
Checking Type Safety of Foreign Function Calls∗

Michael Furr
University of Maryland, College Park

furr@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Abstract
We present a multi-lingual type inference system for checking type
safety across a foreign function interface. The goal of our system is
to prevent foreign function calls from introducing type and mem-
ory safety violations into an otherwise safe language. Our system
targets OCaml’s FFI to C, which is relatively lightweight and illus-
trates some interesting challenges in multi-lingual type inference.
The type language in our system embeds OCaml types in C types
and vice-versa, which allows us to track type information accu-
rately even through the foreign language, where the original types
are lost. Our system usesrepresentationaltypes that can model
multiple OCaml types, because C programs can observe that many
OCaml types have the same physical representation. Furthermore,
because C has a low-level view of OCaml data, our inference sys-
tem includes a dataflow analysis to track memory offsets and tag
information. Finally, our type system includes garbage collection
information to ensure that pointers from the FFI to the OCaml heap
are tracked properly. We have implemented our inference system
and applied it to a small set of benchmarks. Our results show that
programmers do misuse these interfaces, and our implementation
has found several bugs and questionable coding practices in our
benchmarks.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Foreign Function In-
terfaces; D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis; D.2.
12 [Software Engineering]: Interoperability

General Terms Languages, Verification

Keywords foreign function interface, FFI, foreign function calls,
representational type, multi-lingual type system, multi-lingual type
inference, flow-sensitive type system, dataflow analysis, OCaml

1. Introduction
Many programming languages contain aforeign function interface
(FFI) that allows programs to invoke functions written in other lan-

∗ This research was supported in part by NSF CCF-0346982 and CCF-
0430118.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

guages. Such interfaces are important for accessing system-wide
libraries and legacy components, but they are difficult to use cor-
rectly, especially when there are mismatches between native and
foreign type systems, data representations, and run-time environ-
ments. In all of the FFIs we are aware of, there is little or no consis-
tency checking between foreign and native code [4, 8, 15, 16, 17].
As a consequence, adding an FFI to a safe language potentially
provides a rich source of operations that can violate safety in subtle
and difficult-to-find ways.

This paper presents a multi-lingual type inference system to
check type and garbage collection safety across foreign function
calls. As far as we are aware, our paper is the first that attempts
checking richer properties on the foreign language side between
two general purpose programming languages. Our system targets
the OCaml [16] foreign function interface to C [1], though we
believe that our ideas are adaptable to other FFIs.

OCaml is a strongly-typed, mostly-functional language that in-
cludes garbage collection. C is a type-unsafe imperative language
with explicit allocation and deallocation. Clearly these two lan-
guages have significant differences, and it is these differences that
make multi-lingual type inference challenging.

In the OCaml FFI, most of the work is done in C “glue” code,
which uses various macros and functions to deconstruct OCaml
data and translate it to and from C representations. It is easy to make
mistakes in this code, which is fairly low-level, because there is no
checking that OCaml data is used at the right type. For example,
one could treat unboxed (integer) types as pointers or vice-versa.
Our type inference system prevents these kinds of errors using an
extended, multi-lingual type language that embeds OCaml types in
C types and vice-versa.

In the OCaml FFI, C programs can observe that many OCaml
types have the same physical representation. For example, the value
of OCaml typeunit has the same representation as the OCaml
integer 0, nullary OCaml data constructors are represented using
integers, and OCaml records and tuples can be silently injected
into sum types if they have the right dynamic tag. Thus to model
OCaml data from the C perspective, we introducerepresentational
types that can model any or all of these possibilities (Section 2).
Conflating types in the foreign language is a common design.
For example, the Java Native Interface [17] distinguishes a few
primitive Java types in C, but the rest are represented with a single
structure type.

One key feature of our type inference system is that it smoothly
integrates flow-insensitive unification of type structure with precise
flow-sensitive analysis of local information (Section 3). To under-
stand why we need both, observe that OCaml data types are, by
definition, flow-insensitive. For example, it would not make sense
for a C FFI function to change the type of data in the OCaml heap,
since that would likely lead to incorrect behavior. Thus our system
uses unification to infer the structure of the OCaml types expected
by C code. However, to access OCaml data, C programs perform
dynamic tag tests and compute offsets into the middle of OCaml

records and tuples. In order to model these operations, we use an
iterative flow-sensitive dataflow analysis to track offset and tag in-
formation precisely within a function body. Our dataflow analysis
is fairly simple, which turns out to be sufficient in practice because
most programs use the FFI in a simple way, in part to avoid making
mistakes. In our system, the results of dataflow analysis (e.g., where
a pointer points in a structured block) inform unification (e.g., what
the type of that element in the block is). We have proven that a re-
stricted version of our type system is sound (Section 4), modulo
certain features of C such as out-of-bounds array accesses or type
casting.

Finally, recall that OCaml is a garbage-collected language. To
avoid memory corruption problems, before a C program calls
OCaml (which might invoke the garbage collector), it must no-
tify the OCaml runtime system of any pointers it has to the OCaml
heap. This is easy to forget to do, especially when the OCaml run-
time is called indirectly. Our type system includeseffectsto track
functions that may invoke the OCaml garbage collector and ensure
that pointers to the OCaml heap are registered as necessary.

Most programs include “helper” C functions that take OCaml
values, but are not called directly from OCaml. Thus we construct
an inference system that can infer types for functions that have no
declared OCaml types and can also check functions with annotated
types from the FFI. To test our ideas, we have implemented our in-
ference system and applied it to a small set of 11 benchmarks. Our
implementation takes as input a program written in C and OCaml
and performs type inference over both languages to compute multi-
lingual types.

In our experiments we have found 24 outright bugs in FFI code,
as well as 22 examples of questionable coding practice. Our results
suggest that multi-lingual type inference is a beneficial addition to
an FFI system.

In summary, the contributions of this work are as follows:

• We develop a multi-lingual type inference system for a foreign
function interface. Our system mutually embeds the type sys-
tem of each language within the other. Using this information,
we are able to track type information across foreign function
calls.

• Our type system uses representational types to model the mul-
tiple physical representations of the same type. In order to be
precise enough in practice, our analysis tracks offset and tag
information flow-sensitively, and it uses effects to ensure that
garbage collector invariants are obeyed in the foreign language.
We have proven that a restricted version of our system is sound.

• We describe an implementation of our system for the OCaml
to C foreign function interface. In our experiments, we found
a number of bugs and questionable practices in a small bench-
mark suite.

2. Multi-Lingual Types
We begin by describing OCaml’s foreign function interface to C
and developing a grammar for multi-lingual types.

In a typical use of the OCaml FFI, an OCaml program invokes
a C routine, which in turn invokes a system or user library rou-
tine. The C routine contains “glue” code to manipulate structured
OCaml types and translate between the different data representa-
tions of the two languages.

Figure 1 shows the source language types used in our sys-
tem. OCaml (Figure 1a) includesunit andint types, product types
(records or tuples), and sum types. Sums are composed of type
constructorsS, which may optionally take an argument. OCaml
also includes types for updatable references and functions. Other
OCaml types are not supported by our system; see Section 5.1 for
a discussion. C (Figure 1b) includes typesvoid, int, and the type

mltype ::= unit | int | mltype ×mltype

| S + · · ·+ S | mltype ref

| mltype → mltype

S ::= Constr | Constr of mltype

(a) OCaml Type Grammar

ctype :: void | int | value | ctype *

| ctype × . . .× ctype → ctype

(b) C Type Grammar

Figure 1. Source Type Languages

value, to which all OCaml data is assigned (see below). C also
includes pointer types, constructed with postfix*, and functions.

To invoke a C function calledc name, an OCaml program must
contain a declaration of the form

external f : mltype = “c name”

wheremltype is an OCaml function type. Callingf will invoke the
C function declared as

value c name(value arg1, . . ., value argn);

As this example shows, all OCaml data is given the single type
value in C. However, different OCaml types have various physical
representations that must be treated differently, and there is no
protection in C from mistakenly using OCaml data at the wrong
type. As a motivating example, consider the following OCaml sum
type declaration:

type t = W of int | X | Y of int * int | Z

This type has nullary (no-argument) constructorsX andZ and non-
nullary constructorsW andY.

Each nullary constructor in a sum type is numbered from 0
and is represented in memory directly as that integer. Thus to C
functions, nullary constructors look just like OCamlints, e.g.,X
and 0:int are identical. Additionally, the value of typeunit is also
represented by the OCaml integer 0.

The low-order bit of suchunboxedvalues is always set to 1 to
distinguish them from pointers. C routines use the macroVal int
to convert to such tagged integers andInt val to convert back.
There are no checks, however, to ensure that these macros are
used correctly or even at all. In particular, in the standard OCaml
distribution the typevalue is a typedef (alias) oflong. Thus one
could mistakenly applyInt val to a boxedvalue (see below), or
applyVal int to avalue. In fact, we found several examples of
these sorts of mistakes in our benchmarks (see Section 5.2).

Each non-nullary constructor in a sum type is also numbered
separately from 0. These constructors are represented asboxedval-
ues or pointers tostructured blockson the heap. A structured block
is an array ofvalues preceded by a header that contains, among
other things, atag with the constructor number. For example, the
constructorY of our example typet is represented as

tag=1,...

Pointer

OO
int int

Products that are not part of a sum are represented as structured
blocks with tag 0.

Boxed values are manipulated using the macroField(x,i),
which expands to*((value*)x+i), i.e., it accesses theith element
in the structured block pointed to byx. There are no checks to
prevent a programmer from applyingField to an unboxedvalue
or from accessing past the end of a structured block.

1 if(Is long(x)) {
2 switch(Int val(x)) {
3 case 0: /* X */ break;
4 case 1: /* Z */ break;
5 } } else {
6 switch(Tag val(x)) {
7 case 0: /* W */ break;
8 case 1: /* Y */ break;
9 } }

Figure 2. Code to Examine avalue of Typet

ct ::= void | int | mt value | ct *
| ct × · · · × ct →GC ct

GC ::= γ | gc | nogc

mt ::= α | mt → mt | ct custom | (Ψ,Σ)

Ψ ::= ψ | n | >
Σ ::= σ | ∅ | Π + Σ

Π ::= π | ∅ | mt ×Π

Figure 3. Multi-Lingual Type Language

Clearly a value of typet may have many different represen-
tations, depending on its constructor. OCaml provides a series
of macros for testing tags and for determining the boxedness of
a value. For example, code to examine a value of typet is
shown in Figure 2. Here,Is long() on line 1 checks whether
a value is a pointer (by examining the low-order bit). If it is un-
boxed,Int val() on line 2 is used to extract the tag, otherwise
Tag val() is used on line 6 wherex is known to be boxed.

In addition to using OCaml data at the correct type, C FFI func-
tions that call the OCaml runtime must notify the garbage collec-
tor of any C pointers to the OCaml heap. To do so, C functions
use macrosCAMLparam andCAMLlocal to register parameters and
locals, respectively. If a function registers any such pointers, it
must callCAMLreturn upon exiting to release the pointers. We
have found in our experiments that it is easy to forget to use these
macros, especially when functions only indirectly call the OCaml
runtime (Section 5.2).

All of the macros described above are left unchecked in part
because the correct OCaml types are not available in the C code.
Thus, our goal is to accept the kind of code presented in Figure 2
and infer the possible OCaml types forx. Since a single C value
could represent several OCaml types, a more expressive type sys-
tem is required than that of either C or OCaml. Furthermore, we
wish to only accept C code that does not violate OCaml’s garbage
collector invariants. In order to achieve these goals, we have devel-
oped a combined, multi-lingual type language, shown in Figure 3,
that integrates and generalizes the types in Figure 1.

Our grammar for C typesct embeds extended OCaml typesmt
in the typevalue, so that we can track OCaml type information
through C. Additionally, we augment function types with an effect
GC, discussed below. Our grammar for OCaml typesmt includes
type variablesα1 as well as function types and custom types (see
below).

All of the other OCaml types from Figure 1a—unit, int, prod-
ucts, sums, and references—are modeled with arepresentational

1α is a monomorphic type variable. Our system does not support polymor-
phic OCaml types since they seem to be uncommon in foreign functions in
practice.

type(Ψ,Σ). In this type,Ψ bounds the unboxed values of the type.
For a sum type,Ψ is an exact valuen counting the number of
nullary constructors of the type. Integers have the same physical
representation as nullary constructors but could have any value, so
for this caseΨ is >. Ψ may also be a variableψ. TheΣ compo-
nent of a representational type describes its possible boxed values,
if any. Σ is a sequence of productsΠ, one for each non-nullary
constructor of the type. The position of eachΠ in the sequence
corresponds to the constructor tag number, and eachΠ itself con-
tains the types of the elements of the structured block. For exam-
ple, the OCaml typet presented above has representational type
(2, (>, ∅)+(>, ∅)×(>, ∅)))). Here,Ψ = 2 sincet has two nullary
constructors (X andZ). Also,Σ contains two product types, the in-
teger type(>, ∅) for W, and the integer pair type(>, ∅) × (>, ∅)
for Y.

Notice in Figure 2 that our C code to examine a value of typet
does not by itself fully specify the type ofx. For example, the type
could have another nullary constructor or non-nullary constructor
that is not checked for. Thus our grammars forΣ andΠ include
variablesσ andπ that range over sums and products [21], which
we use to allow sum and product types to grow during inference.
Only when an inferred type is unified with an OCaml type can we
know its size exactly.

Our type language also annotates each function type with a
garbage collection effectGC, which can either be a variableγ,
gc if the function may invoke the OCaml runtime (and thus the
garbage collector), ornogc if it definitely will not. GC naturally
forms the two-point lattice with ordernogc v gc Note that we
reserve≤ for the total ordering over the integers and usev for other
partial orders. Our type system ensures that all necessary variables
are registered before calling a function with effectgc.

Finally, sometimes it is useful to pass C data and pointers to
OCaml. For example, glue code for a windowing library might
return pointers representing windows or buttons to OCaml. It is
up to the programmer to assign such data appropriate (distinct)
opaque OCaml types, but there is no guarantee that different C
types will not be conflated and perhaps misused. Thus our grammar
for OCaml typesmt includes typesct custom that track the C type
of the embedded data. Our inference system checks that OCaml
code faithfully distinguishes the C types, so that it is not possible
to perform a C type cast by passing a pointer through OCaml.

3. Type System
In this section, we present our multi-lingual type inference system.
Our inference system takes as input a program written in both
OCaml and C and proceeds in two stages. We begin by analyzing
the OCaml source code and converting the source types of FFI
functions into our multi-lingual types (Section 3.1). The second
stage of inference begins with a type environment containing the
converted types and applies our type inference algorithm to the C
source code (Section 3.2) to detect any type errors (Section 3.3).

3.1 Type Inference for OCaml Source Code

The first stage of our algorithm is to translate eachexternal func-
tion type declared in OCaml into our multi-lingual types. We only
analyze the types in the OCaml source code and not the instructions
since the OCaml type checker ensures that the OCaml source code
does not contain any type errors. We then combine the converted
types into an initial type environmentΓI , which is used during the
second stage.

We constructΓI using the type translationΦ given in Figure 4,
which converts OCaml function types into representational types.
In this definition, we implicitly assume thatmltypen is not con-
structed with→, i.e., the arity of the function isn− 1. Φ is defined
in terms of helper functionρ. The translationρ givesunit and int

Φ(external mltype1 → · · · → mltypen) =
ρ(mltype1) value× · · · × ρ(mltypen−1) value→γ

ρ(mltypen) value
γ fresh

ρ(unit) = (1, ∅)
ρ(int) = (>, ∅)

ρ(mltype ref) = (0, ρ(mltype))
ρ(mltype1 → mltype2) = ρ(mltype1) → ρ(mltype2)
ρ(L1 | L2 of mltype) = (1, ρ(mltype))

ρ(mltype1 ×mltype2) = (0, ρ(mltype1)× ρ(mltype2))

Figure 4. Translation Rules for OCaml Types

type s = P of int ref | R | Q
external fML : int → s → unit = “fC”

(a) OCaml Program

ΓI = {fC : (>, ∅)× (2, (0, (>, ∅))) →γ (1, ∅)}
(b) Initial Environment

Figure 5. First Stage Example

both pure unboxed types, with noΣ component. Sinceunit is a
singleton type, we know its value is 0, and we assign it type(1, ∅).
This is the same as the representational type for a degenerate sum
type with a single nullary constructor, e.g.,type t’ = A. This is
correct because that one nullary constructor has the same represen-
tation asunit. In contrast,int may represent any integer, and so it
is not compatible with any sum types.

The ρ function encodes mutable references as a boxed type
with a single non-nullary constructor of size 1. Regular function
types are converted tomt function types. Finally, rather than give
the general case for sums and products, we illustrate the transla-
tion with two sample cases. Sum types are handled by counting
the nullary constructors and mapping each non-nullary construc-
tor to a product type representing its arguments. In the definition
of ρ in Figure 4, we show the translation of a sum type with one
nullary constructor and one non-nullary constructor. Product types
are handled by making an appropriate boxed type with no nullary
constructors and a single non-nullary constructor of the appropriate
size.

Figure 5a gives an example OCaml program that declares an
FFI function. Figure 5b shows the initial environmentΓI created
by applyingΦ to the function type in the OCaml program. The en-
vironment maps the functionfC to its representational type. The
first argument of typeint is represented as(>, ∅). The sum argu-
ment has one non-nullary constructor and two nullary constructors.
The non-nullary constructor takes as its argument a reference to an
integer which is converted to(0, (>, ∅)). Therefore the type fors
is (2, (0, ∅)). Finally, the return type offC is unit, which is repre-
sented as(1, ∅) as in Figure 4.

3.2 C Source

After we have applied the rules in Figure 4 to the OCaml source
code, we begin the second phase of our system, which infers types
for C source code using the information gathered in the first phase.
We present our algorithm for the C-like language shown in Fig-
ure 6, based on the intermediate representation of CIL [20], which
we used to construct our implementation. In this language, expres-
sionse are side-effect free. We include integersn, pointer derefer-
ences∗e, as well as the usual arithmetic operators. L-valueslval
are the restricted subset of expressions that can appear on the left-

e ::= n | *e | e aop e | lval | e +p e | (ct) e
| Val int e | Int val e

lval ::= x | *(e+p n)

aop ::= + | - | * | == | · · ·
s ::= L: s | s ; s | lval := e | lval := f(e, . . . , e) | goto L

| if e then L | if unboxed(x) then L

| if sum tag(x) == n then L

| if int tag(x) == n then L

| return e | CAMLreturn(e)
d ::= ctype x = e | CAMLprotect(x)
f ::= function ctype f(ctype x, . . . , ctype x) d∗ s

| function ctype f(ctype x, . . . , ctype x)

P ::= f∗

Figure 6. Simplified C Grammar

hand side of an assignment, namely, variablesx and pointer deref-
erences.

Expressions include pointer arithmetice1 +p e2 for computing
the address of offsete2 from the start of the structured block
pointed to bye1. In C source code, pointer arithmetic can be distin-
guished from other forms using standard C type information. Our
system allowsvalues to be treated directly as pointers, though in
actual C source code they are first cast tovalue *. Our system in-
cludes type casts(ct) e, which castse to typect . Our formal sys-
tem only allows certain casts to and fromvalue types; other casts
are modeled using heuristics in the implementation. We also in-
clude as primitives theVal int andInt val conversion functions.
Note that we omit the address-of operation&. Variables whose ad-
dress is taken are treated as globals by the implementation, and uses
of & that interact with* are simplified away by CIL.

Statementss can be associated with a labelL, and sequencing is
written with ;. We also have assignment statementslval := e and
lval := f(e, . . . , e), the latter of which stores inlval the result of
invoking functionf with the specified arguments. A branchgoto L
unconditionally jumps to the statement labeledL; we assume that
labels are unique within a function, and jumping across function
boundaries is not allowed. Conditional branchesif e then L
jumps to the statement labeledL if the integere evaluates to a non-
zero number. Loop constructs and switch statements are omitted
because CIL transforms these into if and goto statements.

We include as primitives three conditional tests for inspecting
a value at run time. The conditionalif unboxed(x) checks to
see whetherx is not a pointer, i.e., its low-order bit is 1. The
conditionalif sum tag(x) tests the runtime tag of a structured
block pointed to byx. Similarly, the conditionalif int tag(x),
used for nullary constructors, tests the runtime value of unboxed
variablex. In actual C source code, these tests are made by applying
Tag val or Int val, respectively, and then checking the result.

Statements also includereturn e, which exits the current
function and returns the value ofe. The special formCAMLreturn
is used for returning from a function and releasing all variables
registered with the garbage collector. This statement should be
used in place ofreturn if and only if local variables have been
registered byCAMLprotect, our formalism forCAMLlocal and
CAMLparam. We restrict occurrences ofCAMLprotect to the top
of a function so that the set of registered variables is constant
throughout the body of a function.

ProgramsP consist of a sequence of function declarations and
definitionsf . We omit global variables, since our implementation
forbids (via a warning message)values from being stored in them

(see Section 5.1). We assume all local variables are defined at the
top-level of the function.

3.3 Type Inference for C Source Code

The second phase of our type inference system takes as input C
source code and the initial environmentΓI from the first phase of
the analysis (Section 3.1). Recall the example code in Figure 2 for
testing the tags of avalue. In order to analyze such a program, we
need to track precise information about values of integers, offsets
into structured blocks, and dynamic type tags for sum types. Thus
our type system infers types of the formct{B, I, T}, whereB
tracks boxedness (i.e., the result ofif unboxed), I tracks an offset
into a structured block, andT tracks the type tag of a structured
block or the value of an integer (Section 3.3.1). In our type system,
B, I, andT are computed flow-sensitively, whilect is computed
flow-insensitively.

Our inference algorithm computesB, I, andT using a standard
fixpoint dataflow analysis, in which we iteratively apply the type
rules in our formalism below. Our inference algorithm computes
ct by solving flow-insensitive type constraints. Our algorithm gen-
erates four kinds of constraints: unification constraintsct = ct ′,
mt = mt ′, π = π′, or σ = σ′; inequality constraintsT ≤ ψ that
give lower bounds on the number of primitive tags of a represen-
tational type; inequality constraintsGC v GC′ among garbage
collection effects; and conditional constraintsGC v GC′ ⇒ P ⊆
P ′.

3.3.1 Flow Sensitive Types

In our system, the flow-sensitive type elementsB, I, andT are
given by the following grammar:

B ::= boxed | unboxed | > | ⊥
I, T ::= n | > | ⊥

I and T are lattices with order⊥ v n v >, and we extend
arithmetic on integers toI as> aop I = >, ⊥ aop I = ⊥, and
similarly for T .B also forms a lattice with order⊥ v boxed v >
and⊥ v unboxed v >. Intuitively, > is used for an unknown
type and⊥ is used for unreachable code, for example following an
unconditional branch. We definect{B, I, T} v ct ′{B′, I ′, T ′} if
ct = ct ′, B v B′, I v I ′, andT v T ′. We uset to denote the
least upper bound operator, and we extendt to typesct{B, I, T}
similarly. Notice thatB, I, andT do not appear in the grammar
for ct in Figure 3, and thus our analysis does not try to track them
for values stored in the heap. In our experience, this is sufficient in
practice. In our type rules, we allowT to form constraints withΨ
from our representational types; the main difference between them
is thatΨ may be a variableψ that is solved for during unification,
whereasT is computed flow-sensitively by iteratively applying our
type rules.

The meaning ofct{B, I, T} depends onct . If ct is value,
thenB represents whether the data is boxed or unboxed. IfB is
unboxed, thenT represents the value of the data (which is either
an integer or nullary constructor), andI is always0. For example,
on line 3 of Figure 2,x has typect{unboxed, 0, 0}. If B is boxed,
thenT represents the tag of the structured block andI represents
the offset into the block. For example, on line 8 of Figure 2,x has
typect{boxed, 0, 1} since it represents constructorY.

Otherwise, ifct is int, thenB is >, I is 0, andT tracks the
value of the integer, either⊥ for unreachable code, a known integer
n, or an unknown value>. For example, the C integer 5 has type
int{>, 0, 5}. Finally, for all otherct types,B = T = > and
I = 0.

We say that avalue is safeif it is either unboxed or a pointer
to the first element of a structured block, and we say that any other
ct that is notvalue is also safe. In our type system, data with a

1 // x : α value{>, 0,>}
2 if unboxed(x) { // α = (ψ, σ) value
3 // x : α value{unboxed, 0,>}
4 if int tag(x) == 0 // 1 ≤ ψ
5 /* X */ // x : α value{unboxed, 0, 0}
6 if int tag(x) == 1 // 2 ≤ ψ
7 /* Z */ // x : α value{unboxed, 0, 1}
8 } else {
9 // x : α value{boxed, 0,>}
10 if sum tag(x) == 0 // σ = π0 + σ′

11 /* W */ // x : α value{boxed, 0, 0}
12 if sum tag(x) == 1 // σ′ = π1 + σ′′

13 /* Y */ // x : α value{boxed, 0, 1}
14 } // x : α value{>, 0,>}

Figure 7. Example with types

type whereI = 0 is safe. Intuitively, a safevalue can be used
directly at its type, and for boxed types the header can be checked
with the regular dynamic tag tests. This is not true of avalue that
points into the middle of a structured block. Our type system only
allows offsets into OCaml data to be calculated locally within a
function, and so we require that any data passed to another function
or stored in the heap is safe. Additionally, none of our type rules
allow I = >, and if that occurs during inference the program will
not type check.

Finally, recall that the type translationΦ converts OCaml func-
tions to representational types(Ψ,Σ). Since all data passed from
OCaml is safe, these types are converted to our full multi-lingual
types by adding the flow-sensitive tags{>, 0,>} to each converted
type.

3.3.2 Example

To motivate our discussion of the type inference rules, we present
in Figure 7 the example from Section 2 written in our grammar.
To enhance readability we omit labels and jumps, and instead show
control-flow with indentation. We have annotated the example with
the types assigned by our inference rules. The variablex begins
on line 1 with an unknown typeα value{>, 0,>}. B and T
are> here because the boxedness and tag ofx are unknown at
this program point.I is set to zero since all data passed from
OCaml is safe. Upon seeing theif unboxed call, α unifies with
the representational type(ψ, σ). Hereψ and σ are variables to
be solved for based on the constraints generated in the remaining
code. On the true branch, we givex anunboxed type but still an
unknown tag. Line 4 checks the unboxed constructor forx and adds
the constraint that1 ≤ ψ, which models the fact thatx can only be a
constructor of a sum with at least1 nullary constructor. Thus on line
5,x is now fully known, and can safely be used as the nullary type
constructorX. Similarly, on line 7,x is known to be the constructor
Z and we generated the constraint2 ≤ ψ from the tag test on line
6.

On the false branch of theif unboxed test, our type rules give
x a boxed type with offset0 (sincex is safe). After testing the tag of
x against0 on line 10, we know thatx has at least one non-nullary
constructor, which we enforce with the constraintσ = π0 + σ′.
On line 11, then,x can be safely treated as the constructorW (tag
0), and if we access fields ofx in this branch they will be given
types according toπ0. Similarly, on line 13 we know thatx has
constructorY (tag 1). At line 14, we join all of the branches together
and lose information about the boxedness and tag ofx. When we
solve the unification constraints onα and inequality constraints on
ψ, we will discoverα = (ψ, π0 + π1 + σ′′) with 2 ≤ ψ, which
correctly unifies with our original typet. When this occurs, we will
also discover thatσ′′ = ∅.

3.3.3 Expressions

Figure 8 gives our type rules for expressions. These rules include
type environmentsΓ, which map variables to typesct{B, I, T},
and aprotection setP , which contains those variables that have
been registered with the garbage collector byCAMLprotect. Our
rules for expressions prove judgments of the formΓ, P ` e :
ct{B, I, T}, meaning that in type environmentΓ and protection
setP , the C expressione has typect , boxednessB, offsetI, and
value/tagT .

We discuss the rules briefly. In all of the rules, we assume that
the program is correct with respect to the standard C types, and that
full C type information is available. Thus some of the rules apply
to the same source construct but are distinguished by the C types
of the subexpressions. We also distinguish between rules based on
the flow-sensitive type of a subexpression as explained below.

The rule (INT EXP) gives an integer the appropriate type, and
(VAR EXP) is standard. (VAL DEREF EXP) extracts a field from
a structured block. To assign a type to the result,e must have a
known tagm and offsetn, and we use unification to extract the
field type. Notice that the resultingB and T information is>,
since they are unknown, but the offset is 0, since we will get back
safe OCaml data. This rule, however, cannot handle the case when
records or tuples that are not part of sums are passed to functions,
because their boxedness is not checked before dereferencing. We
use (VAL DEREF TUPLE EXP) in this case, whereB is >. This
rule requires that the type have one, non-nullary constructor and no
nullary constructors.

The rule (C DEREF EXP) follows a C pointer. Notice that the
resultingB andT are>. (AOP EXP) performs the operationaop
on T andT ′ in the types. (ADD VAL EXP) computes an offset
into a structured block. Notice that it must be possible to safely
dereference the resulting pointer as the offset cannot be larger than
the width of the block. While this is not strictly necessary (we could
wait until the actual dereference to enforce the size requirement),
it seems like good practice not to form invalid pointers. We use
(ADD VAL TUPLE EXP) for computing offsets into tuples that are
not part of sums. Similar to (VAL DEREFTUPLE EXP), we allowB
to be>, but add the constraint that the type have one, non-nullary
constructor and no nullary constructors. (ADD C EXP) performs
pointer arithmetic on C types other thanvalue.

(CUSTOM EXP) casts a C pointer to avalue type, and the result
is given act * custom value type with unknown boxedness and
tag. (VAL CAST EXP) allows a custom type to be extracted from
a value of a known pointer typect *. Notice that this is the only
rule that allows casts fromvalue, which are otherwise forbidden.
We omit other type casts from our formal system; they are handled
with heuristics in our implementation (Section 5.1).

(VAL INT EXP) and (INT VAL EXP) translate between C and
OCaml integers. When a C integer is turned into an OCaml integer
with Val int, we do not yet know whether the result represents an
actualint or whether it is a nullary constructor. Thus we assign it
a fresh representational type(ψ, σ), whereT + 1 ≤ ψ. This con-
straint models the fact thate can only be a constructor of a sum
with at leastT nullary constructors. Similar to (VAL DEREF TU-
PLE EXP), (INT VAL UNBOXED EXP) handles the case where a
value is used immediately as an integer without a boxedness test.

The (APP) rule models a function call. Technically, function
calls are not expressions in our grammar, but we put this rule
here to make the rules for statements a bit more compact. To
invoke a function, the actual types and the formal types are unified;
notice that theBi and Ti are discarded, but we require that all
actual arguments are safe (Ii = 0). Additionally, we require that
GC′ v GC, since iff might call the garbage collector, so might
the current functioncur func.

INT EXP

Γ, P ` n : int{>, 0, n}

VAR EXP
x ∈ dom(Γ)

Γ, P ` x : Γ(x)

VAL DEREFEXP
Γ, P ` e : mt value{boxed, n,m}

mt = (ψ, π0 + · · ·+ πm + σ)
πm = α0 × . . .× αn × π ψ, πi, σ, αi, π fresh

Γ, P ` *e : αn value{>, 0,>}

VAL DEREFTUPLE EXP
Γ, P ` e : mt value{>, n, T}

mt = (0, α0 × · · · × αn × π) αi, π fresh

Γ, P ` *e : αn value{>, 0,>}

C DEREFEXP
Γ, P ` e : ct *{>, 0,>}
Γ, P ` *e : ct{>, 0,>}

AOP EXP
Γ, P ` e1 : int{>, 0, T} Γ, P ` e2 : int{>, 0, T ′}

Γ, P ` e1 aop e2 : int{>, 0, T aop T ′}

ADD VAL EXP
Γ, P ` e1 : mt value{boxed, n, n′}

Γ, P ` e2 : int{>, 0,m} mt = (ψ, π0 + · · ·+ πn′ + σ)
πn′ = α0 × · · · × αn+m × π ψ, πi, σ, αi, π fresh

Γ, P ` e1 +p e2 : mt value{boxed, n+m,n′}

ADD VAL TUPLE EXP
Γ, P ` e1 : mt value{>, n, n′}

Γ, P ` e2 : int{>, 0,m} mt = (0, π0 + · · ·+ πn′ + σ)
πn′ = α0 × · · · × αn+m × π πi, σ, αi, π fresh

Γ, P ` e1 +p e2 : mt value{boxed, n+m,n′}

ADD C EXP
Γ, P ` e1 : ct *{>, 0,>} Γ, P ` e2 : int{>, 0, T}

Γ, P ` e1 +p e2 : ct *{>, 0,>}

CUSTOM EXP
Γ, P ` e : ct *{>, 0,>}

Γ, P ` (value)e : ct * custom value{>, 0,>}

VAL CAST EXP
Γ, P ` e : mt value{B, I, T} mt = ct * custom

Γ, P ` (ct *) e : ct{>, 0,>}

VAL INT EXP
Γ, P ` e : int{>, 0, T} T + 1 ≤ ψ ψ, σ fresh

Γ, P ` Val int e : (ψ, σ) value{unboxed, 0, T}

INT VAL EXP
Γ, P ` e : mt value{unboxed, 0, T}

Γ, P ` Int val e : int{>, 0, T}

INT VAL UNBOXED EXP
Γ, P ` e : mt value{>, 0, T} mt = (ψ, ∅) ψ fresh

Γ, P ` Int val e : int{>, 0, T}

APP
Γ, P ` f : ct ′1 × · · · × ct ′n →GC′ ct

Γ, P ` ei : cti{Bi, 0, Ti} cti = ct ′i i ∈ 1..n
Γ, P ` cur func : · →GC ·

GC′ v GC gc v GC ⇒ (ValPtrs(Γ) ∩ live(Γ)) ⊆ P

Γ, P ` f(e1, . . . , en) : ct{>, 0,>}

Figure 8. Type Inference for C Expressions

The last hypothesis in this rule is a constraint that requires
that if this function may call the garbage collector, every variable
that points into the OCaml heap and is still live must have been
registered with a call toCAMLprotect. HereValPtrs(Γ) is the set
of all variables inΓ with a type(Ψ,Σ) value where|Σ| > 0,
i.e., the set of all variables that are pointers into the OCaml heap.
(These sets are computed after unification is complete.) The set
live(Γ) is all variables live at the program point corresponding to
Γ. We omit the computation oflive, since it is standard. Solving
theseGC constraints is discussed in Section 3.3.5.

3.3.4 Statements

Judgments for statements are flow-sensitive, which we model by al-
lowing the type environment to vary from one statement to another,
even in the same scope. Intuitively, this allows us to track dataflow
facts about local variables. In order to support branches, our rules
will use a label environmentG mapping labels to type environ-
ments. In particular,G(L) is the type environment at the beginning
of statementL. As inference proceeds, the type rules may update
G, which we write with the:= operator. Our analysis iteratively
applies the type rules to a function body using a worklist algorithm
until G has reached a fixpoint (Section 3.3.5).

Since type environments are flow-sensitive, some of our type
rules need to constrain type environments to be compatible with
each other. Letdom(Γ) = dom(Γ′). Then we defineΓ v Γ′ if
Γ(x) v Γ′(x) for all x ∈ dom(Γ), and we define(Γ t Γ′)(x) =
Γ(x) t Γ′(x) for all x ∈ dom(Γ). Also, for the fall-through case
for an unconditional branch our rules need to reset all flow-sensitive
information to⊥. We definereset(Γ)(x) = ct{⊥,⊥,⊥}, where
Γ(x) = ct{B, I, T}.

Finally, recall that only plainctypes are available in the source
code. Hence, analogously toΦ in Figure 4, we define a functionη
to translatectypes tocts:

η(void) = void
η(int) = int

η(value) = α value α fresh
η(ctype *) = η(ctype) *

We do not translate C function types because they are not first class
in our language.

Figure 9 gives our type rules for statements, which prove judg-
ments of the formΓ, G, P ` s,Γ′, meaning that in type environ-
ment Γ, label environmentG, and protection setP , statements
type checks, and after statements the new environment isΓ′.

The (SEQ STMT) rule is straightforward, and the (LBL STMT)
rule constrains the type environmentG(L) to be compatible with
the current environmentΓ. The (GOTO STMT) rule updatesG if
necessary. IfG is updated atL, we addL to our standard fixpoint
worklist so that we continue iterating. (RET STMT) unifies the type
of ewith the return type of the current function. We also require that
e is safe and thatP is empty so that any variables registered with
the garbage collector are released. (CAMLRET STMT) is identical
to (RET STMT) except that we requireP to be non-empty since it
must be paired with at least oneCAMLprotect declaration. In each
of (GOTO STMT), (RET STMT), and (CAMLRET STMT), we use
reset to compute a new, unconstrained type environment following
these statements, since they are unconditional branches.

(LSET STMT) typechecks writes to memory. We abuse nota-
tion slightly and allowe2 on the right-hand side to be either an
expression or a function call, which is checked with rule (APP) in
Figure 8. Notice that since we do not model such heap writes flow-
sensitively, we require that the type ofe2 is safe, and that the output
type environment is the same as the input environment. In contrast,
(VSET STMT) models writes to local variables, which are treated
flow-sensitively. Again, we abuse notation and allow the right-hand

side to be a function application checked with (APP). (VAR DECL)
binds a local variable to the environment. This rule uses our map-
pingη to generatect types fromctypes. (CAMLPROTECTDECL)
takes a variable in the environment and adds it to the protection set
P . Recall that this can only occur at the top-level of a function, and
thereforeP is constant throughout the body of a function.

The rule (IF STMT) models a branch on a C integer. (IF UN-
BOXED STMT) models one of our three dynamic tag tests. At label
L, we know that local variablex is unboxed, and in the else branch
(the fall-through case), we knowx is boxed. We can only apply
if unboxed to expressions known to be safe. In particular, in the
else branch we must know the offset of theboxed data is 0, to allow
us to do further tag tests.

Similarly, in (IF SUM TAG STMT) we setx to have tagn at
label L. Notice that this test is only valid if we already know
(e.g., by callingif unboxed) thatx is boxed and at offset 0, since
otherwise the header cannot be read. In the else branch, nothing
more is known aboutx. In either case, we require that if this test
is performed, thenmt must have at leastn possible tags. While
omitting this last requirement would not create a runtime error,
it may imply a coding error, since the program would be testing
for more constructors than are defined by the type. Therefore our
heuristic is to warn about this case by including that clause in our
rules. In (IF INT TAG STMT), variablex is known to have value
n at labelL. Analogously with the previous rule, we requirex
to be unboxed, and with the constraintn + 1 ≤ ψ we require
that x must have at leastn + 1 nullary constructors (ψ is the
count of the constructors, which are numbered from 0). Similarly
to (VAL DEREF TUPLE EXP) and (INT VAL UNBOXED EXP),
our implementation includes analogous variations on (IF SUM TAG
STMT) and (IF INT TAG STMT) that allowB = > in exchange for
stricter constraints onmt . These rules are not shown since they add
no new issues.

Finally, rules (FUN DECL) and (FUN DEFN) bind function
names in the environment. As with (VAR DECL), these rules use
η to generatect types fromctypes. Notice that in (FUN DEFN),
the function type is not added to the environment; for simplicity,
we assume all functions are declared before they are used. We also
assume that all parameters are safe, which is enforced in (APP).
The label environmentG′ is initialized to fresh copies ofΓm for
each label in the function body, andP is initialized to the empty
set.

3.3.5 Applying the Type Inference Rules

We apply the type rules in Figures 8 and 9 to C source code
beginning in type environmentΓI from phase one. There are three
components to applying the type rules. First, the rules generate
equality constraintsct = ct ′ andmt = mt ′, which are solved with
ordinary unification. When solving a constraint(Ψ, ·) = (Ψ′, ·),
we require thatΨ andΨ′ are the same, i.e.,n does not unify with
>. We are left with constraints of the formT + 1 ≤ Ψ from (VAL
INT EXP) and (IF INT TAGSTMT). Recall that these ensure that
nullary constructors can only be used with a sum type that is large
enough. Thus in this constraint, ifT is negative, we requireΨ = >,
since negative numbers are never constructors. After unification
and fixpoint iteration (see below), we can simply walk through the
list of these constraints and check whether they are satisfied.

Next, when computingΓ ` f,Γ′ for a function definitionf ,
recall that label environmentGmay be updated. When this happens
for G(L), we addL to a worklist of statements. We iteratively
re-apply the type inferences rules to statements on the worklist
until we reach a fixpoint. This computation will clearly terminate
because updates monotonically increase facts aboutB, I, andT ,
which are finite height lattices, and because re-applying the type
inference rules produces strictly more unification constraints.

SEQ STMT

Γ, G, P ` s1,Γ′ Γ′, G, P ` s2,Γ′′

Γ, G, P ` s1 ; s2,Γ′′

LBL STMT
G(L), G, P ` s,Γ′ Γ v G(L)

Γ, G, P ` L: s,Γ′

GOTO STMT
G := G[L 7→ G(L) t Γ]

Γ, G, P ` goto L, reset(Γ)

RET STMT
Γ, P ` e : ct{B, 0, T}

Γ ` cur func : · →GC ct ′

ct = ct ′ P = ∅
Γ, G, P ` return e, reset(Γ)

CAMLRET STMT
Γ, P ` e : ct{B, 0, T}

Γ, P ` cur func : · →GC ct ′

ct = ct ′ P 6= ∅
Γ, G, P ` CAMLreturn(e), reset(Γ)

LSET STMT
Γ, P ` *(e1 +p n) : ct{>, 0,>}

Γ, P ` e2 : ct ′{B, 0, T}
ct = ct ′

Γ, G, P ` *(e1 +p n) := e2,Γ

VSET STMT
Γ, P ` e : ct{B, I, T}

Γ, G, P ` x := e,Γ[x 7→ ct{B, I, T}]

VAR DECL
Γ, P ` e : ct{B, I, T} ct = η(ctype)

Γ, P ` ctype x = e,Γ[x 7→ ct{B, I, T}]

CAMLPROTECTDECL
Γ, P ` x : ct{B, I, T}

P := P ∪ {x}
Γ, G, P ` CAMLprotect(x),Γ

IF STMT
Γ, P ` e : int{>, 0, T} G := G[L 7→ G(L) t Γ]

Γ, G, P ` if e then L,Γ

IF UNBOXED STMT
Γ, P ` x : mt value{B, 0, T}

Γ′ = Γ[x 7→ mt value{unboxed, 0, T}]
G := G[L 7→ G(L) t Γ′]

Γ, G, P ` if unboxed(x) then L,Γ[x 7→ mt value{boxed, 0, T}]

IF SUM TAG STMT
Γ, P ` x : mt value{boxed, 0, T}

mt = (ψ, π0 + · · ·+ πn + σ)
Γ′ = Γ[x 7→ mt value{boxed, 0, n}]

G := G[L 7→ G(L) t Γ′] ψ, πi, σ fresh

Γ, G, P ` if sum tag(x) == n then L,Γ

IF INT TAG STMT
Γ, P ` x : mt value{unboxed, 0, T} mt = (ψ, σ)
n+ 1 ≤ ψ Γ′ = Γ[x 7→ mt value{unboxed, 0, n}]

G := G[L 7→ G(L) t Γ′] ψ, σ fresh

Γ, G, P ` if int tag(x) == n then L,Γ

FUN DECL
ct = η(ctype1)× . . .× η(ctypen) →γ η(ctype)

f ∈ dom(Γ) ⇒ ct = Γ(f) γ fresh

Γ ` function ctype f(ctype1 x, . . . , ctypen x),Γ
′[f 7→ ct]

FUN DEFN
Γ0 = Γ[xi 7→ η(ctypei){>, 0,>}, cur func 7→ Γ(f)]

Γi−1, P ` di,Γi i ∈ 1..m P := ∅ P,G fresh
∀L ∈ body off,G(L) := reset(Γm) Γm, G, P ` s,Γ′

Γ ` function ctype f(ctype1 x1, . . . , ctypen xn) d1 . . . dm; s,Γ

Figure 9. Type Inference for C Statements

Finally, we are left with constraintsGC v GC′. These atomic
subtyping constraints can be solved via graph reachability. Intu-
itively, we can think of the constraintGC v GC′ as an edge from
GC to GC′. Such edges form a call graph, i.e., there is an edge
from GC to GC′ if the function with effectGC is called by the
function with effectGC′. To determine whether a function with
effect variableγ may call the garbage collector, we simply check
whether there is a path fromgc to γ in this graph, and using this
information we ensure that any conditional constraints from (APP)
are satisfied forgc functions.

4. Soundness
We now sketch a proof of soundness for a slightly simplified ver-
sion of our multi-lingual type system that omits function calls,
casting operations, andCAMLprotect andCAMLreturn. Full de-
tails are presented in a companion technical report [10]. We be-
lieve these features can be added without difficulty, though with
more tedium. Thus our proof focuses on checking the sequence of
statements that forms the body of a function, with branches but no
function calls.

The first step is to extend our grammar for expressions to in-
clude C locationsl, OCaml integers{n}, and OCaml locations
{l + n} (a pointer on the OCaml heap with base addressl and
offset n). We write {l + −1} for the location of the type tag in
the header block. We define the syntactic valuesv to be these three
forms plus C integersn. As is standard, in our soundness proof we
overloadΓ so that in addition to containing types for variables, it
contains types for C locations and OCaml locations. We also add
the empty statement() to our grammar for statements.

Our operational semantics uses three stores to model updatable
references:SC maps C locations to values,SML maps OCaml
locations to values, andV maps local variables to values. In order to
model branches, we also include a statement storeD, which maps
labelsL, to statementss. Due to lack of space, we omit our small-
step operational semantics, which define a reduction relation of the
form

〈SC , SML, V, s〉 → 〈S′C , S′ML, V
′, s′〉

Here, a statements in stateSC , SML, andV , reduces to a new
statements′ and yields new storesS′C , S′ML, andV ′. We define
→∗ as the reflexive, transitive closure of→.

To show soundness, we require that upon entering a function,
the stores arecompatiblewith the current type environment:

DEFINITION 1 (Compatibility).Γ is said to be compatible withSC ,
SML, andV (writtenΓ ∼ 〈SC , SML, V 〉) if

1. dom(Γ) = dom(SC) ∪ dom(SML) ∪ dom(V)

2. For all l ∈ SC there existsct such thatΓ ` l : ct *{>, 0,>} and
Γ ` SC(l) : ct{>, 0,>}.

3. For all {l + n} ∈ SML there existΨ, Σ, j, k, m, Π0, . . . ,Πj ,
mt0, . . . ,mtk such that

• Γ ` {l + n} : (Ψ,Σ) value{boxed, n,m}
• Σ = Π0 + · · ·+ Πj ,m ≤ j

• Πm = mt0 × · · · ×mtk, n ≤ k

• Γ ` SML({l + n}) : mtn value{>, 0,>}
• SML({l +−1}) = m

4. For all x ∈ V , Γ ` V (x) : Γ(x)

DEFINITION 2. A statement storeD is said to L-compatible with
a label environmentG, writtenD ∼L G, if for all L ∈ D there
existsΓ such thatG(L), G ` D(L),Γ.

DEFINITION 3. D is said to be well formed if for allL ∈ D,D(L)
is a statement of the formL : s.

The standard approach to proving soundness is to show that re-
duction of a well-typed term does not becomestuck. In our system,
this corresponds to showing that every statement either diverges or
eventually reduces to(), which we prove in the technical report
[10].

THEOREM 1 (Soundness).If Γ ` s,Γ′, Γ ∼ 〈SC , SML, V 〉,
D ∼L G and D is well formed, then either〈SC , SML, V, s〉
diverges, or〈SC , SML, V, s〉 →∗ 〈S′C , S′ML, V

′, ()〉.

5. Implementation and Experiments
We have implemented the inference system described in Section 3.
We first discuss the details of our implementation that are not
covered by our formal system, and then present the results of
analyzing a small benchmark suite with our tool.

5.1 Implementation

Our implementation consists of two separate tools, one for each
language. The first tool, based on thecamlp4 preprocessor, ana-
lyzes OCaml source programs and extracts the type signatures of
any foreign functions. Because ultimately C foreign functions will
see the physical representations of OCaml types, the tool resolves
all types to a concrete form. In particular, type aliases are replaced
by their base types, and opaque types are replaced by the concrete
types they hide, when available. If the concrete type is not avail-
able, the opaque type is assigned a fresh type variable, and our tool
simply checks to ensure it is used consistently. As each OCaml
source file is analyzed, the tool incrementally updates a central type
repository with the newly extracted type information, beginning
with a pre-generated repository from the standard OCaml library.
Once this first phase is complete, the central repository contains
the equivalent of the initial environmentΓI , which is fed into the
second tool.

The second tool, built using CIL [20], performs the bulk of the
analysis. This tool takes as input the central type repository and a
set of C source programs to which it applies the rules in Figures 8
and 9. The tool uses syntactic pattern matching to identify tag and
boxedness tests in the code.

One feature of C that we have not fully discussed is the address-
of operator. Our implementation models address-of in different
ways, depending on the usage. Any local variable with an integer
type (or local structure with a integer field) that has its address com-
puted is given the typeint{>, 0,>} everywhere. This conserva-
tively models the fact that the variable may be updated arbitrarily
through other aliases. It has been our experience that variables used
for indexing intovalue types rarely have their address taken, so
this usually does not affect our analysis. Similarly, we produce a
warning for any variable of typevalue whose address is taken (or
any variable containing a field of typevalue), as well as for any
global variable of typevalue. When encountering a call through a
C function pointer, our tool currently issues a warning and does not
generate typing constraints on the parameters or return type.

We also treat unsafe type casts specially in our implementation.
Our system tries to warn programmers about casts involvingvalue
types, but in order to reduce false positives we use heuristics rather
than be fully sound. For instance, any cast through avoid * type
is ignored, as well as any signed-unsigned type differences.

In addition to the types we have described so far, OCaml also
includes objects, polymorphic variants, and universally quantified

types. Our implementation treats object types in the same way as
opaque types, with no subtyping between different object types. We
have not seen objects used in FFI C code. Our implementation does
not handle polymorphic variants, which are used in FFI code, and
this leads to some false positives in our experiments.

Finally, recall that our analysis of C functions is monomorphic.
Therefore, if ourΦ function from Figure 4 encounters a polymor-
phic type variable,Φ assigns it the representational type(ψ, π+σ)
whereψ, π andσ are fresh variables with the constraint1 ≤ ψ.
Since a polymorphic type could be either boxed or unboxed, this
prevents a C function from using the polymorphic type directly as
an integer or a boxed type without at least performing a boxed-
ness test. We also cannot infer universally quantified types for C
“helper” functions that are polymorphic in OCamlvalue parame-
ters. Instead, we allow them to be hand-annotated as polymorphic,
which prevents typing constraints between any of its actual and for-
mal arguments. Such C functions appear to be rare in practice, as
we only added these annotations 4 times in our benchmark suite.

5.2 Experiments

We ran our tool on several programs that utilize the OCaml foreign
function interface. The programs we looked at are actually glue
libraries that provide an OCaml API for system and third-party
libraries. All of the programs we analyzed were from a tested,
released version, though we believe our tool is also useful during
development.

Figure 10 gives a summary of our benchmarks and results.
For each program, we list the lines of C and OCaml code, and
the running time (three run average) for our analysis on a 2GHz
Pentium IV Xeon Processor with 2GB of memory. Recall from
Section 3.1 that we do not directly analyze OCaml function bodies.
Thus the bulk of the time is spent analyzing C code. Also, our
analysis is done as the program is compiled, so these figures also
include compilation time.

The next three columns list the number of errors found, the
number of warnings for questionable programming practice, and
the number of false positives, i.e., warnings for code that appears to
be correct. The last column shows the number of places where the
implementation warned that it did not have precise flow-sensitive
information (see below). The total number of warnings is the sum
of these four columns.

We found a total of 24 outright errors in the benchmarks. One
source of errors was forgetting to register C references to the
OCaml heap before invoking the OCaml runtime. This accounts
for one error in each of ftplib, lablgl, and lablgtk. Similarly, the
one error in each of ocaml-mad and ocaml-vorbis was registering
a local parameter with the garbage collector but then forgetting to
release it, thus possibly leaking memory or causing subtle memory
corruption.

The 19 remaining errors are type mismatches between the C
code and the OCaml code. For instance, 5 of the lablgtk errors
and all ocaml-glpk and ocaml-ssl errors were due to usingVal int
instead ofInt val or vice-versa. Another error was due to one FFI
function mistreating an optional argument as a regular argument.
Here, the function directly accessed the option block as if it were
the expected type rather than an option type containing the expected
type. Thus, the C code will most likely violate type safety. The
other type errors are similar.

In addition to the 24 errors, our tool reported 22 warnings cor-
responding to questionable coding practices. A common mistake
is declaring the last parameter in an OCaml signature as typeunit
even though the corresponding C function omits that parameter in
its declaration:

OCaml : external f : int → unit → unit = “ f”

C : value f(value x);

Program C loc OCaml loc Time (s) Errors Warnings False Pos Imprecision

apm-1.00 124 156 1.3 0 0 0 0
camlzip-1.01 139 820 1.7 0 0 0 1

ocaml-mad-0.1.0 139 38 4.2 1 0 0 0
ocaml-ssl-0.1.0 187 151 1.5 4 2 0 0

ocaml-glpk-0.1.1 305 147 1.3 4 1 0 1
gz-0.5.5 572 192 2.2 0 1 0 1

ocaml-vorbis-0.1.1 1183 443 2.8 1 0 0 2
ftplib-0.12 1401 21 1.7 1 2 0 1
lablgl-1.00 1586 1357 7.5 4 5 140 20

cryptokit-1.2 2173 2315 5.4 0 0 0 1
lablgtk-2.2.0 5998 14847 61.3 9 11 74 48

Total 24 22 214 75

Figure 10.Experimental Results

While this does not usually cause problems on most systems, it is
not good practice, since the trailingunit parameter is placed on
the stack. The warnings reported for ftplib, ocaml-glpk, ocaml-ssl,
lablgl, and lablgtk were all due to this case.

The warning in gz is an interesting abuse of the OCaml type sys-
tem. The gz program contains an FFI function toseek(set the file
position) on file streams, which have either typeinput channel
or output channel. However, instead of taking a sum type as a
parameter (to allow both kinds of arguments), the function is de-
clared with the polymorphic type ’a as its parameter.

OCaml : external seek : int → ’a → unit = “seek”

C : value seek(value pos, value chan){
FILE *strm = Field(chan,0);

fseek(strm,...);

Clearly usingchan in this way is very dangerous, because OCaml
will allow any argument to be passed to this function, including
unboxed integers. In this case, however, only the right types are
passed to the function, and it is encapsulated so no other code
can access the function, and so we classify this as questionable
programming practice rather than an error.

Our tool also reported a number of false positives, i.e., warnings
for code that seems correct. One source of false positives is due
to polymorphic variants, which we do not handle. The other main
source of false positives is due to pointer arithmetic disguised as
integer arithmetic. Recall that the typevalue is actually a typedef
for long. Therefore ifv is an OCaml value with typet ∗ custom,
then both((t∗)v + 1) and (t∗)(v + sizeof(t∗)) are equivalent.
However, our system will not type check the second case because
direct arithmetic is performed on avalue type.

Finally, in several of the benchmarks there are a number of
places where our tool issued a warning because it does not have
precise enough information to compute a type. For instance, this
may occur when computing the type ofe1 +p e2 if e2 has the type
int{>, 0,>}, since the analysis cannot determine the new offset.
We also classify warnings about globalvalue types and the use of
function pointers as imprecision warnings. However, these did not
occur very often, only 10 and 8 times respectively. One interesting
direction for future work would be eliminating these warnings and
instead adding run-time checks to the C code for these cases.

6. Related Work
Most languages include a foreign function interface, typically to C,
since it runs on many platforms. For languages with semantics and
runtime systems that are close to C, “foreign function” calls to C
can typically be made using simple interfaces. For languages that
are further from C, FFIs are more complicated, and there are many
interesting design points with different tradeoffs [4, 8, 15, 16, 17].

For example, Blume [4] proposes a system allowing arbitrary C
data types to be accessed by ML. Fisher et al [9] have developed
a framework that supports exploration of many different foreign
interface policies. While various interfaces allow more or less code
to be written natively (and there is a trend towards more native
code rather than glue code), the problem of validating usage of the
interface on the foreign language side still remains.

Recently, researchers have developed systems to check that
dynamically-generated SQL queries are well-formed [6, 7, 11]. In
a sense, these systems are checking a foreign-function interface
between SQL and the source language. In order to model SQL
queries, the systems focus on string manipulations rather than stan-
dard type structure, and so they are considerably different than our
type system.

Trifonov and Shao [22] use effects to reason about the safety of
interfacing multiple safe languages with different runtime resource
requirements in the same address space. Their focus is on ensuring
that code fragments in the various languages have access to nec-
essary resources while preserving the languages’ semantics, which
differs from our goal of checking types and GC properties in FFIs.

Systems like COM [12] and SOM [13] provide interoperabil-
ity between object-oriented frameworks. Essentially, they are for-
eign function interfaces that incorporate an object model. Typically
these systems include dynamic type information that is checked at
runtime and used to find methods and fields. We leave the problem
of statically checking such object FFIs to future work.

Our type system bears some resemblance to systems that use
physical type checking for C [5, 19], in that both need to be con-
cerned with memory representations and offsets. However, our sys-
tem is considerably simpler than full-fledged physical type check-
ing systems simply because OCaml data given typevalue is typi-
cally only used in restricted ways.

One way to avoid foreign function interfaces completely is to
compile all programs down to a common intermediate representa-
tion. For example, the Microsoft common-language runtime (CLR)
[14, 18] includes a strong type system and is designed as the tar-
get of compilers for multiple different languages. While this so-
lution avoids the kinds of programming difficulties that can arise
with FFIs, it does not solve the issue of interfacing with programs
in non-CLR languages or with unmanaged (unsafe) CLR code. An-
other approach used by SWIG [2], is to automatically generate glue
code for the low level language based on an interface specification
file. This has the advantage of eliminating the need for custom glue
code (and thus eliminate safety violations), but it exposes all of
the low level types to the high level language, creating a possi-
bly awkward interface. All of the programs in our benchmark suite
contained custom glue code written without the use of an interface

generator, suggesting that hand writing FFI code is still a popular
approach.

7. Conclusion
We have presented a multi-lingual type inference system for check-
ing type and GC safety across the OCaml-to-C foreign function
interface. Our system embeds the types of each language into the
other, using representational types to model the overlapping phys-
ical representations in C of different OCaml types. Our type infer-
ence algorithm uses a combination of unification to infer OCaml
types and dataflow analysis to track offset and tag information. We
use effects to track garbage collection information and to ensure
that C pointers to the OCaml heap registered with the garbage col-
lector. Using an implementation of our algorithm, we found sev-
eral errors and questionable coding practices in a small benchmark
suite. We think our results suggest that multi-lingual type inference
can be an important part of foreign function interfaces, and we be-
lieve these same techniques can be extended and applied to other
FFIs.

References
[1] ANSI. Programming languages – C, 1999. ISO/IEC 9899:1999.
[2] D. M. Beazley. SWIG: An easy to use tool for integrating scripting

languages with C and C++,.
[3] N. Benton and A. Kennedy, editors.BABEL’01: First International

Workshop on Multi-Language Infrastructure and Interoperability,
volume 59 ofElectronic Notes in Theoretical Computer Science,
Firenze, Italy, Sept. 2001.http://www.elsevier.nl/locate/
entcs/volume59.html.

[4] M. Blume. No-Longer-Foreign: Teaching an ML compiler to speak
C “natively”. In Benton and Kennedy [3].http://www.elsevier.
nl/locate/entcs/volume59.html.

[5] S. Chandra and T. W. Reps. Physical Type Checking for C. In
Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 66–75, Toulouse,
France, Sept. 1999.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise
Analysis of String Expressions. In R. Cousot, editor,Static Analysis,
10th International Symposium, volume 2694 ofLecture Notes in
Computer Science, pages 1–18, San Diego, CA, USA, June 2003.
Springer-Verlag.

[7] R. DeLine and M. F̈ahndrich. The Fugue Protocol Checker: Is your
software Baroque? Technical Report MSR-TR-2004-07, Microsoft
Research, Jan. 2004.

[8] S. Finne, D. Leijen, E. Meijer, and S. P. Jones. Calling hell from
heaven and heaven from hell. InProceedings of the fourth ACM
SIGPLAN International Conference on Functional Programming,
pages 114–125, Paris, France, Sept. 1999.

[9] K. Fisher, R. Pucella, and J. Reppy. A framework for interoperability.
In Benton and Kennedy [3].http://www.elsevier.nl/locate/
entcs/volume59.html.

[10] M. Furr and J. S. Foster. Checking Type Safety of Foreign Function
Calls. Technical Report CS-TR-4627, University of Maryland,
Computer Science Department, Nov. 2004.

[11] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically
Generated Queries in Database Applications. InProceedings of the
26th International Conference on Software Engineering, pages 645–
654, Edinburgh, Scotland, UK, May 2004.

[12] D. N. Gray, J. Hotchkiss, S. LaForge, A. Shalit, and T. Weinberg.
Modern Languages and Microsoft’s Component Object Model.
Communications of the ACM, 41(5):55–65, May 1998.

[13] J. Hamilton. Interlanguage Object Sharing with SOM. InProceedings
of the Usenix 1996 Annual Technical Conference, San Diego,
California, Jan. 1996.

[14] J. Hamilton. Language Integration in the Common Language
Runtime.ACM SIGPLAN Notices, 38(2):19–28, Feb. 2003.

[15] L. Huelsbergen. A Portable C Interface for Standard ML of New
Jersey. http://www.smlnj.org//doc/SMLNJ-C/smlnj-c.ps,
1996.

[16] X. Leroy. The Objective Caml system, Aug. 2004. Release
3.08,http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.
08-refman.pdf.

[17] S. Liang. The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, 1999.

[18] E. Meijer, N. Perry, and A. van Yzendoorn. Scripting .NET using
Mondrian. In J. L. Knudsen, editor,ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, volume 2072 ofLecture
Notes in Computer Science, pages 150–164, Budapest, Hungary, June
2001. Springer-Verlag.

[19] G. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. InProceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 128–139, Portland, Oregon, Jan. 2002.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation
of C Programs. In R. N. Horspool, editor,Compiler Construction,
11th International Conference, volume 2304 ofLecture Notes in
Computer Science, pages 213–228, Grenoble, France, Apr. 2002.
Springer-Verlag.

[21] D. Rémy. Typechecking records and variants in a natural extension
of ML. In Proceedings of the 16th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 77–88,
Austin, Texas, Jan. 1989.

[22] V. Trifonov and Z. Shao. Safe and Principled Language Interoperation.
In D. Swierstra, editor,8th European Symposium on Programming,
volume 1576 ofLecture Notes in Computer Science, pages 128–146,
Amsterdam, The Netherlands, Mar. 1999. Springer-Verlag.

