
CAITLIN: A Musical Program Auralisation Tool to Assist
Novice Programmers with Debugging

Paul Vickers
School of Computing and Mathematical Sciences

Liverpool John Moores University
Liverpool, UK

p.vickers@livjm.ac.uk

James L. Alty
LUTCHI Research Centre

Department of Computer Studies
Loughborough University

Loughborough, UK
j.l.alty@lboro.ac.uk

Abstract
In the field of auditory display relatively little work has focused
on the use of sound to aid program debugging. This paper de-
scribes CAITLIN1 a pre-processor for Turbo Pascal programs
that musically auralises programs with a view to assisting nov-
ice programmers with locating errors in their code. A discussion
follows of an experiment which showed that programmers
could use the musical feedback to visualise and describe pro-
gram structure. Conclusions and a discussion of future work are
then given.

Keywords
Auralisation, audiolisation, auditory-display, musicode.

1. Introduction.
The term software visualisation suggests the idea of in-

vestigation using the visual sense alone. However, the aim of
software visualisation is simply to improve the understanding of
software [8]. Therefore, it makes sense to use sound if it pos-
sesses properties that facilitate software comprehension. Previ-
ous research shows that sound is a useful tool in the presenta-
tion of information to users. Examples include: Edwards’
sound-enhanced word-processor for the blind [9], Gaver’s
auditory icons [11], Blattner’s earcons [2], and Gaver’s audio-
enhanced graphical user interface [12].

Sonification, or the mapping of data to sound [20] demon-
strates that large data sets can be represented using sound [3,
18, 21].

Audification [17], or the direct conversion of data to
sound has been used to analyse large sets of seismic data that
would be more difficult to visualise using graphics [13].

2. Program auralisation
Within the field of auditory-display research program

auralisation is beginning to attract interest. Auralisation is the
representation of program data (including execution state) using
sound [15, 17]. The majority of efforts has been concerned with
the auralisation of specific algorithms.

Brown and Hershberger [6] used music to enhance and
complement an animation of a bubble sort algorithm. Other
work has shown how sound can be used as the primary medium
for visualising the state of parallel algorithms [10, 15].

The case for using music to aid debugging is supported by
Francioni et al [14], although they felt that a visual presentation
was also needed to provide a context or framework for the
audio sound-track. Program state was captured as a set of trace
data that were subsequently auralised and animated. Ways in
which certain aspects of parallel programs can be auralised

1 http://www.cms.livjm.ac.uk/www/homepage/cmspvick/caitlin/caitlin.htm

have been suggested by Jackson et al [15], but again the aurali-
sation is of a ‘post-mortem’ nature.

Auralisation projects of note include the InfoSound sys-
tem [22] by Sonnenwald et al, DiGiano et al’s LogoMedia [7],
Jameson’s Sonnet system [16], Bock’s Auditory Domain Speci-
fication Language (ADSL) [5] and Mathur’s LISTEN system
[4].

One stark omission from the existing literature is empiri-
cal evidence that program auralisation is actually useful. Pre-
liminary experimentation showed that music can be used to
visualise algorithm state [1]. In this experiment reaction to tasks
that required the interpretation of musical output was gauged.

The first task showed that subjects were fairly accurate at
estimating the difference (in semitones) between two musical
pitches. The second task required subjects to sketch the per-
ceived shape of short musical sequences. Subjects were gener-
ally able to pick up the basic shape being presented. As the ex-
periment used musical sequences generated by a bubble sort the
results indicate that music can aid visualisation of algorithm
state.

3. The CAITLIN project
We now need some good experimentation to determine

what is possible and practicable with program auralisation. The
CAITLIN project aims to determine whether musical feedback
can help novices to debug programs. Music might also be used
to assist visually impaired programmers.

A pre-processor was constructed to auralise novices’ Pas-
cal programs. Experimentation will be undertaken to elicit evi-
dence to support (we hope) the claim that musical feedback is
useful in enhancing the debugging process.

Our auralisations are deliberately based on musical tech-
niques. Music is an extremely powerful medium for the delivery
of large amounts of data in parallel using techniques such as
counterpoint and polyphony. Separate musical ideas can be
delivered in parallel without confusion on the part of the lis-
tener if certain syntactic and semantic rules are followed. It
makes sense to investigate whether music can be usefully em-
ployed in program auralisations. Other reasons for using music
in program auralisations have been considered in earlier work
[1] as have some of the arguments against using music [1]. One
of the more enduring criticisms is that quantitative information
cannot be conveyed by sound or music.

The argument is that whilst most individuals can tell if a
note increases or decreases in pitch, only trained musicians are
able to determine exact intervals with any accuracy. However,
quantitative information can be meaningfully described and
presented in terms of its overall magnitude without needing to
know its exact, discrete values. For instance, just as an un-
marked thermometer allows visual judgement of the relative
magnitudes of various temperatures, so musical pitch enables
aural gauging of the relative values of different data.

Interestingly, nature already provides an acoustic ther-
mometer in the form of the striped ground cricket. By listening
to the cricket’s chirps one can predict ambient temperature [19]
(for example, twenty chirps per-second equates to a temperature
of 88.6° Fahrenheit).

4. The CAITLIN pre-processor
The first stage of the project has been the construction of

the CAITLIN system. CAITLIN is a non-invasive pre-processor
that allows a novice programmer to auralise a program written
in Turbo Pascal. Figure 1 shows the basic architecture of the
system in terms of its functional units and their linkages.

Musical output is via MIDI to a multi-timbral synthesiser.
Thus, the system can be implemented on a relatively modest
platform comprising a personal computer and sound card with a
General-MIDI-compatible instrument set.

CAITLIN is non-invasive; that is, it leaves the source pro-
gram unchanged. The auralisations are effected by adding li-
brary routine calls to a copy of the program. The enhanced copy
of the source program is compiled to produce an auralised ex-
ecutable image (see Figure 1). Because CAITLIN is designed to
assist in debugging executable programs and not to help com-
pile code, it will only accept a source program free of syntax
errors.

On running CAITLIN (Figure 2) the user is presented with
a screen similar in concept and layout to that of the Turbo Pas-
cal Integrated Development Environment (IDE). A menu option
allows the user to load a source program into memory which is
then parsed and stored as tokens in memory. After loading the
user can opt, via a menu (Figure 2), to auralise and then com-
pile and run the auralised program or musicode.

Auralisation is done at the construct level. That is, a
WHILE loop is auralised in one way and REPEAT, FOR, CASE,
IF...THEN...ELSE and WITH constructs in others. The user
may select, for each construct, the nature of the auralisation to
be applied. Presently this is fairly simple-minded allowing se-
lection of musical scale (e.g. major, minor etc.), default note
length (e.g. eighth note), MIDI channel and instrument. The
speed at which the music is heard is controlled by a user-
definable tempo variable. All options can be saved to a configu-
ration file.

For each construct the auralisation comprises three basic
parts: a musical signature tune (leitmotif) to denote the com-
mencement of the construct, a musical structure representing
the execution of the construct and a signature to signal exit
from the construct.
The contents of the musical structure within the construct will
depend upon the construct’s characteristics. Different constructs
have different features which will be represented in various
ways. To this end we have introduced the notion of the point of
interest (POI). A point of interest is a feature of a construct, the
details of which are of interest to the programmer during exe-
cution. For example, the IF construct has four POIs:

1. entry to the IF construct;
2. evaluation of the conditional expression;
3. execution of selected statement;
4. exit from the IF construct.

For each construct type the first and last POIs always denote
entry to and exit from the construct respectively.

To enable to the listener to distinguish between the POI-1
of FOR, WHILE and REPEAT loops we have defined a short
signature tune for each construct type. Thus, when a program is
auralised the tune associated with FOR statements is inserted
prior to each FOR loop and so on. A construct’s last POI is
auralised by playing a complement to its signature tune (such as
playing it in reverse).

Parser Auraliser

Music
Setup

Compiler

Formatter

Token
List

Auralised
Source

Source.PAR

Formatted
Code

Source.PAS

Auralised
Source

PC+MIDI Device

Executable
Image

Auralisation
Preferences

Setup
Options

Musical
Output

Novice
Source Code Source

Code

Figure 1: CAITLIN's architecture

By defining a program in terms of its points of interest we
build up an understanding of how each element and hence the
whole program should sound. For example, we know that each
FOR loop will be heard as a sequence of:

• playing of signature tune, followed by
• repetition of music denoting iterated statement exe-

cution, followed by
• playing of modified signature tune.
This is illustrated by Figure 2. The code window in Figure

2 shows a listing of a simple program employing two FOR
loops. The auralisation employed in this example is straight-
forward. Code is inserted by CAITLIN so that each iteration of
the outer loop generates a pitch of an ascending scale, the scale
type being selected by the user. The inner loop plays a de-
scending scale as the loop counter in this case is decremental. It
must be stressed that the user only has access to the original
source code and does not see the expanded auralised source.

5. Experimentation
Preliminary experimentation on CAITLIN was carried

out. Subjects (eight faculty members) were first familiarised
with the types of auralisation used by listening to ten examples2.
Each example was accompanied by a narrative description of
the program in question with source code available on request.
Each sample auralisation could be repeated as many times as
required. Following the familiarisation session subjects were
presented with nine auralisations. For each auralisation they
were asked to describe the structure of the program it repre-
sented. It should be noted that only audio cues were available;
the output of the programs was not shown. Also, no facility was
provided for changing any of the system parameters (such as
instrument used etc.). The entire process took around 25 to 30
minutes.

The results suggest that, on the whole, the subjects were
able to visualise program structure using only the auralisation
(see Figure 3). Most subjects specified exactly the program
structure represented by the auralisations. Where subjects did
not give an exact description but could describe the essence of
the structure, they were scored as ‘nearly’ correct (e.g., speci-
fying a FOR...TO loop rather than a FOR...DOWNTO loop).
Where the answer bore no correspondence to the actual then a
score of ‘no idea’ was given. It is worth noting that the one
subject who scored five ‘no ideas’ and four ‘nearly’ corrects

2
 http://www.cms.livjm.ac.uk/www/homepage/cmspvick/caitlin/tutorial.htm

provides access to these examples and the nine test auralisations used in the
experiment.

claimed to lack familiarity with western music. More thorough
experimentation should determine whether it was really this or
simply a lack of familiarity with CAITLIN itself that was to
blame.

Programs 8 and 9, which scored the fewest correct re-
sponses, contained combinations of IF and IF...ELSE...IF
constructs. The poor scoring on these two examples is interest-
ing because we have neglected (contrary to our previously
stated guidelines) to provide an auralisation for the IF con-
struct’s final POI. Thus it is impossible to determine in all but a
very few cases when an IF statement terminates. Program 8
involved nested IF statements. To deduce this required the
listener to spot that the inner selection was played at an octave
higher than the outer one; no example of nested selections was
given in the familiarisation session. CAITLIN also fails to sig-
nal when an ELSE path exists for a selection whose conditional
expression yields true.

6. Conclusions
In general, programmers understood what CAITLIN was

doing and could follow the execution of simple programs.
However, the ambiguity surrounding the IF statement shows
that it is important to auralise exit from a construct as well as
entry to it. The auralisation of the first and last POIs helped
subjects to differentiate nested and sequential program struc-

tures. The background drone provided during execution of
WHILE and REPEAT loops also assisted with this.

Instrument selection was seen to be very important. Sub-
jects commented that it was easy to deconstruct auralisations in
the mind when the timbres used for the various constructs were
markedly different.

Careful attention must be paid to signature tune construc-
tion. One subject was unable to distinguish between the entry

Figure 2: CAITLIN main screen

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Test program number

R
es

po
ns

es Correct

Nearly

No idea

Figure 3: Preliminary experimental results

and exit signatures of the FOR loop. Although this subject gave
nine correct responses, more complex examples might cause
confusion, especially when such loops are nested. The signature
tune used for the REPEAT loop was more intricate than other
signatures and did appear to confuse several subjects.

A proportion of the non-correct responses appear to be
caused by subjects incorrectly remembering what each aurali-
sation represented. One subject identified one auralisation as
both a REPEAT loop and as a WHILE loop in consecutive test
programs. He described his uncertainty as being caused by not
remembering which tune was which. A longer familiarisation
session may have improved his score.

The feedback from these preliminary experiments is being
used to develop the next version of CAITLIN which will be
used by novice programmers. Further experimentation will de-
termine whether the novice programmer can use auralisations to
help debug programs.

7. References
[1] Alty, J. L., Can We Use Music in Computer-Human
Communication?, in People and Computers X, D. Diaper and
R. Winder, Eds. Cambridge: Cambridge University Press, 1995.
[2] Blattner, M. M., Sumikawa, D. A. and Greenberg, R. M.,
Earcons and Icons: Their Structure and Common Design Prin-
ciples, Human Computer Interaction, 4, 1989, pp. 11-44.
[3] Bly, S. A., Communicating with Sound, in Proc. CHI '82
(1982), New York: ACM Press/Addison-Wesley, pp. 371-375
[4] Boardman, D. B. and Mathur, A. P., Preliminary Report
on Design Rationale, Syntax, and Semantics of LSL: A Specifi-
cation Language for Program Auralization, W. Lafayette, IN:
Dept. of Computer Sciences, Purdue University Sept. 21, 1993.
[5] Bock, D. S., Auditory Software Fault Diagnosis Using a
Sound Domain Specification Language, Ph.D. thesis, Syracuse
University, Syracuse, 1995.
[6] Brown, M. H. and Hershberger, J., Color and Sound in
Algorithm Animation, Computer, 25 (12), 1992, pp. 52-63.
[7] DiGiano, C. J. and Baecker, R. M., Program Auralization:
Sound Enhancements to the Programming Environment, in
Proc. Graphics Interface '92 (1992), pp. 44-52
[8] Domingue, J., Price, B. A. and Eisenstadt, M., A Frame-
work for Describing and Implementing Software Visualization
Systems, in Proc. Graphics Interface (1992), pp. 53
[9] Edwards, A. D. N., Soundtrack: An Auditory Interface for
Blind Users, Human Computer Interaction, 4 (1), 1989, pp. 45-
66.
[10] Francioni, J. M. and Rover, D. T., Visual-Aural Repre-
sentations of Performance for a Scalable Application Program,
in Proc. High Performance Computing Conference (1992), pp.
433-440
[11] Gaver, W. W., Auditory Icons: Using Sound in Computer
Interfaces, Human Computer Interaction, 2, 1986, pp. 167-177.
[12] Gaver, W. W., The SonicFinder: An Interface that Uses
Auditory Icons, Human Computer Interaction, 4 (1), 1989, pp.
67-94.
[13] Hayward, C., Listening to the Earth Sing, in Auditory Dis-
play, vol. XVIII, Santa Fe Institute, Studies in the Sciences of
Complexity Proceedings, G. Kramer, Ed. Reading, MA: Addi-
son-Wesley, 1994, pp. 369-404.
[14] Jackson, J. A. and Francioni, J. M., Aural Signatures of
Parallel Programs, in Proc. Twenty-Fifth Hawaii International
Conference on System Sciences (1992), pp. 218-229

[15] Jackson, J. A. and Francioni, J. M., Synchronization of
Visual and Aural Parallel Program Performance Data, in Audi-
tory Display, vol. XVIII, Santa Fe Institute, Studies in the Sci-
ences of Complexity Proceedings, G. Kramer, Ed. Reading,
MA: Addison-Wesley, 1994, pp. 291-306.
[16] Jameson, D. H., Sonnet: Audio-Enhanced Monitoring and
Debugging, in Auditory Display, vol. XVIII, Santa Fe Institute,
Studies in the Sciences of Complexity Proceedings, G. Kramer,
Ed. Reading, MA: Addison-Wesley, 1994, pp. 253-265.
[17] Kramer, G., Preface, in Auditory Display, vol. XVIII,
Santa Fe Institute, Studies in the Sciences of Complexity Pro-
ceedings, G. Kramer, Ed. Reading, MA: Addison-Wesley,
1994, pp. xxiii-xxxviii.
[18] Mezrich, J. J., Frysinger, S. and Slivjanovski, R., Dynamic
Representation of Multivariate Time Series Data, Journal of the
American Statistical Association, 79 (385), 1984, pp. 34-40.
[19] Pierce, G. W., The Songs of Insects Harvard University
Press, 1949.
[20] Scaletti, C., Sound Synthesis Algorithms for Auditory
Data Representation, in Auditory Display, vol. XVIII, Santa Fe
Institute, Studies in the Sciences of Complexity Proceedings, G.
Kramer, Ed. Reading, MA: Addison-Wesley, 1994, pp. 223-
252.
[21] Scaletti, C. and Craig, A. B., Using Sound to Extract
Meaning from Complex Data, in Extracting Meaning from
Complex Data: Processing, Display, Interaction, vol. 1259, E.
J. Farrel, Ed. San Jose, California: SPIE, 1990, pp. 207-219.
[22] Sonnenwald, D. H., Gopinath, B., Haberman, G. O.,
Keese, W. M., III and Myers, J. S., InfoSound: An Audio Aid
to Program Comprehension, in Proc. Twenty-Third Hawaii
International Conference on System Sciences, 11 (1990), IEEE
Computer Society Press, pp. 541-546

