L2
connected to the same SBF), rather than a cache on a remote
SBF. We will refer to this probability as “thread bias”. A
workload with high thread bias means that we can identify and
map “clusters” of threads that principally communicate with
each other on the same SBF.

In this section, we split the single SBF that spanned the chip
vertically into two SBFs, with a P2P link between them. Local
accesses benefit from decreased distances. Remote accesses
suffer because they travel the same distances and see additional
queueing and arbitration overheads between interconnects.

Figure 14 shows the performance of the split SBF for various
thread bias levels. The SBF is split vertically into two, such
that each SBF piece now supports 4 cores, 4 NCUs, 2 memory
controllers and 1 IO Device. The X-axis shows the thread bias
in terms of the fraction of misses satisfied by an L2 connected
to the same SBF. A 25% thread bias means that one out of four
L2 misses are satisfied by an L2 connected to the same SBF
piece. These results are obtained through statistical simulation
by synthetically skewing the traffic pattern.

The figure also shows the system performance for a a single
monolithic SBF (the one used in previous sections). As can be
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seen, if thread bias is more than 17%, the performance of split
SBF can overtake performance of a monolithic SBE. Note that
17% is lower than the statistical probability of locally satisfy-
ing an L2 miss assuming uniform distribution (3/7). Hence,
the split SBF, in this case, is always a good idea.

10 Summary and Conclusions

This paper presents the results of a detailed modeling of the
impact of the interconnection fabric on a hypothetical chip
multiprocessor. These results show that the architecture of
the interconnect interacts with the design and architecture of
the cores and caches to a much greater degree than conven-
tional off-chip interconnections. Thus, any design that hopes
to achieve high performance or even energy efficiency needs
to be the result of a careful co-design of all three elements.

This study shows several examples of this need for co-design.
The interconnect fabric itself is large and power-hungry, con-
suming resources that would otherwise be available for more
cores and caches. The interconnect, even without the sharing
of L2 caches, can take the area of three cores and the power of
one.

We show examples where decreasing interconnection band-
width can improve performance, due to the constrained win-
dow on total resources. In the same way, large caches can also
decrease performance when they constrain the interconnect to
too small an area.

We also show that while it is generally believed that shared
L2 caches improve cache hit rates, we show that the implica-
tions on the interconnect are extreme. For example, sharing
four caches among four cores can require a quarter of the chip
area just for the crossbar network. When accounting for the
area overheads and the latency of the long interconnect, the
desirability of shared L2 caches is significantly lower than is
assumed if the interconnect is not accounted for.
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